DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "gc/AtomMarking-inl.h"

#include "gc/PublicIterators.h"
#include "vm/Realm.h"

#include "gc/GC-inl.h"
#include "gc/Heap-inl.h"

namespace js {
namespace gc {

// [SMDOC] GC Atom Marking
//
// Things in the atoms zone (which includes atomized strings and other things,
// all of which we will refer to as 'atoms' here) may be pointed to freely by
// things in other zones. To avoid the need to perform garbage collections of
// the entire runtime to collect atoms, we compute a separate atom mark bitmap
// for each zone that is always an overapproximation of the atoms that zone is
// using. When an atom is not in the mark bitmap for any zone, it can be
// destroyed.
//
// To minimize interference with the rest of the GC, atom marking and sweeping
// is done by manipulating the mark bitmaps in the chunks used for the atoms.
// When the atoms zone is being collected, the mark bitmaps for the chunk(s)
// used by the atoms are updated normally during marking. After marking
// finishes, the chunk mark bitmaps are translated to a more efficient atom mark
// bitmap (see below) that is stored on the zones which the GC collected
// (computeBitmapFromChunkMarkBits). Before sweeping begins, the chunk mark
// bitmaps are updated with any atoms that might be referenced by zones which
// weren't collected (markAtomsUsedByUncollectedZones). The GC sweeping will
// then release all atoms which are not marked by any zone.
//
// The representation of atom mark bitmaps is as follows:
//
// Each arena in the atoms zone has an atomBitmapStart() value indicating the
// word index into the bitmap of the first thing in the arena. Each arena uses
// ArenaBitmapWords of data to store its bitmap, which uses the same
// representation as chunk mark bitmaps: one bit is allocated per Cell, with
// bits for space between things being unused when things are larger than a
// single Cell.

void AtomMarkingRuntime::registerArena(Arena* arena, const AutoLockGC& lock) {
  MOZ_ASSERT(arena->getThingSize() != 0);
  MOZ_ASSERT(arena->getThingSize() % CellAlignBytes == 0);
  MOZ_ASSERT(arena->zone->isAtomsZone());

  // We need to find a range of bits from the atoms bitmap for this arena.

  // Look for a free range of bits compatible with this arena.
  if (freeArenaIndexes.ref().length()) {
    arena->atomBitmapStart() = freeArenaIndexes.ref().popCopy();
    return;
  }

  // Allocate a range of bits from the end for this arena.
  arena->atomBitmapStart() = allocatedWords;
  allocatedWords += ArenaBitmapWords;
}

void AtomMarkingRuntime::unregisterArena(Arena* arena, const AutoLockGC& lock) {
  MOZ_ASSERT(arena->zone->isAtomsZone());

  // Leak these atom bits if we run out of memory.
  mozilla::Unused << freeArenaIndexes.ref().emplaceBack(
      arena->atomBitmapStart());
}

bool AtomMarkingRuntime::computeBitmapFromChunkMarkBits(JSRuntime* runtime,
                                                        DenseBitmap& bitmap) {
  MOZ_ASSERT(CurrentThreadIsPerformingGC());
  MOZ_ASSERT(!runtime->hasHelperThreadZones());

  if (!bitmap.ensureSpace(allocatedWords)) {
    return false;
  }

  Zone* atomsZone = runtime->unsafeAtomsZone();
  for (auto thingKind : AllAllocKinds()) {
    for (ArenaIter aiter(atomsZone, thingKind); !aiter.done(); aiter.next()) {
      Arena* arena = aiter.get();
      uintptr_t* chunkWords = arena->chunk()->bitmap.arenaBits(arena);
      bitmap.copyBitsFrom(arena->atomBitmapStart(), ArenaBitmapWords,
                          chunkWords);
    }
  }

  return true;
}

void AtomMarkingRuntime::refineZoneBitmapForCollectedZone(
    Zone* zone, const DenseBitmap& bitmap) {
  MOZ_ASSERT(zone->isCollectingFromAnyThread());

  if (zone->isAtomsZone()) {
    return;
  }

  // Take the bitwise and between the two mark bitmaps to get the best new
  // overapproximation we can. |bitmap| might include bits that are not in
  // the zone's mark bitmap, if additional zones were collected by the GC.
  zone->markedAtoms().bitwiseAndWith(bitmap);
}

// Set any bits in the chunk mark bitmaps for atoms which are marked in bitmap.
template <typename Bitmap>
static void BitwiseOrIntoChunkMarkBits(JSRuntime* runtime, Bitmap& bitmap) {
  // Make sure that by copying the mark bits for one arena in word sizes we
  // do not affect the mark bits for other arenas.
  static_assert(ArenaBitmapBits == ArenaBitmapWords * JS_BITS_PER_WORD,
                "ArenaBitmapWords must evenly divide ArenaBitmapBits");

  Zone* atomsZone = runtime->unsafeAtomsZone();
  for (auto thingKind : AllAllocKinds()) {
    for (ArenaIter aiter(atomsZone, thingKind); !aiter.done(); aiter.next()) {
      Arena* arena = aiter.get();
      uintptr_t* chunkWords = arena->chunk()->bitmap.arenaBits(arena);
      bitmap.bitwiseOrRangeInto(arena->atomBitmapStart(), ArenaBitmapWords,
                                chunkWords);
    }
  }
}

void AtomMarkingRuntime::markAtomsUsedByUncollectedZones(JSRuntime* runtime) {
  MOZ_ASSERT(CurrentThreadIsPerformingGC());
  MOZ_ASSERT(!runtime->hasHelperThreadZones());

  // Try to compute a simple union of the zone atom bitmaps before updating
  // the chunk mark bitmaps. If this allocation fails then fall back to
  // updating the chunk mark bitmaps separately for each zone.
  DenseBitmap markedUnion;
  if (markedUnion.ensureSpace(allocatedWords)) {
    for (ZonesIter zone(runtime, SkipAtoms); !zone.done(); zone.next()) {
      // We only need to update the chunk mark bits for zones which were
      // not collected in the current GC. Atoms which are referenced by
      // collected zones have already been marked.
      if (!zone->isCollectingFromAnyThread()) {
        zone->markedAtoms().bitwiseOrInto(markedUnion);
      }
    }
    BitwiseOrIntoChunkMarkBits(runtime, markedUnion);
  } else {
    for (ZonesIter zone(runtime, SkipAtoms); !zone.done(); zone.next()) {
      if (!zone->isCollectingFromAnyThread()) {
        BitwiseOrIntoChunkMarkBits(runtime, zone->markedAtoms());
      }
    }
  }
}

template <typename T>
void AtomMarkingRuntime::markAtom(JSContext* cx, T* thing) {
  return inlinedMarkAtom(cx, thing);
}

template void AtomMarkingRuntime::markAtom(JSContext* cx, JSAtom* thing);
template void AtomMarkingRuntime::markAtom(JSContext* cx, JS::Symbol* thing);

void AtomMarkingRuntime::markId(JSContext* cx, jsid id) {
  if (JSID_IS_ATOM(id)) {
    markAtom(cx, JSID_TO_ATOM(id));
    return;
  }
  if (JSID_IS_SYMBOL(id)) {
    markAtom(cx, JSID_TO_SYMBOL(id));
    return;
  }
  MOZ_ASSERT(!JSID_IS_GCTHING(id));
}

void AtomMarkingRuntime::markAtomValue(JSContext* cx, const Value& value) {
  if (value.isString()) {
    if (value.toString()->isAtom()) {
      markAtom(cx, &value.toString()->asAtom());
    }
    return;
  }
  if (value.isSymbol()) {
    markAtom(cx, value.toSymbol());
    return;
  }
  MOZ_ASSERT_IF(value.isGCThing(), value.isObject() ||
                                       value.isPrivateGCThing() ||
                                       value.isBigInt());
}

void AtomMarkingRuntime::adoptMarkedAtoms(Zone* target, Zone* source) {
  MOZ_ASSERT(CurrentThreadCanAccessZone(source));
  MOZ_ASSERT(CurrentThreadCanAccessZone(target));
  target->markedAtoms().bitwiseOrWith(source->markedAtoms());
}

#ifdef DEBUG
template <typename T>
bool AtomMarkingRuntime::atomIsMarked(Zone* zone, T* thing) {
  static_assert(mozilla::IsSame<T, JSAtom>::value ||
                    mozilla::IsSame<T, JS::Symbol>::value,
                "Should only be called with JSAtom* or JS::Symbol* argument");

  MOZ_ASSERT(thing);
  MOZ_ASSERT(!IsInsideNursery(thing));
  MOZ_ASSERT(thing->zoneFromAnyThread()->isAtomsZone());

  if (!zone->runtimeFromAnyThread()->permanentAtomsPopulated()) {
    return true;
  }

  if (ThingIsPermanent(thing)) {
    return true;
  }

  size_t bit = GetAtomBit(&thing->asTenured());
  return zone->markedAtoms().getBit(bit);
}

template bool AtomMarkingRuntime::atomIsMarked(Zone* zone, JSAtom* thing);
template bool AtomMarkingRuntime::atomIsMarked(Zone* zone, JS::Symbol* thing);

template <>
bool AtomMarkingRuntime::atomIsMarked(Zone* zone, TenuredCell* thing) {
  if (!thing) {
    return true;
  }

  if (thing->is<JSString>()) {
    JSString* str = thing->as<JSString>();
    if (!str->isAtom()) {
      return true;
    }
    return atomIsMarked(zone, &str->asAtom());
  }

  if (thing->is<JS::Symbol>()) {
    return atomIsMarked(zone, thing->as<JS::Symbol>());
  }

  return true;
}

bool AtomMarkingRuntime::idIsMarked(Zone* zone, jsid id) {
  if (JSID_IS_ATOM(id)) {
    return atomIsMarked(zone, JSID_TO_ATOM(id));
  }

  if (JSID_IS_SYMBOL(id)) {
    return atomIsMarked(zone, JSID_TO_SYMBOL(id));
  }

  MOZ_ASSERT(!JSID_IS_GCTHING(id));
  return true;
}

bool AtomMarkingRuntime::valueIsMarked(Zone* zone, const Value& value) {
  if (value.isString()) {
    if (value.toString()->isAtom()) {
      return atomIsMarked(zone, &value.toString()->asAtom());
    }
    return true;
  }

  if (value.isSymbol()) {
    return atomIsMarked(zone, value.toSymbol());
  }

  MOZ_ASSERT_IF(value.isGCThing(), value.isObject() ||
                                       value.isPrivateGCThing() ||
                                       value.isBigInt());
  return true;
}

#endif  // DEBUG

}  // namespace gc

#ifdef DEBUG

bool AtomIsMarked(Zone* zone, JSAtom* atom) {
  return zone->runtimeFromAnyThread()->gc.atomMarking.atomIsMarked(zone, atom);
}

bool AtomIsMarked(Zone* zone, jsid id) {
  return zone->runtimeFromAnyThread()->gc.atomMarking.idIsMarked(zone, id);
}

bool AtomIsMarked(Zone* zone, const Value& value) {
  return zone->runtimeFromAnyThread()->gc.atomMarking.valueIsMarked(zone,
                                                                    value);
}

#endif  // DEBUG

}  // namespace js