DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef frontend_SyntaxParseHandler_h
#define frontend_SyntaxParseHandler_h

#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"

#include <string.h>

#include "frontend/ParseNode.h"
#include "frontend/TokenStream.h"
#include "js/GCAnnotations.h"
#include "vm/JSContext.h"

namespace js {

namespace frontend {

// Parse handler used when processing the syntax in a block of code, to generate
// the minimal information which is required to detect syntax errors and allow
// bytecode to be emitted for outer functions.
//
// When parsing, we start at the top level with a full parse, and when possible
// only check the syntax for inner functions, so that they can be lazily parsed
// into bytecode when/if they first run. Checking the syntax of a function is
// several times faster than doing a full parse/emit, and lazy parsing improves
// both performance and memory usage significantly when pages contain large
// amounts of code that never executes (which happens often).
class SyntaxParseHandler {
  // Remember the last encountered name or string literal during syntax parses.
  JSAtom* lastAtom;
  TokenPos lastStringPos;

  // WARNING: Be careful about adding fields to this function, that might be
  //          GC things (like JSAtom*).  The JS_HAZ_ROOTED causes the GC
  //          analysis to *ignore* anything that might be a rooting hazard in
  //          this class.  The |lastAtom| field above is safe because
  //          SyntaxParseHandler only appears as a field in
  //          PerHandlerParser<SyntaxParseHandler>, and that class inherits
  //          from ParserBase which contains an AutoKeepAtoms field that
  //          prevents atoms from being moved around while the AutoKeepAtoms
  //          lives -- which is as long as ParserBase lives, which is longer
  //          than the PerHandlerParser<SyntaxParseHandler> that inherits
  //          from it will live.

 public:
  enum Node {
    NodeFailure = 0,
    NodeGeneric,
    NodeGetProp,
    NodeStringExprStatement,
    NodeReturn,
    NodeBreak,
    NodeThrow,
    NodeEmptyStatement,

    NodeVarDeclaration,
    NodeLexicalDeclaration,

    // A non-arrow function expression with block body, from bog-standard
    // ECMAScript.
    NodeFunctionExpression,

    NodeFunctionArrow,
    NodeFunctionStatement,

    // This is needed for proper assignment-target handling.  ES6 formally
    // requires function calls *not* pass IsValidSimpleAssignmentTarget,
    // but at last check there were still sites with |f() = 5| and similar
    // in code not actually executed (or at least not executed enough to be
    // noticed).
    NodeFunctionCall,

    // Node representing normal names which don't require any special
    // casing.
    NodeName,

    // Nodes representing the names "arguments" and "eval".
    NodeArgumentsName,
    NodeEvalName,

    // Node representing the "async" name, which may actually be a
    // contextual keyword.
    NodePotentialAsyncKeyword,

    NodeDottedProperty,
    NodeElement,

    // Destructuring target patterns can't be parenthesized: |([a]) = [3];|
    // must be a syntax error.  (We can't use NodeGeneric instead of these
    // because that would trigger invalid-left-hand-side ReferenceError
    // semantics when SyntaxError semantics are desired.)
    NodeParenthesizedArray,
    NodeParenthesizedObject,

    // In rare cases a parenthesized |node| doesn't have the same semantics
    // as |node|.  Each such node has a special Node value, and we use a
    // different Node value to represent the parenthesized form.  See also
    // is{Unp,P}arenthesized*(Node), parenthesize(Node), and the various
    // functions that deal in NodeUnparenthesized* below.

    // Valuable for recognizing potential destructuring patterns.
    NodeUnparenthesizedArray,
    NodeUnparenthesizedObject,

    // The directive prologue at the start of a FunctionBody or ScriptBody
    // is the longest sequence (possibly empty) of string literal
    // expression statements at the start of a function.  Thus we need this
    // to treat |"use strict";| as a possible Use Strict Directive and
    // |("use strict");| as a useless statement.
    NodeUnparenthesizedString,

    // Assignment expressions in condition contexts could be typos for
    // equality checks.  (Think |if (x = y)| versus |if (x == y)|.)  Thus
    // we need this to treat |if (x = y)| as a possible typo and
    // |if ((x = y))| as a deliberate assignment within a condition.
    //
    // (Technically this isn't needed, as these are *only* extraWarnings
    // warnings, and parsing with that option disables syntax parsing.  But
    // it seems best to be consistent, and perhaps the syntax parser will
    // eventually enforce extraWarnings and will require this then.)
    NodeUnparenthesizedAssignment,

    // This node is necessary to determine if the base operand in an
    // exponentiation operation is an unparenthesized unary expression.
    // We want to reject |-2 ** 3|, but still need to allow |(-2) ** 3|.
    NodeUnparenthesizedUnary,

    // This node is necessary to determine if the LHS of a property access is
    // super related.
    NodeSuperBase
  };

#define DECLARE_TYPE(typeName, longTypeName, asMethodName) \
  using longTypeName = Node;
  FOR_EACH_PARSENODE_SUBCLASS(DECLARE_TYPE)
#undef DECLARE_TYPE

  using NullNode = Node;

  bool isNonArrowFunctionExpression(Node node) const {
    return node == NodeFunctionExpression;
  }

  bool isPropertyAccess(Node node) {
    return node == NodeDottedProperty || node == NodeElement;
  }

  bool isFunctionCall(Node node) {
    // Note: super() is a special form, *not* a function call.
    return node == NodeFunctionCall;
  }

  static bool isUnparenthesizedDestructuringPattern(Node node) {
    return node == NodeUnparenthesizedArray ||
           node == NodeUnparenthesizedObject;
  }

  static bool isParenthesizedDestructuringPattern(Node node) {
    // Technically this isn't a destructuring target at all -- the grammar
    // doesn't treat it as such.  But we need to know when this happens to
    // consider it a SyntaxError rather than an invalid-left-hand-side
    // ReferenceError.
    return node == NodeParenthesizedArray || node == NodeParenthesizedObject;
  }

 public:
  SyntaxParseHandler(JSContext* cx, LifoAlloc& alloc,
                     LazyScript* lazyOuterFunction)
      : lastAtom(nullptr) {}

  static NullNode null() { return NodeFailure; }

#define DECLARE_AS(typeName, longTypeName, asMethodName) \
  static longTypeName asMethodName(Node node) { return node; }
  FOR_EACH_PARSENODE_SUBCLASS(DECLARE_AS)
#undef DECLARE_AS

  NameNodeType newName(PropertyName* name, const TokenPos& pos, JSContext* cx) {
    lastAtom = name;
    if (name == cx->names().arguments) {
      return NodeArgumentsName;
    }
    if (pos.begin + strlen("async") == pos.end && name == cx->names().async) {
      return NodePotentialAsyncKeyword;
    }
    if (name == cx->names().eval) {
      return NodeEvalName;
    }
    return NodeName;
  }

  UnaryNodeType newComputedName(Node expr, uint32_t start, uint32_t end) {
    return NodeGeneric;
  }

  NameNodeType newObjectLiteralPropertyName(JSAtom* atom, const TokenPos& pos) {
    return NodeName;
  }

  NumericLiteralType newNumber(double value, DecimalPoint decimalPoint,
                               const TokenPos& pos) {
    return NodeGeneric;
  }

  BigIntLiteralType newBigInt() { return NodeGeneric; }

  BooleanLiteralType newBooleanLiteral(bool cond, const TokenPos& pos) {
    return NodeGeneric;
  }

  NameNodeType newStringLiteral(JSAtom* atom, const TokenPos& pos) {
    lastAtom = atom;
    lastStringPos = pos;
    return NodeUnparenthesizedString;
  }

  NameNodeType newTemplateStringLiteral(JSAtom* atom, const TokenPos& pos) {
    return NodeGeneric;
  }

  CallSiteNodeType newCallSiteObject(uint32_t begin) { return NodeGeneric; }

  void addToCallSiteObject(CallSiteNodeType callSiteObj, Node rawNode,
                           Node cookedNode) {}

  ThisLiteralType newThisLiteral(const TokenPos& pos, Node thisName) {
    return NodeGeneric;
  }
  NullLiteralType newNullLiteral(const TokenPos& pos) { return NodeGeneric; }
  RawUndefinedLiteralType newRawUndefinedLiteral(const TokenPos& pos) {
    return NodeGeneric;
  }

  template <class Boxer>
  RegExpLiteralType newRegExp(Node reobj, const TokenPos& pos, Boxer& boxer) {
    return NodeGeneric;
  }

  ConditionalExpressionType newConditional(Node cond, Node thenExpr,
                                           Node elseExpr) {
    return NodeGeneric;
  }

  Node newElision() { return NodeGeneric; }

  UnaryNodeType newDelete(uint32_t begin, Node expr) {
    return NodeUnparenthesizedUnary;
  }

  UnaryNodeType newTypeof(uint32_t begin, Node kid) {
    return NodeUnparenthesizedUnary;
  }

  UnaryNodeType newUnary(ParseNodeKind kind, uint32_t begin, Node kid) {
    return NodeUnparenthesizedUnary;
  }

  UnaryNodeType newUpdate(ParseNodeKind kind, uint32_t begin, Node kid) {
    return NodeGeneric;
  }

  UnaryNodeType newSpread(uint32_t begin, Node kid) { return NodeGeneric; }

  Node appendOrCreateList(ParseNodeKind kind, Node left, Node right,
                          ParseContext* pc) {
    return NodeGeneric;
  }

  // Expressions

  ListNodeType newArrayLiteral(uint32_t begin) {
    return NodeUnparenthesizedArray;
  }
  MOZ_MUST_USE bool addElision(ListNodeType literal, const TokenPos& pos) {
    return true;
  }
  MOZ_MUST_USE bool addSpreadElement(ListNodeType literal, uint32_t begin,
                                     Node inner) {
    return true;
  }
  void addArrayElement(ListNodeType literal, Node element) {}

  ListNodeType newArguments(const TokenPos& pos) { return NodeGeneric; }
  CallNodeType newCall(Node callee, Node args, JSOp callOp) {
    return NodeFunctionCall;
  }

  CallNodeType newSuperCall(Node callee, Node args, bool isSpread) {
    return NodeGeneric;
  }
  CallNodeType newTaggedTemplate(Node tag, Node args, JSOp callOp) {
    return NodeGeneric;
  }

  ListNodeType newObjectLiteral(uint32_t begin) {
    return NodeUnparenthesizedObject;
  }
  ListNodeType newClassMemberList(uint32_t begin) { return NodeGeneric; }
  ClassNamesType newClassNames(Node outer, Node inner, const TokenPos& pos) {
    return NodeGeneric;
  }
  ClassNodeType newClass(Node name, Node heritage, Node methodBlock,
                         const TokenPos& pos) {
    return NodeGeneric;
  }

  LexicalScopeNodeType newLexicalScope(Node body) {
    return NodeLexicalDeclaration;
  }

  BinaryNodeType newNewTarget(NullaryNodeType newHolder,
                              NullaryNodeType targetHolder) {
    return NodeGeneric;
  }
  NullaryNodeType newPosHolder(const TokenPos& pos) { return NodeGeneric; }
  UnaryNodeType newSuperBase(Node thisName, const TokenPos& pos) {
    return NodeSuperBase;
  }

  MOZ_MUST_USE bool addPrototypeMutation(ListNodeType literal, uint32_t begin,
                                         Node expr) {
    return true;
  }
  BinaryNodeType newPropertyDefinition(Node key, Node val) {
    return NodeGeneric;
  }
  void addPropertyDefinition(ListNodeType literal, BinaryNodeType propdef) {}
  MOZ_MUST_USE bool addPropertyDefinition(ListNodeType literal, Node key,
                                          Node expr) {
    return true;
  }
  MOZ_MUST_USE bool addShorthand(ListNodeType literal, NameNodeType name,
                                 NameNodeType expr) {
    return true;
  }
  MOZ_MUST_USE bool addSpreadProperty(ListNodeType literal, uint32_t begin,
                                      Node inner) {
    return true;
  }
  MOZ_MUST_USE bool addObjectMethodDefinition(ListNodeType literal, Node key,
                                              FunctionNodeType funNode,
                                              AccessorType atype) {
    return true;
  }
  MOZ_MUST_USE Node newClassMethodDefinition(Node key, FunctionNodeType funNode,
                                             AccessorType atype,
                                             bool isStatic) {
    return NodeGeneric;
  }
  MOZ_MUST_USE Node newClassFieldDefinition(Node name,
                                            FunctionNodeType initializer) {
    return NodeGeneric;
  }
  MOZ_MUST_USE bool addClassMemberDefinition(ListNodeType memberList,
                                             Node member) {
    return true;
  }
  void deleteConstructorScope(JSContext* cx, ListNodeType memberList) {}
  UnaryNodeType newYieldExpression(uint32_t begin, Node value) {
    return NodeGeneric;
  }
  UnaryNodeType newYieldStarExpression(uint32_t begin, Node value) {
    return NodeGeneric;
  }
  UnaryNodeType newAwaitExpression(uint32_t begin, Node value) {
    return NodeGeneric;
  }

  // Statements

  ListNodeType newStatementList(const TokenPos& pos) { return NodeGeneric; }
  void addStatementToList(ListNodeType list, Node stmt) {}
  void setListEndPosition(ListNodeType list, const TokenPos& pos) {}
  void addCaseStatementToList(ListNodeType list, CaseClauseType caseClause) {}
  MOZ_MUST_USE bool prependInitialYield(ListNodeType stmtList, Node genName) {
    return true;
  }
  NullaryNodeType newEmptyStatement(const TokenPos& pos) {
    return NodeEmptyStatement;
  }

  UnaryNodeType newExportDeclaration(Node kid, const TokenPos& pos) {
    return NodeGeneric;
  }
  BinaryNodeType newExportFromDeclaration(uint32_t begin, Node exportSpecSet,
                                          Node moduleSpec) {
    return NodeGeneric;
  }
  BinaryNodeType newExportDefaultDeclaration(Node kid, Node maybeBinding,
                                             const TokenPos& pos) {
    return NodeGeneric;
  }
  BinaryNodeType newExportSpec(Node bindingName, Node exportName) {
    return NodeGeneric;
  }
  NullaryNodeType newExportBatchSpec(const TokenPos& pos) {
    return NodeGeneric;
  }
  BinaryNodeType newImportMeta(NullaryNodeType importHolder,
                               NullaryNodeType metaHolder) {
    return NodeGeneric;
  }
  BinaryNodeType newCallImport(NullaryNodeType importHolder, Node singleArg) {
    return NodeGeneric;
  }

  BinaryNodeType newSetThis(Node thisName, Node value) { return value; }

  UnaryNodeType newExprStatement(Node expr, uint32_t end) {
    return expr == NodeUnparenthesizedString ? NodeStringExprStatement
                                             : NodeGeneric;
  }

  TernaryNodeType newIfStatement(uint32_t begin, Node cond, Node thenBranch,
                                 Node elseBranch) {
    return NodeGeneric;
  }
  BinaryNodeType newDoWhileStatement(Node body, Node cond,
                                     const TokenPos& pos) {
    return NodeGeneric;
  }
  BinaryNodeType newWhileStatement(uint32_t begin, Node cond, Node body) {
    return NodeGeneric;
  }
  SwitchStatementType newSwitchStatement(
      uint32_t begin, Node discriminant,
      LexicalScopeNodeType lexicalForCaseList, bool hasDefault) {
    return NodeGeneric;
  }
  CaseClauseType newCaseOrDefault(uint32_t begin, Node expr, Node body) {
    return NodeGeneric;
  }
  ContinueStatementType newContinueStatement(PropertyName* label,
                                             const TokenPos& pos) {
    return NodeGeneric;
  }
  BreakStatementType newBreakStatement(PropertyName* label,
                                       const TokenPos& pos) {
    return NodeBreak;
  }
  UnaryNodeType newReturnStatement(Node expr, const TokenPos& pos) {
    return NodeReturn;
  }
  UnaryNodeType newExpressionBody(Node expr) { return NodeReturn; }
  BinaryNodeType newWithStatement(uint32_t begin, Node expr, Node body) {
    return NodeGeneric;
  }

  LabeledStatementType newLabeledStatement(PropertyName* label, Node stmt,
                                           uint32_t begin) {
    return NodeGeneric;
  }

  UnaryNodeType newThrowStatement(Node expr, const TokenPos& pos) {
    return NodeThrow;
  }
  TernaryNodeType newTryStatement(uint32_t begin, Node body,
                                  LexicalScopeNodeType catchScope,
                                  Node finallyBlock) {
    return NodeGeneric;
  }
  DebuggerStatementType newDebuggerStatement(const TokenPos& pos) {
    return NodeGeneric;
  }

  NameNodeType newPropertyName(PropertyName* name, const TokenPos& pos) {
    lastAtom = name;
    return NodeGeneric;
  }

  PropertyAccessType newPropertyAccess(Node expr, NameNodeType key) {
    return NodeDottedProperty;
  }

  PropertyByValueType newPropertyByValue(Node lhs, Node index, uint32_t end) {
    return NodeElement;
  }

  MOZ_MUST_USE bool setupCatchScope(LexicalScopeNodeType lexicalScope,
                                    Node catchName, Node catchBody) {
    return true;
  }

  MOZ_MUST_USE bool setLastFunctionFormalParameterDefault(
      FunctionNodeType funNode, Node defaultValue) {
    return true;
  }

  void checkAndSetIsDirectRHSAnonFunction(Node pn) {}

  FunctionNodeType newFunction(FunctionSyntaxKind syntaxKind,
                               const TokenPos& pos) {
    switch (syntaxKind) {
      case FunctionSyntaxKind::Statement:
        return NodeFunctionStatement;
      case FunctionSyntaxKind::Arrow:
        return NodeFunctionArrow;
      default:
        // All non-arrow function expressions are initially presumed to have
        // block body.  This will be overridden later *if* the function
        // expression permissibly has an AssignmentExpression body.
        return NodeFunctionExpression;
    }
  }

  void setFunctionFormalParametersAndBody(FunctionNodeType funNode,
                                          ListNodeType paramsBody) {}
  void setFunctionBody(FunctionNodeType funNode, LexicalScopeNodeType body) {}
  void setFunctionBox(FunctionNodeType funNode, FunctionBox* funbox) {}
  void addFunctionFormalParameter(FunctionNodeType funNode, Node argpn) {}

  ForNodeType newForStatement(uint32_t begin, TernaryNodeType forHead,
                              Node body, unsigned iflags) {
    return NodeGeneric;
  }

  TernaryNodeType newForHead(Node init, Node test, Node update,
                             const TokenPos& pos) {
    return NodeGeneric;
  }

  TernaryNodeType newForInOrOfHead(ParseNodeKind kind, Node target,
                                   Node iteratedExpr, const TokenPos& pos) {
    return NodeGeneric;
  }

  AssignmentNodeType finishInitializerAssignment(NameNodeType nameNode,
                                                 Node init) {
    return NodeUnparenthesizedAssignment;
  }

  void setBeginPosition(Node pn, Node oth) {}
  void setBeginPosition(Node pn, uint32_t begin) {}

  void setEndPosition(Node pn, Node oth) {}
  void setEndPosition(Node pn, uint32_t end) {}

  uint32_t getFunctionNameOffset(Node func, TokenStreamAnyChars& ts) {
    // XXX This offset isn't relevant to the offending function name.  But
    //     we may not *have* that function name around, because of how lazy
    //     parsing works -- the actual name could be outside
    //     |tokenStream.userbuf|'s observed region.  So the current offset
    //     is the best we can do.
    return ts.currentToken().pos.begin;
  }

  ListNodeType newList(ParseNodeKind kind, const TokenPos& pos) {
    MOZ_ASSERT(kind != ParseNodeKind::VarStmt);
    MOZ_ASSERT(kind != ParseNodeKind::LetDecl);
    MOZ_ASSERT(kind != ParseNodeKind::ConstDecl);
    return NodeGeneric;
  }

  ListNodeType newList(ParseNodeKind kind, Node kid) {
    return newList(kind, TokenPos());
  }

  ListNodeType newDeclarationList(ParseNodeKind kind, const TokenPos& pos) {
    if (kind == ParseNodeKind::VarStmt) {
      return NodeVarDeclaration;
    }
    MOZ_ASSERT(kind == ParseNodeKind::LetDecl ||
               kind == ParseNodeKind::ConstDecl);
    return NodeLexicalDeclaration;
  }

  bool isDeclarationList(Node node) {
    return node == NodeVarDeclaration || node == NodeLexicalDeclaration;
  }

  // This method should only be called from parsers using FullParseHandler.
  Node singleBindingFromDeclaration(ListNodeType decl) = delete;

  ListNodeType newCommaExpressionList(Node kid) { return NodeGeneric; }

  void addList(ListNodeType list, Node kid) {
    MOZ_ASSERT(list == NodeGeneric || list == NodeUnparenthesizedArray ||
               list == NodeUnparenthesizedObject ||
               list == NodeVarDeclaration || list == NodeLexicalDeclaration ||
               list == NodeFunctionCall);
  }

  CallNodeType newNewExpression(uint32_t begin, Node ctor, Node args,
                                bool isSpread) {
    return NodeGeneric;
  }

  AssignmentNodeType newAssignment(ParseNodeKind kind, Node lhs, Node rhs) {
    return kind == ParseNodeKind::AssignExpr ? NodeUnparenthesizedAssignment
                                             : NodeGeneric;
  }

  bool isUnparenthesizedAssignment(Node node) {
    return node == NodeUnparenthesizedAssignment;
  }

  bool isUnparenthesizedUnaryExpression(Node node) {
    return node == NodeUnparenthesizedUnary;
  }

  bool isReturnStatement(Node node) { return node == NodeReturn; }

  bool isStatementPermittedAfterReturnStatement(Node pn) {
    return pn == NodeFunctionStatement || isNonArrowFunctionExpression(pn) ||
           pn == NodeVarDeclaration || pn == NodeBreak || pn == NodeThrow ||
           pn == NodeEmptyStatement;
  }

  bool isSuperBase(Node pn) { return pn == NodeSuperBase; }

  void setListHasNonConstInitializer(ListNodeType literal) {}
  MOZ_MUST_USE Node parenthesize(Node node) {
    // A number of nodes have different behavior upon parenthesization, but
    // only in some circumstances.  Convert these nodes to special
    // parenthesized forms.
    if (node == NodeUnparenthesizedArray) {
      return NodeParenthesizedArray;
    }
    if (node == NodeUnparenthesizedObject) {
      return NodeParenthesizedObject;
    }

    // Other nodes need not be recognizable after parenthesization; convert
    // them to a generic node.
    if (node == NodeUnparenthesizedString ||
        node == NodeUnparenthesizedAssignment ||
        node == NodeUnparenthesizedUnary) {
      return NodeGeneric;
    }

    // Convert parenthesized |async| to a normal name node.
    if (node == NodePotentialAsyncKeyword) {
      return NodeName;
    }

    // In all other cases, the parenthesized form of |node| is equivalent
    // to the unparenthesized form: return |node| unchanged.
    return node;
  }
  template <typename NodeType>
  MOZ_MUST_USE NodeType setLikelyIIFE(NodeType node) {
    return node;  // Remain in syntax-parse mode.
  }
  void setInDirectivePrologue(UnaryNodeType exprStmt) {}

  bool isName(Node node) {
    return node == NodeName || node == NodeArgumentsName ||
           node == NodeEvalName || node == NodePotentialAsyncKeyword;
  }

  bool isArgumentsName(Node node, JSContext* cx) {
    return node == NodeArgumentsName;
  }

  bool isEvalName(Node node, JSContext* cx) { return node == NodeEvalName; }

  bool isAsyncKeyword(Node node, JSContext* cx) {
    return node == NodePotentialAsyncKeyword;
  }

  PropertyName* maybeDottedProperty(Node node) {
    // Note: |super.apply(...)| is a special form that calls an "apply"
    // method retrieved from one value, but using a *different* value as
    // |this|.  It's not really eligible for the funapply/funcall
    // optimizations as they're currently implemented (assuming a single
    // value is used for both retrieval and |this|).
    if (node != NodeDottedProperty) {
      return nullptr;
    }
    return lastAtom->asPropertyName();
  }

  JSAtom* isStringExprStatement(Node pn, TokenPos* pos) {
    if (pn == NodeStringExprStatement) {
      *pos = lastStringPos;
      return lastAtom;
    }
    return nullptr;
  }

  bool canSkipLazyInnerFunctions() { return false; }
  bool canSkipLazyClosedOverBindings() { return false; }
  JSAtom* nextLazyClosedOverBinding() {
    MOZ_CRASH(
        "SyntaxParseHandler::canSkipLazyClosedOverBindings must return false");
  }
} JS_HAZ_ROOTED;  // See the top of SyntaxParseHandler for why this is safe.

}  // namespace frontend
}  // namespace js

#endif /* frontend_SyntaxParseHandler_h */