DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "frontend/NameFunctions.h"

#include "mozilla/MemoryChecking.h"
#include "mozilla/ScopeExit.h"
#include "mozilla/Sprintf.h"

#include "frontend/BytecodeCompiler.h"
#include "frontend/ParseNode.h"
#include "frontend/ParseNodeVisitor.h"
#include "frontend/SharedContext.h"
#include "util/StringBuffer.h"
#include "vm/JSFunction.h"

using namespace js;
using namespace js::frontend;

namespace {

class NameResolver : public ParseNodeVisitor<NameResolver> {
  using Base = ParseNodeVisitor;

  static const size_t MaxParents = 100;

  RootedAtom prefix_;

  // Number of nodes in the parents array.
  size_t nparents_;

  // Stack of ParseNodes from the root to the current node.
  // Only elements 0..nparents_ are initialized.
  MOZ_INIT_OUTSIDE_CTOR
  ParseNode* parents_[MaxParents];

  // When naming a function, the buffer where the name is built.
  // When we are not under resolveFun, buf_ is empty.
  StringBuffer buf_;

  /* Test whether a ParseNode represents a function invocation */
  bool isCall(ParseNode* pn) {
    return pn && pn->isKind(ParseNodeKind::CallExpr);
  }

  /*
   * Append a reference to a property named |name| to |buf_|. If |name| is
   * a proper identifier name, then we append '.name'; otherwise, we
   * append '["name"]'.
   *
   * Note that we need the IsIdentifier check for atoms from both
   * ParseNodeKind::Name nodes and ParseNodeKind::String nodes:
   * given code like a["b c"], the front end will produce a ParseNodeKind::Dot
   * with a ParseNodeKind::Name child whose name contains spaces.
   */
  bool appendPropertyReference(JSAtom* name) {
    if (IsIdentifier(name)) {
      return buf_.append('.') && buf_.append(name);
    }

    /* Quote the string as needed. */
    UniqueChars source = QuoteString(cx_, name, '"');
    return source && buf_.append('[') &&
           buf_.append(source.get(), strlen(source.get())) && buf_.append(']');
  }

  /* Append a number to buf_. */
  bool appendNumber(double n) {
    char number[30];
    int digits = SprintfLiteral(number, "%g", n);
    return buf_.append(number, digits);
  }

  // Append "[<n>]" to buf_, referencing a property named by a numeric literal.
  bool appendNumericPropertyReference(double n) {
    return buf_.append("[") && appendNumber(n) && buf_.append(']');
  }

  /*
   * Walk over the given ParseNode, attempting to convert it to a stringified
   * name that respresents where the function is being assigned to.
   *
   * |*foundName| is set to true if a name is found for the expression.
   */
  bool nameExpression(ParseNode* n, bool* foundName) {
    switch (n->getKind()) {
      case ParseNodeKind::DotExpr: {
        PropertyAccess* prop = &n->as<PropertyAccess>();
        if (!nameExpression(&prop->expression(), foundName)) {
          return false;
        }
        if (!*foundName) {
          return true;
        }
        return appendPropertyReference(prop->right()->as<NameNode>().atom());
      }

      case ParseNodeKind::Name:
      case ParseNodeKind::PrivateName:
        *foundName = true;
        return buf_.append(n->as<NameNode>().atom());

      case ParseNodeKind::ThisExpr:
        *foundName = true;
        return buf_.append("this");

      case ParseNodeKind::ElemExpr: {
        PropertyByValue* elem = &n->as<PropertyByValue>();
        if (!nameExpression(&elem->expression(), foundName)) {
          return false;
        }
        if (!*foundName) {
          return true;
        }
        if (!buf_.append('[') || !nameExpression(elem->right(), foundName)) {
          return false;
        }
        if (!*foundName) {
          return true;
        }
        return buf_.append(']');
      }

      case ParseNodeKind::NumberExpr:
        *foundName = true;
        return appendNumber(n->as<NumericLiteral>().value());

      default:
        // We're confused as to what to call this function.
        *foundName = false;
        return true;
    }
  }

  /*
   * When naming an anonymous function, the process works loosely by walking
   * up the AST and then translating that to a string. The stringification
   * happens from some far-up assignment and then going back down the parse
   * tree to the function definition point.
   *
   * This function will walk up the parse tree, gathering relevant nodes used
   * for naming, and return the assignment node if there is one. The provided
   * array and size will be filled in, and the returned node could be nullptr
   * if no assignment is found. The first element of the array will be the
   * innermost node relevant to naming, and the last element will be the
   * outermost node.
   */
  ParseNode* gatherNameable(ParseNode** nameable, size_t* size) {
    MOZ_ASSERT(nparents_ > 0);
    MOZ_ASSERT(parents_[nparents_ - 1]->is<FunctionNode>());

    *size = 0;

    for (int pos = nparents_ - 2; pos >= 0; pos--) {
      ParseNode* cur = parents_[pos];
      if (cur->is<AssignmentNode>()) {
        return cur;
      }

      switch (cur->getKind()) {
        case ParseNodeKind::PrivateName:
        case ParseNodeKind::Name:
          return cur;  // found the initialized declaration
        case ParseNodeKind::ThisExpr:
          return cur;  // setting a property of 'this'
        case ParseNodeKind::Function:
          return nullptr;  // won't find an assignment or declaration

        case ParseNodeKind::ReturnStmt:
          // Normally the relevant parent of a node is its direct parent, but
          // sometimes with code like:
          //
          //    var foo = (function() { return function() {}; })();
          //
          // the outer function is just a helper to create a scope for the
          // returned function. Hence the name of the returned function should
          // actually be 'foo'.  This loop sees if the current node is a
          // ParseNodeKind::Return, and if there is a direct function
          // call we skip to that.
          for (int tmp = pos - 1; tmp > 0; tmp--) {
            if (isDirectCall(tmp, cur)) {
              pos = tmp;
              break;
            }
            if (isCall(cur)) {
              // Don't skip too high in the tree.
              break;
            }
            cur = parents_[tmp];
          }
          break;

        case ParseNodeKind::PropertyDefinition:
        case ParseNodeKind::Shorthand:
          // Record the ParseNodeKind::PropertyDefinition/Shorthand but skip the
          // ParseNodeKind::Object so we're not flagged as a contributor.
          pos--;
          MOZ_FALLTHROUGH;

        default:
          // Save any other nodes we encounter on the way up.
          MOZ_ASSERT(*size < MaxParents);
          nameable[(*size)++] = cur;
          break;
      }
    }

    return nullptr;
  }

  /*
   * Resolve the name of a function. If the function already has a name
   * listed, then it is skipped. Otherwise an intelligent name is guessed to
   * assign to the function's displayAtom field.
   */
  MOZ_MUST_USE bool resolveFun(FunctionNode* funNode,
                               MutableHandleAtom retAtom) {
    MOZ_ASSERT(funNode != nullptr);
    RootedFunction fun(cx_, funNode->funbox()->function());

    MOZ_ASSERT(buf_.empty());
    auto resetBuf = mozilla::MakeScopeExit([&] { buf_.clear(); });

    retAtom.set(nullptr);

    // If the function already has a name, use that.
    if (fun->displayAtom() != nullptr) {
      if (prefix_ == nullptr) {
        retAtom.set(fun->displayAtom());
        return true;
      }
      if (!buf_.append(prefix_) || !buf_.append('/') ||
          !buf_.append(fun->displayAtom()))
        return false;
      retAtom.set(buf_.finishAtom());
      return !!retAtom;
    }

    // If a prefix is specified, then it is a form of namespace.
    if (prefix_ != nullptr) {
      if (!buf_.append(prefix_) || !buf_.append('/')) {
        return false;
      }
    }

    // Gather all nodes relevant to naming.
    ParseNode* toName[MaxParents];
    size_t size;
    ParseNode* assignment = gatherNameable(toName, &size);

    // If the function is assigned to something, then that is very relevant.
    if (assignment) {
      if (assignment->is<AssignmentNode>()) {
        assignment = assignment->as<AssignmentNode>().left();
      }
      bool foundName = false;
      if (!nameExpression(assignment, &foundName)) {
        return false;
      }
      if (!foundName) {
        return true;
      }
    }

    // Other than the actual assignment, other relevant nodes to naming are
    // those in object initializers and then particular nodes marking a
    // contribution.
    for (int pos = size - 1; pos >= 0; pos--) {
      ParseNode* node = toName[pos];

      if (node->isKind(ParseNodeKind::PropertyDefinition) ||
          node->isKind(ParseNodeKind::Shorthand)) {
        ParseNode* left = node->as<BinaryNode>().left();
        if (left->isKind(ParseNodeKind::ObjectPropertyName) ||
            left->isKind(ParseNodeKind::StringExpr)) {
          if (!appendPropertyReference(left->as<NameNode>().atom())) {
            return false;
          }
        } else if (left->isKind(ParseNodeKind::NumberExpr)) {
          if (!appendNumericPropertyReference(
                  left->as<NumericLiteral>().value())) {
            return false;
          }
        } else {
          MOZ_ASSERT(left->isKind(ParseNodeKind::ComputedName));
        }
      } else {
        // Don't have consecutive '<' characters, and also don't start
        // with a '<' character.
        if (!buf_.empty() && buf_.getChar(buf_.length() - 1) != '<' &&
            !buf_.append('<')) {
          return false;
        }
      }
    }

    // functions which are "genuinely anonymous" but are contained in some
    // other namespace are rather considered as "contributing" to the outer
    // function, so give them a contribution symbol here.
    if (!buf_.empty() && buf_.getChar(buf_.length() - 1) == '/' &&
        !buf_.append('<')) {
      return false;
    }

    if (buf_.empty()) {
      return true;
    }

    retAtom.set(buf_.finishAtom());
    if (!retAtom) {
      return false;
    }

    // Skip assigning the guessed name if the function has a (dynamically)
    // computed inferred name.
    if (!funNode->isDirectRHSAnonFunction()) {
      fun->setGuessedAtom(retAtom);
    }
    return true;
  }

  /*
   * Tests whether parents_[pos] is a function call whose callee is cur.
   * This is the case for functions which do things like simply create a scope
   * for new variables and then return an anonymous function using this scope.
   */
  bool isDirectCall(int pos, ParseNode* cur) {
    return pos >= 0 && isCall(parents_[pos]) &&
           parents_[pos]->as<BinaryNode>().left() == cur;
  }

 public:
  MOZ_MUST_USE bool visitFunction(FunctionNode* pn) {
    RootedAtom savedPrefix(cx_, prefix_);
    RootedAtom newPrefix(cx_);
    if (!resolveFun(pn, &newPrefix)) {
      return false;
    }

    // If a function looks like (function(){})() where the parent node
    // of the definition of the function is a call, then it shouldn't
    // contribute anything to the namespace, so don't bother updating
    // the prefix to whatever was returned.
    if (!isDirectCall(nparents_ - 2, pn)) {
      prefix_ = newPrefix;
    }

    bool ok = Base::visitFunction(pn);

    prefix_ = savedPrefix;
    return ok;
  }

  // Skip this type of node. It never contains functions.
  MOZ_MUST_USE bool visitCallSiteObj(CallSiteNode* callSite) {
    // This node only contains internal strings or undefined and an array -- no
    // user-controlled expressions.
    return true;
  }

  // Skip walking the list of string parts, which never contains functions.
  MOZ_MUST_USE bool visitTaggedTemplateExpr(BinaryNode* taggedTemplate) {
    ParseNode* tag = taggedTemplate->left();

    // The leading expression, e.g. |tag| in |tag`foo`|,
    // that might contain functions.
    if (!visit(tag)) {
      return false;
    }

    // The callsite object node is first.  This node only contains
    // internal strings or undefined and an array -- no user-controlled
    // expressions.
    CallSiteNode* element =
        &taggedTemplate->right()->as<ListNode>().head()->as<CallSiteNode>();
#ifdef DEBUG
    {
      ListNode* rawNodes = &element->head()->as<ListNode>();
      MOZ_ASSERT(rawNodes->isKind(ParseNodeKind::ArrayExpr));
      for (ParseNode* raw : rawNodes->contents()) {
        MOZ_ASSERT(raw->isKind(ParseNodeKind::TemplateStringExpr));
      }
      for (ParseNode* cooked : element->contentsFrom(rawNodes->pn_next)) {
        MOZ_ASSERT(cooked->isKind(ParseNodeKind::TemplateStringExpr) ||
                   cooked->isKind(ParseNodeKind::RawUndefinedExpr));
      }
    }
#endif

    // Next come any interpolated expressions in the tagged template.
    ParseNode* interpolated = element->pn_next;
    for (; interpolated; interpolated = interpolated->pn_next) {
      if (!visit(interpolated)) {
        return false;
      }
    }

    return true;
  }

 private:
  // Speed hack: this type of node can't contain functions, so skip walking it.
  MOZ_MUST_USE bool internalVisitSpecList(ListNode* pn) {
    // Import/export spec lists contain import/export specs containing
    // only pairs of names. Alternatively, an export spec list may
    // contain a single export batch specifier.
#ifdef DEBUG
    bool isImport = pn->isKind(ParseNodeKind::ImportSpecList);
    ParseNode* item = pn->head();
    if (!isImport && item && item->isKind(ParseNodeKind::ExportBatchSpecStmt)) {
      MOZ_ASSERT(item->is<NullaryNode>());
    } else {
      for (ParseNode* item : pn->contents()) {
        BinaryNode* spec = &item->as<BinaryNode>();
        MOZ_ASSERT(spec->isKind(isImport ? ParseNodeKind::ImportSpec
                                         : ParseNodeKind::ExportSpec));
        MOZ_ASSERT(spec->left()->isKind(ParseNodeKind::Name));
        MOZ_ASSERT(spec->right()->isKind(ParseNodeKind::Name));
      }
    }
#endif
    return true;
  }

 public:
  MOZ_MUST_USE bool visitImportSpecList(ListNode* pn) {
    return internalVisitSpecList(pn);
  }

  MOZ_MUST_USE bool visitExportSpecList(ListNode* pn) {
    return internalVisitSpecList(pn);
  }

  explicit NameResolver(JSContext* cx)
      : ParseNodeVisitor(cx), prefix_(cx), nparents_(0), buf_(cx) {}

  /*
   * Resolve names for all anonymous functions in the given ParseNode tree.
   */
  MOZ_MUST_USE bool visit(ParseNode* pn) {
    // Push pn to the parse node stack.
    if (nparents_ >= MaxParents) {
      // Silently skip very deeply nested functions.
      return true;
    }
    auto initialParents = nparents_;
    parents_[initialParents] = pn;
    nparents_++;

    bool ok = Base::visit(pn);

    // Pop pn from the parse node stack.
    nparents_--;
    MOZ_ASSERT(initialParents == nparents_, "nparents imbalance detected");
    MOZ_ASSERT(parents_[initialParents] == pn,
               "pushed child shouldn't change underneath us");
    AlwaysPoison(&parents_[initialParents], JS_OOB_PARSE_NODE_PATTERN,
                 sizeof(parents_[initialParents]), MemCheckKind::MakeUndefined);

    return ok;
  }
};

} /* anonymous namespace */

bool frontend::NameFunctions(JSContext* cx, ParseNode* pn) {
  AutoTraceLog traceLog(TraceLoggerForCurrentThread(cx),
                        TraceLogger_BytecodeNameFunctions);
  NameResolver nr(cx);
  return nr.visit(pn);
}