DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef frontend_FullParseHandler_h
#define frontend_FullParseHandler_h

#include "mozilla/Attributes.h"
#include "mozilla/PodOperations.h"

#include <cstddef>  // std::nullptr_t
#include <string.h>

#include "frontend/ParseNode.h"
#include "frontend/SharedContext.h"
#include "vm/JSContext.h"

namespace js {

class RegExpObject;

namespace frontend {

class TokenStreamAnyChars;

enum class SourceKind {
  // We are parsing from a text source (Parser.h)
  Text,
  // We are parsing from a binary source (BinASTParser.h)
  Binary,
};

// Parse handler used when generating a full parse tree for all code which the
// parser encounters.
class FullParseHandler {
  ParseNodeAllocator allocator;

  ParseNode* allocParseNode(size_t size) {
    return static_cast<ParseNode*>(allocator.allocNode(size));
  }

  /*
   * If this is a full parse to construct the bytecode for a function that
   * was previously lazily parsed, we still don't want to full parse the
   * inner functions. These members are used for this functionality:
   *
   * - lazyOuterFunction_ holds the lazyScript for this current parse
   * - lazyInnerFunctionIndex is used as we skip over inner functions
   *   (see skipLazyInnerFunction),
   */
  const Rooted<LazyScript*> lazyOuterFunction_;
  size_t lazyInnerFunctionIndex;

  size_t lazyClosedOverBindingIndex;

  const SourceKind sourceKind_;

 public:
  /* new_ methods for creating parse nodes. These report OOM on context. */
  JS_DECLARE_NEW_METHODS(new_, allocParseNode, inline)

  // FIXME: Use ListNode instead of ListNodeType as an alias (bug 1489008).
  using Node = ParseNode*;

#define DECLARE_TYPE(typeName, longTypeName, asMethodName) \
  using longTypeName = typeName*;
  FOR_EACH_PARSENODE_SUBCLASS(DECLARE_TYPE)
#undef DECLARE_TYPE

  using NullNode = std::nullptr_t;

  bool isPropertyAccess(Node node) {
    return node->isKind(ParseNodeKind::DotExpr) ||
           node->isKind(ParseNodeKind::ElemExpr);
  }

  bool isFunctionCall(Node node) {
    // Note: super() is a special form, *not* a function call.
    return node->isKind(ParseNodeKind::CallExpr);
  }

  static bool isUnparenthesizedDestructuringPattern(Node node) {
    return !node->isInParens() && (node->isKind(ParseNodeKind::ObjectExpr) ||
                                   node->isKind(ParseNodeKind::ArrayExpr));
  }

  static bool isParenthesizedDestructuringPattern(Node node) {
    // Technically this isn't a destructuring pattern at all -- the grammar
    // doesn't treat it as such.  But we need to know when this happens to
    // consider it a SyntaxError rather than an invalid-left-hand-side
    // ReferenceError.
    return node->isInParens() && (node->isKind(ParseNodeKind::ObjectExpr) ||
                                  node->isKind(ParseNodeKind::ArrayExpr));
  }

  FullParseHandler(JSContext* cx, LifoAlloc& alloc,
                   LazyScript* lazyOuterFunction,
                   SourceKind kind = SourceKind::Text)
      : allocator(cx, alloc),
        lazyOuterFunction_(cx, lazyOuterFunction),
        lazyInnerFunctionIndex(0),
        lazyClosedOverBindingIndex(0),
        sourceKind_(SourceKind::Text) {}

  static NullNode null() { return NullNode(); }

#define DECLARE_AS(typeName, longTypeName, asMethodName) \
  static longTypeName asMethodName(Node node) { return &node->as<typeName>(); }
  FOR_EACH_PARSENODE_SUBCLASS(DECLARE_AS)
#undef DECLARE_AS

  // The FullParseHandler may be used to create nodes for text sources
  // (from Parser.h) or for binary sources (from BinASTParser.h). In the latter
  // case, some common assumptions on offsets are incorrect, e.g. in `a + b`,
  // `a`, `b` and `+` may be stored in any order. We use `sourceKind()`
  // to determine whether we need to check these assumptions.
  SourceKind sourceKind() const { return sourceKind_; }

  NameNodeType newName(PropertyName* name, const TokenPos& pos, JSContext* cx) {
    return new_<NameNode>(ParseNodeKind::Name, name, pos);
  }

  UnaryNodeType newComputedName(Node expr, uint32_t begin, uint32_t end) {
    TokenPos pos(begin, end);
    return new_<UnaryNode>(ParseNodeKind::ComputedName, pos, expr);
  }

  NameNodeType newObjectLiteralPropertyName(JSAtom* atom, const TokenPos& pos) {
    return new_<NameNode>(ParseNodeKind::ObjectPropertyName, atom, pos);
  }

  NumericLiteralType newNumber(double value, DecimalPoint decimalPoint,
                               const TokenPos& pos) {
    return new_<NumericLiteral>(value, decimalPoint, pos);
  }

  // The Boxer object here is any object that can allocate BigIntBoxes.
  // Specifically, a Boxer has a .newBigIntBox(T) method that accepts a
  // BigInt* argument and returns a BigIntBox*.
  template <class Boxer>
  BigIntLiteralType newBigInt(BigInt* bi, const TokenPos& pos, Boxer& boxer) {
    BigIntBox* box = boxer.newBigIntBox(bi);
    if (!box) {
      return null();
    }
    return new_<BigIntLiteral>(box, pos);
  }

  BooleanLiteralType newBooleanLiteral(bool cond, const TokenPos& pos) {
    return new_<BooleanLiteral>(cond, pos);
  }

  NameNodeType newStringLiteral(JSAtom* atom, const TokenPos& pos) {
    return new_<NameNode>(ParseNodeKind::StringExpr, atom, pos);
  }

  NameNodeType newTemplateStringLiteral(JSAtom* atom, const TokenPos& pos) {
    return new_<NameNode>(ParseNodeKind::TemplateStringExpr, atom, pos);
  }

  CallSiteNodeType newCallSiteObject(uint32_t begin) {
    CallSiteNode* callSiteObj = new_<CallSiteNode>(begin);
    if (!callSiteObj) {
      return null();
    }

    ListNode* rawNodes = newArrayLiteral(callSiteObj->pn_pos.begin);
    if (!rawNodes) {
      return null();
    }

    addArrayElement(callSiteObj, rawNodes);

    return callSiteObj;
  }

  void addToCallSiteObject(CallSiteNodeType callSiteObj, Node rawNode,
                           Node cookedNode) {
    MOZ_ASSERT(callSiteObj->isKind(ParseNodeKind::CallSiteObj));

    addArrayElement(callSiteObj, cookedNode);
    addArrayElement(callSiteObj->rawNodes(), rawNode);

    /*
     * We don't know when the last noSubstTemplate will come in, and we
     * don't want to deal with this outside this method
     */
    setEndPosition(callSiteObj, callSiteObj->rawNodes());
  }

  ThisLiteralType newThisLiteral(const TokenPos& pos, Node thisName) {
    return new_<ThisLiteral>(pos, thisName);
  }

  NullLiteralType newNullLiteral(const TokenPos& pos) {
    return new_<NullLiteral>(pos);
  }

  RawUndefinedLiteralType newRawUndefinedLiteral(const TokenPos& pos) {
    return new_<RawUndefinedLiteral>(pos);
  }

  // The Boxer object here is any object that can allocate ObjectBoxes.
  // Specifically, a Boxer has a .newObjectBox(T) method that accepts a
  // Rooted<RegExpObject*> argument and returns an ObjectBox*.
  template <class Boxer>
  RegExpLiteralType newRegExp(RegExpObject* reobj, const TokenPos& pos,
                              Boxer& boxer) {
    ObjectBox* objbox = boxer.newObjectBox(reobj);
    if (!objbox) {
      return null();
    }
    return new_<RegExpLiteral>(objbox, pos);
  }

  ConditionalExpressionType newConditional(Node cond, Node thenExpr,
                                           Node elseExpr) {
    return new_<ConditionalExpression>(cond, thenExpr, elseExpr);
  }

  UnaryNodeType newDelete(uint32_t begin, Node expr) {
    if (expr->isKind(ParseNodeKind::Name)) {
      return newUnary(ParseNodeKind::DeleteNameExpr, begin, expr);
    }

    if (expr->isKind(ParseNodeKind::DotExpr)) {
      return newUnary(ParseNodeKind::DeletePropExpr, begin, expr);
    }

    if (expr->isKind(ParseNodeKind::ElemExpr)) {
      return newUnary(ParseNodeKind::DeleteElemExpr, begin, expr);
    }

    return newUnary(ParseNodeKind::DeleteExpr, begin, expr);
  }

  UnaryNodeType newTypeof(uint32_t begin, Node kid) {
    ParseNodeKind pnk = kid->isKind(ParseNodeKind::Name)
                            ? ParseNodeKind::TypeOfNameExpr
                            : ParseNodeKind::TypeOfExpr;
    return newUnary(pnk, begin, kid);
  }

  UnaryNodeType newUnary(ParseNodeKind kind, uint32_t begin, Node kid) {
    TokenPos pos(begin, kid->pn_pos.end);
    return new_<UnaryNode>(kind, pos, kid);
  }

  UnaryNodeType newUpdate(ParseNodeKind kind, uint32_t begin, Node kid) {
    TokenPos pos(begin, kid->pn_pos.end);
    return new_<UnaryNode>(kind, pos, kid);
  }

  UnaryNodeType newSpread(uint32_t begin, Node kid) {
    TokenPos pos(begin, kid->pn_pos.end);
    return new_<UnaryNode>(ParseNodeKind::Spread, pos, kid);
  }

 private:
  BinaryNodeType newBinary(ParseNodeKind kind, Node left, Node right) {
    TokenPos pos(left->pn_pos.begin, right->pn_pos.end);
    return new_<BinaryNode>(kind, pos, left, right);
  }

 public:
  Node appendOrCreateList(ParseNodeKind kind, Node left, Node right,
                          ParseContext* pc) {
    return ParseNode::appendOrCreateList(kind, left, right, this, pc);
  }

  // Expressions

  ListNodeType newArrayLiteral(uint32_t begin) {
    return new_<ListNode>(ParseNodeKind::ArrayExpr, TokenPos(begin, begin + 1));
  }

  MOZ_MUST_USE bool addElision(ListNodeType literal, const TokenPos& pos) {
    MOZ_ASSERT(literal->isKind(ParseNodeKind::ArrayExpr));

    NullaryNode* elision = new_<NullaryNode>(ParseNodeKind::Elision, pos);
    if (!elision) {
      return false;
    }
    addList(/* list = */ literal, /* kid = */ elision);
    literal->setHasArrayHoleOrSpread();
    literal->setHasNonConstInitializer();
    return true;
  }

  MOZ_MUST_USE bool addSpreadElement(ListNodeType literal, uint32_t begin,
                                     Node inner) {
    MOZ_ASSERT(literal->isKind(ParseNodeKind::ArrayExpr));

    UnaryNodeType spread = newSpread(begin, inner);
    if (!spread) {
      return false;
    }
    addList(/* list = */ literal, /* kid = */ spread);
    literal->setHasArrayHoleOrSpread();
    literal->setHasNonConstInitializer();
    return true;
  }

  void addArrayElement(ListNodeType literal, Node element) {
    if (!element->isConstant()) {
      literal->setHasNonConstInitializer();
    }
    addList(/* list = */ literal, /* kid = */ element);
  }

  CallNodeType newCall(Node callee, Node args, JSOp callOp) {
    return new_<CallNode>(ParseNodeKind::CallExpr, callOp, callee, args);
  }

  ListNodeType newArguments(const TokenPos& pos) {
    return new_<ListNode>(ParseNodeKind::Arguments, pos);
  }

  CallNodeType newSuperCall(Node callee, Node args, bool isSpread) {
    return new_<CallNode>(ParseNodeKind::SuperCallExpr,
                          isSpread ? JSOP_SPREADSUPERCALL : JSOP_SUPERCALL,
                          callee, args);
  }

  CallNodeType newTaggedTemplate(Node tag, Node args, JSOp callOp) {
    return new_<CallNode>(ParseNodeKind::TaggedTemplateExpr, callOp, tag, args);
  }

  ListNodeType newObjectLiteral(uint32_t begin) {
    return new_<ListNode>(ParseNodeKind::ObjectExpr,
                          TokenPos(begin, begin + 1));
  }

  ClassNodeType newClass(Node name, Node heritage,
                         LexicalScopeNodeType memberBlock,
                         const TokenPos& pos) {
    return new_<ClassNode>(name, heritage, memberBlock, pos);
  }
  ListNodeType newClassMemberList(uint32_t begin) {
    return new_<ListNode>(ParseNodeKind::ClassMemberList,
                          TokenPos(begin, begin + 1));
  }
  ClassNamesType newClassNames(Node outer, Node inner, const TokenPos& pos) {
    return new_<ClassNames>(outer, inner, pos);
  }
  BinaryNodeType newNewTarget(NullaryNodeType newHolder,
                              NullaryNodeType targetHolder) {
    return new_<BinaryNode>(ParseNodeKind::NewTargetExpr, newHolder,
                            targetHolder);
  }
  NullaryNodeType newPosHolder(const TokenPos& pos) {
    return new_<NullaryNode>(ParseNodeKind::PosHolder, pos);
  }
  UnaryNodeType newSuperBase(Node thisName, const TokenPos& pos) {
    return new_<UnaryNode>(ParseNodeKind::SuperBase, pos, thisName);
  }
  MOZ_MUST_USE bool addPrototypeMutation(ListNodeType literal, uint32_t begin,
                                         Node expr) {
    MOZ_ASSERT(literal->isKind(ParseNodeKind::ObjectExpr));

    // Object literals with mutated [[Prototype]] are non-constant so that
    // singleton objects will have Object.prototype as their [[Prototype]].
    literal->setHasNonConstInitializer();

    UnaryNode* mutation = newUnary(ParseNodeKind::MutateProto, begin, expr);
    if (!mutation) {
      return false;
    }
    addList(/* list = */ literal, /* kid = */ mutation);
    return true;
  }

  BinaryNodeType newPropertyDefinition(Node key, Node val) {
    MOZ_ASSERT(isUsableAsObjectPropertyName(key));
    checkAndSetIsDirectRHSAnonFunction(val);
    return new_<PropertyDefinition>(key, val, AccessorType::None);
  }

  void addPropertyDefinition(ListNodeType literal, BinaryNodeType propdef) {
    MOZ_ASSERT(literal->isKind(ParseNodeKind::ObjectExpr));
    MOZ_ASSERT(propdef->isKind(ParseNodeKind::PropertyDefinition));

    if (!propdef->right()->isConstant()) {
      literal->setHasNonConstInitializer();
    }

    addList(/* list = */ literal, /* kid = */ propdef);
  }

  MOZ_MUST_USE bool addPropertyDefinition(ListNodeType literal, Node key,
                                          Node val) {
    BinaryNode* propdef = newPropertyDefinition(key, val);
    if (!propdef) {
      return false;
    }
    addPropertyDefinition(literal, propdef);
    return true;
  }

  MOZ_MUST_USE bool addShorthand(ListNodeType literal, NameNodeType name,
                                 NameNodeType expr) {
    MOZ_ASSERT(literal->isKind(ParseNodeKind::ObjectExpr));
    MOZ_ASSERT(name->isKind(ParseNodeKind::ObjectPropertyName));
    MOZ_ASSERT(expr->isKind(ParseNodeKind::Name));
    MOZ_ASSERT(name->atom() == expr->atom());

    literal->setHasNonConstInitializer();
    BinaryNode* propdef = newBinary(ParseNodeKind::Shorthand, name, expr);
    if (!propdef) {
      return false;
    }
    addList(/* list = */ literal, /* kid = */ propdef);
    return true;
  }

  MOZ_MUST_USE bool addSpreadProperty(ListNodeType literal, uint32_t begin,
                                      Node inner) {
    MOZ_ASSERT(literal->isKind(ParseNodeKind::ObjectExpr));

    literal->setHasNonConstInitializer();
    ParseNode* spread = newSpread(begin, inner);
    if (!spread) {
      return false;
    }
    addList(/* list = */ literal, /* kid = */ spread);
    return true;
  }

  MOZ_MUST_USE bool addObjectMethodDefinition(ListNodeType literal, Node key,
                                              FunctionNodeType funNode,
                                              AccessorType atype) {
    literal->setHasNonConstInitializer();

    checkAndSetIsDirectRHSAnonFunction(funNode);

    ParseNode* propdef =
        newObjectMethodOrPropertyDefinition(key, funNode, atype);
    if (!propdef) {
      return false;
    }

    addList(/* list = */ literal, /* kid = */ propdef);
    return true;
  }

  MOZ_MUST_USE ClassMethod* newClassMethodDefinition(Node key,
                                                     FunctionNodeType funNode,
                                                     AccessorType atype,
                                                     bool isStatic) {
    MOZ_ASSERT(isUsableAsObjectPropertyName(key));

    checkAndSetIsDirectRHSAnonFunction(funNode);

    return new_<ClassMethod>(key, funNode, atype, isStatic);
  }

  MOZ_MUST_USE ClassField* newClassFieldDefinition(
      Node name, FunctionNodeType initializer) {
    MOZ_ASSERT(isUsableAsObjectPropertyName(name));

    return new_<ClassField>(name, initializer);
  }

  MOZ_MUST_USE bool addClassMemberDefinition(ListNodeType memberList,
                                             Node member) {
    MOZ_ASSERT(memberList->isKind(ParseNodeKind::ClassMemberList));
    // Constructors can be surrounded by LexicalScopes.
    MOZ_ASSERT(member->isKind(ParseNodeKind::ClassMethod) ||
               member->isKind(ParseNodeKind::ClassField) ||
               (member->isKind(ParseNodeKind::LexicalScope) &&
                member->as<LexicalScopeNode>().scopeBody()->isKind(
                    ParseNodeKind::ClassMethod)));

    addList(/* list = */ memberList, /* kid = */ member);
    return true;
  }

  void deleteConstructorScope(JSContext* cx, ListNodeType memberList) {
    for (ParseNode* member : memberList->contents()) {
      if (member->is<LexicalScopeNode>()) {
        LexicalScopeNode* node = &member->as<LexicalScopeNode>();
        MOZ_ASSERT(node->scopeBody()->isKind(ParseNodeKind::ClassMethod));
        MOZ_ASSERT(node->scopeBody()->as<ClassMethod>().method().syntaxKind() ==
                       FunctionSyntaxKind::ClassConstructor ||
                   node->scopeBody()->as<ClassMethod>().method().syntaxKind() ==
                       FunctionSyntaxKind::DerivedClassConstructor);
        // Check isEmptyScope instead of asserting, because this function must
        // be idempotent: when parsing via asm.js, this function is called, then
        // later, after asm.js parsing fails, this function is called again on
        // the same scope. (See bug 1555979)
        if (!node->isEmptyScope()) {
          MOZ_ASSERT(node->scopeBindings()->length == 1);
          MOZ_ASSERT(node->scopeBindings()->trailingNames[0].name() ==
                     cx->names().dotInitializers);
          node->clearScopeBindings();
        }
      }
    }
  }

  UnaryNodeType newInitialYieldExpression(uint32_t begin, Node gen) {
    TokenPos pos(begin, begin + 1);
    return new_<UnaryNode>(ParseNodeKind::InitialYield, pos, gen);
  }

  UnaryNodeType newYieldExpression(uint32_t begin, Node value) {
    TokenPos pos(begin, value ? value->pn_pos.end : begin + 1);
    return new_<UnaryNode>(ParseNodeKind::YieldExpr, pos, value);
  }

  UnaryNodeType newYieldStarExpression(uint32_t begin, Node value) {
    TokenPos pos(begin, value->pn_pos.end);
    return new_<UnaryNode>(ParseNodeKind::YieldStarExpr, pos, value);
  }

  UnaryNodeType newAwaitExpression(uint32_t begin, Node value) {
    TokenPos pos(begin, value ? value->pn_pos.end : begin + 1);
    return new_<UnaryNode>(ParseNodeKind::AwaitExpr, pos, value);
  }

  // Statements

  ListNodeType newStatementList(const TokenPos& pos) {
    return new_<ListNode>(ParseNodeKind::StatementList, pos);
  }

  MOZ_MUST_USE bool isFunctionStmt(Node stmt) {
    while (stmt->isKind(ParseNodeKind::LabelStmt)) {
      stmt = stmt->as<LabeledStatement>().statement();
    }
    return stmt->is<FunctionNode>();
  }

  void addStatementToList(ListNodeType list, Node stmt) {
    MOZ_ASSERT(list->isKind(ParseNodeKind::StatementList));

    addList(/* list = */ list, /* kid = */ stmt);

    if (isFunctionStmt(stmt)) {
      // Notify the emitter that the block contains body-level function
      // definitions that should be processed before the rest of nodes.
      list->setHasTopLevelFunctionDeclarations();
    }
  }

  void setListEndPosition(ListNodeType list, const TokenPos& pos) {
    MOZ_ASSERT(list->isKind(ParseNodeKind::StatementList));
    list->pn_pos.end = pos.end;
  }

  void addCaseStatementToList(ListNodeType list, CaseClauseType caseClause) {
    MOZ_ASSERT(list->isKind(ParseNodeKind::StatementList));

    addList(/* list = */ list, /* kid = */ caseClause);

    if (caseClause->statementList()->hasTopLevelFunctionDeclarations()) {
      list->setHasTopLevelFunctionDeclarations();
    }
  }

  MOZ_MUST_USE bool prependInitialYield(ListNodeType stmtList, Node genName) {
    MOZ_ASSERT(stmtList->isKind(ParseNodeKind::StatementList));

    TokenPos yieldPos(stmtList->pn_pos.begin, stmtList->pn_pos.begin + 1);
    NullaryNode* makeGen =
        new_<NullaryNode>(ParseNodeKind::Generator, yieldPos);
    if (!makeGen) {
      return false;
    }

    ParseNode* genInit =
        newAssignment(ParseNodeKind::AssignExpr, /* lhs = */ genName,
                      /* rhs = */ makeGen);
    if (!genInit) {
      return false;
    }

    UnaryNode* initialYield =
        newInitialYieldExpression(yieldPos.begin, genInit);
    if (!initialYield) {
      return false;
    }

    stmtList->prepend(initialYield);
    return true;
  }

  BinaryNodeType newSetThis(Node thisName, Node value) {
    return newBinary(ParseNodeKind::SetThis, thisName, value);
  }

  NullaryNodeType newEmptyStatement(const TokenPos& pos) {
    return new_<NullaryNode>(ParseNodeKind::EmptyStmt, pos);
  }

  BinaryNodeType newImportDeclaration(Node importSpecSet, Node moduleSpec,
                                      const TokenPos& pos) {
    return new_<BinaryNode>(ParseNodeKind::ImportDecl, pos, importSpecSet,
                            moduleSpec);
  }

  BinaryNodeType newImportSpec(Node importNameNode, Node bindingName) {
    return newBinary(ParseNodeKind::ImportSpec, importNameNode, bindingName);
  }

  UnaryNodeType newExportDeclaration(Node kid, const TokenPos& pos) {
    return new_<UnaryNode>(ParseNodeKind::ExportStmt, pos, kid);
  }

  BinaryNodeType newExportFromDeclaration(uint32_t begin, Node exportSpecSet,
                                          Node moduleSpec) {
    BinaryNode* decl = new_<BinaryNode>(ParseNodeKind::ExportFromStmt,
                                        exportSpecSet, moduleSpec);
    if (!decl) {
      return nullptr;
    }
    decl->pn_pos.begin = begin;
    return decl;
  }

  BinaryNodeType newExportDefaultDeclaration(Node kid, Node maybeBinding,
                                             const TokenPos& pos) {
    if (maybeBinding) {
      MOZ_ASSERT(maybeBinding->isKind(ParseNodeKind::Name));
      MOZ_ASSERT(!maybeBinding->isInParens());

      checkAndSetIsDirectRHSAnonFunction(kid);
    }

    return new_<BinaryNode>(ParseNodeKind::ExportDefaultStmt, pos, kid,
                            maybeBinding);
  }

  BinaryNodeType newExportSpec(Node bindingName, Node exportName) {
    return newBinary(ParseNodeKind::ExportSpec, bindingName, exportName);
  }

  NullaryNodeType newExportBatchSpec(const TokenPos& pos) {
    return new_<NullaryNode>(ParseNodeKind::ExportBatchSpecStmt, pos);
  }

  BinaryNodeType newImportMeta(NullaryNodeType importHolder,
                               NullaryNodeType metaHolder) {
    return new_<BinaryNode>(ParseNodeKind::ImportMetaExpr, importHolder,
                            metaHolder);
  }

  BinaryNodeType newCallImport(NullaryNodeType importHolder, Node singleArg) {
    return new_<BinaryNode>(ParseNodeKind::CallImportExpr, importHolder,
                            singleArg);
  }

  UnaryNodeType newExprStatement(Node expr, uint32_t end) {
    MOZ_ASSERT(expr->pn_pos.end <= end);
    return new_<UnaryNode>(ParseNodeKind::ExpressionStmt,
                           TokenPos(expr->pn_pos.begin, end), expr);
  }

  TernaryNodeType newIfStatement(uint32_t begin, Node cond, Node thenBranch,
                                 Node elseBranch) {
    TernaryNode* node =
        new_<TernaryNode>(ParseNodeKind::IfStmt, cond, thenBranch, elseBranch);
    if (!node) {
      return nullptr;
    }
    node->pn_pos.begin = begin;
    return node;
  }

  BinaryNodeType newDoWhileStatement(Node body, Node cond,
                                     const TokenPos& pos) {
    return new_<BinaryNode>(ParseNodeKind::DoWhileStmt, pos, body, cond);
  }

  BinaryNodeType newWhileStatement(uint32_t begin, Node cond, Node body) {
    TokenPos pos(begin, body->pn_pos.end);
    return new_<BinaryNode>(ParseNodeKind::WhileStmt, pos, cond, body);
  }

  ForNodeType newForStatement(uint32_t begin, TernaryNodeType forHead,
                              Node body, unsigned iflags) {
    return new_<ForNode>(TokenPos(begin, body->pn_pos.end), forHead, body,
                         iflags);
  }

  TernaryNodeType newForHead(Node init, Node test, Node update,
                             const TokenPos& pos) {
    return new_<TernaryNode>(ParseNodeKind::ForHead, init, test, update, pos);
  }

  TernaryNodeType newForInOrOfHead(ParseNodeKind kind, Node target,
                                   Node iteratedExpr, const TokenPos& pos) {
    MOZ_ASSERT(kind == ParseNodeKind::ForIn || kind == ParseNodeKind::ForOf);
    return new_<TernaryNode>(kind, target, nullptr, iteratedExpr, pos);
  }

  SwitchStatementType newSwitchStatement(
      uint32_t begin, Node discriminant,
      LexicalScopeNodeType lexicalForCaseList, bool hasDefault) {
    return new_<SwitchStatement>(begin, discriminant, lexicalForCaseList,
                                 hasDefault);
  }

  CaseClauseType newCaseOrDefault(uint32_t begin, Node expr, Node body) {
    return new_<CaseClause>(expr, body, begin);
  }

  ContinueStatementType newContinueStatement(PropertyName* label,
                                             const TokenPos& pos) {
    return new_<ContinueStatement>(label, pos);
  }

  BreakStatementType newBreakStatement(PropertyName* label,
                                       const TokenPos& pos) {
    return new_<BreakStatement>(label, pos);
  }

  UnaryNodeType newReturnStatement(Node expr, const TokenPos& pos) {
    MOZ_ASSERT_IF(expr, pos.encloses(expr->pn_pos));
    return new_<UnaryNode>(ParseNodeKind::ReturnStmt, pos, expr);
  }

  UnaryNodeType newExpressionBody(Node expr) {
    return new_<UnaryNode>(ParseNodeKind::ReturnStmt, expr->pn_pos, expr);
  }

  BinaryNodeType newWithStatement(uint32_t begin, Node expr, Node body) {
    return new_<BinaryNode>(ParseNodeKind::WithStmt,
                            TokenPos(begin, body->pn_pos.end), expr, body);
  }

  LabeledStatementType newLabeledStatement(PropertyName* label, Node stmt,
                                           uint32_t begin) {
    return new_<LabeledStatement>(label, stmt, begin);
  }

  UnaryNodeType newThrowStatement(Node expr, const TokenPos& pos) {
    MOZ_ASSERT(pos.encloses(expr->pn_pos));
    return new_<UnaryNode>(ParseNodeKind::ThrowStmt, pos, expr);
  }

  TernaryNodeType newTryStatement(uint32_t begin, Node body,
                                  LexicalScopeNodeType catchScope,
                                  Node finallyBlock) {
    return new_<TryNode>(begin, body, catchScope, finallyBlock);
  }

  DebuggerStatementType newDebuggerStatement(const TokenPos& pos) {
    return new_<DebuggerStatement>(pos);
  }

  NameNodeType newPropertyName(PropertyName* name, const TokenPos& pos) {
    return new_<NameNode>(ParseNodeKind::PropertyNameExpr, name, pos);
  }

  PropertyAccessType newPropertyAccess(Node expr, NameNodeType key) {
    return new_<PropertyAccess>(expr, key, expr->pn_pos.begin, key->pn_pos.end);
  }

  PropertyByValueType newPropertyByValue(Node lhs, Node index, uint32_t end) {
    return new_<PropertyByValue>(lhs, index, lhs->pn_pos.begin, end);
  }

  bool setupCatchScope(LexicalScopeNodeType lexicalScope, Node catchName,
                       Node catchBody) {
    BinaryNode* catchClause;
    if (catchName) {
      catchClause =
          new_<BinaryNode>(ParseNodeKind::Catch, catchName, catchBody);
    } else {
      catchClause = new_<BinaryNode>(ParseNodeKind::Catch, catchBody->pn_pos,
                                     catchName, catchBody);
    }
    if (!catchClause) {
      return false;
    }
    lexicalScope->setScopeBody(catchClause);
    return true;
  }

  inline MOZ_MUST_USE bool setLastFunctionFormalParameterDefault(
      FunctionNodeType funNode, Node defaultValue);

  void checkAndSetIsDirectRHSAnonFunction(Node pn) {
    if (IsAnonymousFunctionDefinition(pn)) {
      pn->setDirectRHSAnonFunction(true);
    }
  }

  FunctionNodeType newFunction(FunctionSyntaxKind syntaxKind,
                               const TokenPos& pos) {
    return new_<FunctionNode>(syntaxKind, pos);
  }

  BinaryNodeType newObjectMethodOrPropertyDefinition(Node key, Node value,
                                                     AccessorType atype) {
    MOZ_ASSERT(isUsableAsObjectPropertyName(key));

    return new_<PropertyDefinition>(key, value, atype);
  }

  BinaryNodeType newShorthandPropertyDefinition(Node key, Node value) {
    MOZ_ASSERT(isUsableAsObjectPropertyName(key));

    return newBinary(ParseNodeKind::Shorthand, key, value);
  }

  ListNodeType newParamsBody(const TokenPos& pos) {
    return new_<ListNode>(ParseNodeKind::ParamsBody, pos);
  }

  void setFunctionFormalParametersAndBody(FunctionNodeType funNode,
                                          ListNodeType paramsBody) {
    MOZ_ASSERT_IF(paramsBody, paramsBody->isKind(ParseNodeKind::ParamsBody));
    funNode->setBody(paramsBody);
  }
  void setFunctionBox(FunctionNodeType funNode, FunctionBox* funbox) {
    funNode->setFunbox(funbox);
    funbox->functionNode = funNode;
  }
  void addFunctionFormalParameter(FunctionNodeType funNode, Node argpn) {
    addList(/* list = */ funNode->body(), /* kid = */ argpn);
  }
  void setFunctionBody(FunctionNodeType funNode, LexicalScopeNodeType body) {
    MOZ_ASSERT(funNode->body()->isKind(ParseNodeKind::ParamsBody));
    addList(/* list = */ funNode->body(), /* kid = */ body);
  }

  ModuleNodeType newModule(const TokenPos& pos) {
    return new_<ModuleNode>(pos);
  }

  LexicalScopeNodeType newLexicalScope(LexicalScope::Data* bindings, Node body,
                                       ScopeKind kind = ScopeKind::Lexical) {
    return new_<LexicalScopeNode>(bindings, body, kind);
  }

  CallNodeType newNewExpression(uint32_t begin, Node ctor, Node args,
                                bool isSpread) {
    return new_<CallNode>(ParseNodeKind::NewExpr,
                          isSpread ? JSOP_SPREADNEW : JSOP_NEW,
                          TokenPos(begin, args->pn_pos.end), ctor, args);
  }

  AssignmentNodeType newAssignment(ParseNodeKind kind, Node lhs, Node rhs) {
    if ((kind == ParseNodeKind::AssignExpr ||
         kind == ParseNodeKind::InitExpr) &&
        lhs->isKind(ParseNodeKind::Name) && !lhs->isInParens()) {
      checkAndSetIsDirectRHSAnonFunction(rhs);
    }

    return new_<AssignmentNode>(kind, lhs, rhs);
  }

  bool isUnparenthesizedAssignment(Node node) {
    if ((node->isKind(ParseNodeKind::AssignExpr)) && !node->isInParens()) {
      return true;
    }

    return false;
  }

  bool isUnparenthesizedUnaryExpression(Node node) {
    if (!node->isInParens()) {
      ParseNodeKind kind = node->getKind();
      return kind == ParseNodeKind::VoidExpr ||
             kind == ParseNodeKind::NotExpr ||
             kind == ParseNodeKind::BitNotExpr ||
             kind == ParseNodeKind::PosExpr || kind == ParseNodeKind::NegExpr ||
             IsTypeofKind(kind) || IsDeleteKind(kind);
    }
    return false;
  }

  bool isReturnStatement(Node node) {
    return node->isKind(ParseNodeKind::ReturnStmt);
  }

  bool isStatementPermittedAfterReturnStatement(Node node) {
    ParseNodeKind kind = node->getKind();
    return kind == ParseNodeKind::Function || kind == ParseNodeKind::VarStmt ||
           kind == ParseNodeKind::BreakStmt ||
           kind == ParseNodeKind::ThrowStmt || kind == ParseNodeKind::EmptyStmt;
  }

  bool isSuperBase(Node node) { return node->isKind(ParseNodeKind::SuperBase); }

  bool isUsableAsObjectPropertyName(Node node) {
    return node->isKind(ParseNodeKind::NumberExpr) ||
           node->isKind(ParseNodeKind::ObjectPropertyName) ||
           node->isKind(ParseNodeKind::StringExpr) ||
           node->isKind(ParseNodeKind::ComputedName);
  }

  AssignmentNodeType finishInitializerAssignment(NameNodeType nameNode,
                                                 Node init) {
    MOZ_ASSERT(nameNode->isKind(ParseNodeKind::Name));
    MOZ_ASSERT(!nameNode->isInParens());

    checkAndSetIsDirectRHSAnonFunction(init);

    return newAssignment(ParseNodeKind::AssignExpr, nameNode, init);
  }

  void setBeginPosition(Node pn, Node oth) {
    setBeginPosition(pn, oth->pn_pos.begin);
  }
  void setBeginPosition(Node pn, uint32_t begin) {
    pn->pn_pos.begin = begin;
    MOZ_ASSERT(pn->pn_pos.begin <= pn->pn_pos.end);
  }

  void setEndPosition(Node pn, Node oth) {
    setEndPosition(pn, oth->pn_pos.end);
  }
  void setEndPosition(Node pn, uint32_t end) {
    pn->pn_pos.end = end;
    MOZ_ASSERT(pn->pn_pos.begin <= pn->pn_pos.end);
  }

  uint32_t getFunctionNameOffset(Node func, TokenStreamAnyChars& ts) {
    return func->pn_pos.begin;
  }

  bool isDeclarationKind(ParseNodeKind kind) {
    return kind == ParseNodeKind::VarStmt || kind == ParseNodeKind::LetDecl ||
           kind == ParseNodeKind::ConstDecl;
  }

  ListNodeType newList(ParseNodeKind kind, const TokenPos& pos) {
    MOZ_ASSERT(!isDeclarationKind(kind));
    return new_<ListNode>(kind, pos);
  }

 public:
  ListNodeType newList(ParseNodeKind kind, Node kid) {
    MOZ_ASSERT(!isDeclarationKind(kind));
    return new_<ListNode>(kind, kid);
  }

  ListNodeType newDeclarationList(ParseNodeKind kind, const TokenPos& pos) {
    MOZ_ASSERT(isDeclarationKind(kind));
    return new_<ListNode>(kind, pos);
  }

  bool isDeclarationList(Node node) {
    return isDeclarationKind(node->getKind());
  }

  Node singleBindingFromDeclaration(ListNodeType decl) {
    MOZ_ASSERT(isDeclarationList(decl));
    MOZ_ASSERT(decl->count() == 1);
    return decl->head();
  }

  ListNodeType newCommaExpressionList(Node kid) {
    return new_<ListNode>(ParseNodeKind::CommaExpr, kid);
  }

  void addList(ListNodeType list, Node kid) {
    if (sourceKind_ == SourceKind::Text) {
      list->append(kid);
    } else {
      list->appendWithoutOrderAssumption(kid);
    }
  }

  void setListHasNonConstInitializer(ListNodeType literal) {
    literal->setHasNonConstInitializer();
  }
  template <typename NodeType>
  MOZ_MUST_USE NodeType parenthesize(NodeType node) {
    node->setInParens(true);
    return node;
  }
  template <typename NodeType>
  MOZ_MUST_USE NodeType setLikelyIIFE(NodeType node) {
    return parenthesize(node);
  }
  void setInDirectivePrologue(UnaryNodeType exprStmt) {
    exprStmt->setIsDirectivePrologueMember();
  }

  bool isName(Node node) { return node->isKind(ParseNodeKind::Name); }

  bool isArgumentsName(Node node, JSContext* cx) {
    return node->isKind(ParseNodeKind::Name) &&
           node->as<NameNode>().atom() == cx->names().arguments;
  }

  bool isEvalName(Node node, JSContext* cx) {
    return node->isKind(ParseNodeKind::Name) &&
           node->as<NameNode>().atom() == cx->names().eval;
  }

  bool isAsyncKeyword(Node node, JSContext* cx) {
    return node->isKind(ParseNodeKind::Name) &&
           node->pn_pos.begin + strlen("async") == node->pn_pos.end &&
           node->as<NameNode>().atom() == cx->names().async;
  }

  PropertyName* maybeDottedProperty(Node pn) {
    return pn->is<PropertyAccess>() ? &pn->as<PropertyAccess>().name()
                                    : nullptr;
  }
  JSAtom* isStringExprStatement(Node pn, TokenPos* pos) {
    if (pn->is<UnaryNode>()) {
      UnaryNode* unary = &pn->as<UnaryNode>();
      if (JSAtom* atom = unary->isStringExprStatement()) {
        *pos = unary->kid()->pn_pos;
        return atom;
      }
    }
    return nullptr;
  }

  bool canSkipLazyInnerFunctions() { return !!lazyOuterFunction_; }
  bool canSkipLazyClosedOverBindings() { return !!lazyOuterFunction_; }
  JSFunction* nextLazyInnerFunction() {
    MOZ_ASSERT(lazyInnerFunctionIndex <
               lazyOuterFunction_->numInnerFunctions());
    return lazyOuterFunction_->innerFunctions()[lazyInnerFunctionIndex++];
  }
  JSAtom* nextLazyClosedOverBinding() {
    MOZ_ASSERT(lazyClosedOverBindingIndex <
               lazyOuterFunction_->numClosedOverBindings());
    return lazyOuterFunction_
        ->closedOverBindings()[lazyClosedOverBindingIndex++];
  }
};

inline bool FullParseHandler::setLastFunctionFormalParameterDefault(
    FunctionNodeType funNode, Node defaultValue) {
  ListNode* body = funNode->body();
  ParseNode* arg = body->last();
  ParseNode* pn = newAssignment(ParseNodeKind::AssignExpr, arg, defaultValue);
  if (!pn) {
    return false;
  }

  body->replaceLast(pn);
  return true;
}

}  // namespace frontend
}  // namespace js

#endif /* frontend_FullParseHandler_h */