DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "frontend/FoldConstants.h"

#include "mozilla/FloatingPoint.h"

#include "jslibmath.h"
#include "jsnum.h"

#include "frontend/ParseNode.h"
#include "frontend/ParseNodeVisitor.h"
#include "frontend/Parser.h"
#include "js/Conversions.h"
#include "vm/StringType.h"

using namespace js;
using namespace js::frontend;

using JS::GenericNaN;
using JS::ToInt32;
using JS::ToUint32;
using mozilla::IsNaN;
using mozilla::IsNegative;
using mozilla::NegativeInfinity;
using mozilla::PositiveInfinity;

// Don't use ReplaceNode directly, because we want the constant folder to keep
// the attributes isInParens and isDirectRHSAnonFunction of the old node being
// replaced.
inline MOZ_MUST_USE bool TryReplaceNode(ParseNode** pnp, ParseNode* pn) {
  // convenience check: can call TryReplaceNode(pnp, alloc_parsenode())
  // directly, without having to worry about alloc returning null.
  if (!pn) {
    return false;
  }
  pn->setInParens((*pnp)->isInParens());
  pn->setDirectRHSAnonFunction((*pnp)->isDirectRHSAnonFunction());
  ReplaceNode(pnp, pn);
  return true;
}

static bool ContainsHoistedDeclaration(JSContext* cx, ParseNode* node,
                                       bool* result);

static bool ListContainsHoistedDeclaration(JSContext* cx, ListNode* list,
                                           bool* result) {
  for (ParseNode* node : list->contents()) {
    if (!ContainsHoistedDeclaration(cx, node, result)) {
      return false;
    }
    if (*result) {
      return true;
    }
  }

  *result = false;
  return true;
}

// Determines whether the given ParseNode contains any declarations whose
// visibility will extend outside the node itself -- that is, whether the
// ParseNode contains any var statements.
//
// THIS IS NOT A GENERAL-PURPOSE FUNCTION.  It is only written to work in the
// specific context of deciding that |node|, as one arm of a ParseNodeKind::If
// controlled by a constant condition, contains a declaration that forbids
// |node| being completely eliminated as dead.
static bool ContainsHoistedDeclaration(JSContext* cx, ParseNode* node,
                                       bool* result) {
  if (!CheckRecursionLimit(cx)) {
    return false;
  }

restart:

  // With a better-typed AST, we would have distinct parse node classes for
  // expressions and for statements and would characterize expressions with
  // ExpressionKind and statements with StatementKind.  Perhaps someday.  In
  // the meantime we must characterize every ParseNodeKind, even the
  // expression/sub-expression ones that, if we handle all statement kinds
  // correctly, we'll never see.
  switch (node->getKind()) {
    // Base case.
    case ParseNodeKind::VarStmt:
      *result = true;
      return true;

    // Non-global lexical declarations are block-scoped (ergo not hoistable).
    case ParseNodeKind::LetDecl:
    case ParseNodeKind::ConstDecl:
      MOZ_ASSERT(node->is<ListNode>());
      *result = false;
      return true;

    // Similarly to the lexical declarations above, classes cannot add hoisted
    // declarations
    case ParseNodeKind::ClassDecl:
      MOZ_ASSERT(node->is<ClassNode>());
      *result = false;
      return true;

    // Function declarations *can* be hoisted declarations.  But in the
    // magical world of the rewritten frontend, the declaration necessitated
    // by a nested function statement, not at body level, doesn't require
    // that we preserve an unreachable function declaration node against
    // dead-code removal.
    case ParseNodeKind::Function:
      *result = false;
      return true;

    case ParseNodeKind::Module:
      *result = false;
      return true;

    // Statements with no sub-components at all.
    case ParseNodeKind::EmptyStmt:
      MOZ_ASSERT(node->is<NullaryNode>());
      *result = false;
      return true;

    case ParseNodeKind::DebuggerStmt:
      MOZ_ASSERT(node->is<DebuggerStatement>());
      *result = false;
      return true;

    // Statements containing only an expression have no declarations.
    case ParseNodeKind::ExpressionStmt:
    case ParseNodeKind::ThrowStmt:
    case ParseNodeKind::ReturnStmt:
      MOZ_ASSERT(node->is<UnaryNode>());
      *result = false;
      return true;

    // These two aren't statements in the spec, but we sometimes insert them
    // in statement lists anyway.
    case ParseNodeKind::InitialYield:
    case ParseNodeKind::YieldStarExpr:
    case ParseNodeKind::YieldExpr:
      MOZ_ASSERT(node->is<UnaryNode>());
      *result = false;
      return true;

    // Other statements with no sub-statement components.
    case ParseNodeKind::BreakStmt:
    case ParseNodeKind::ContinueStmt:
    case ParseNodeKind::ImportDecl:
    case ParseNodeKind::ImportSpecList:
    case ParseNodeKind::ImportSpec:
    case ParseNodeKind::ExportFromStmt:
    case ParseNodeKind::ExportDefaultStmt:
    case ParseNodeKind::ExportSpecList:
    case ParseNodeKind::ExportSpec:
    case ParseNodeKind::ExportStmt:
    case ParseNodeKind::ExportBatchSpecStmt:
    case ParseNodeKind::CallImportExpr:
      *result = false;
      return true;

    // Statements possibly containing hoistable declarations only in the left
    // half, in ParseNode terms -- the loop body in AST terms.
    case ParseNodeKind::DoWhileStmt:
      return ContainsHoistedDeclaration(cx, node->as<BinaryNode>().left(),
                                        result);

    // Statements possibly containing hoistable declarations only in the
    // right half, in ParseNode terms -- the loop body or nested statement
    // (usually a block statement), in AST terms.
    case ParseNodeKind::WhileStmt:
    case ParseNodeKind::WithStmt:
      return ContainsHoistedDeclaration(cx, node->as<BinaryNode>().right(),
                                        result);

    case ParseNodeKind::LabelStmt:
      return ContainsHoistedDeclaration(
          cx, node->as<LabeledStatement>().statement(), result);

    // Statements with more complicated structures.

    // if-statement nodes may have hoisted declarations in their consequent
    // and alternative components.
    case ParseNodeKind::IfStmt: {
      TernaryNode* ifNode = &node->as<TernaryNode>();
      ParseNode* consequent = ifNode->kid2();
      if (!ContainsHoistedDeclaration(cx, consequent, result)) {
        return false;
      }
      if (*result) {
        return true;
      }

      if ((node = ifNode->kid3())) {
        goto restart;
      }

      *result = false;
      return true;
    }

    // try-statements have statements to execute, and one or both of a
    // catch-list and a finally-block.
    case ParseNodeKind::TryStmt: {
      TernaryNode* tryNode = &node->as<TernaryNode>();

      MOZ_ASSERT(tryNode->kid2() || tryNode->kid3(),
                 "must have either catch or finally");

      ParseNode* tryBlock = tryNode->kid1();
      if (!ContainsHoistedDeclaration(cx, tryBlock, result)) {
        return false;
      }
      if (*result) {
        return true;
      }

      if (ParseNode* catchScope = tryNode->kid2()) {
        BinaryNode* catchNode =
            &catchScope->as<LexicalScopeNode>().scopeBody()->as<BinaryNode>();
        MOZ_ASSERT(catchNode->isKind(ParseNodeKind::Catch));

        ParseNode* catchStatements = catchNode->right();
        if (!ContainsHoistedDeclaration(cx, catchStatements, result)) {
          return false;
        }
        if (*result) {
          return true;
        }
      }

      if (ParseNode* finallyBlock = tryNode->kid3()) {
        return ContainsHoistedDeclaration(cx, finallyBlock, result);
      }

      *result = false;
      return true;
    }

    // A switch node's left half is an expression; only its right half (a
    // list of cases/defaults, or a block node) could contain hoisted
    // declarations.
    case ParseNodeKind::SwitchStmt: {
      SwitchStatement* switchNode = &node->as<SwitchStatement>();
      return ContainsHoistedDeclaration(cx, &switchNode->lexicalForCaseList(),
                                        result);
    }

    case ParseNodeKind::Case: {
      CaseClause* caseClause = &node->as<CaseClause>();
      return ContainsHoistedDeclaration(cx, caseClause->statementList(),
                                        result);
    }

    case ParseNodeKind::ForStmt: {
      ForNode* forNode = &node->as<ForNode>();
      TernaryNode* loopHead = forNode->head();
      MOZ_ASSERT(loopHead->isKind(ParseNodeKind::ForHead) ||
                 loopHead->isKind(ParseNodeKind::ForIn) ||
                 loopHead->isKind(ParseNodeKind::ForOf));

      if (loopHead->isKind(ParseNodeKind::ForHead)) {
        // for (init?; cond?; update?), with only init possibly containing
        // a hoisted declaration.  (Note: a lexical-declaration |init| is
        // (at present) hoisted in SpiderMonkey parlance -- but such
        // hoisting doesn't extend outside of this statement, so it is not
        // hoisting in the sense meant by ContainsHoistedDeclaration.)
        ParseNode* init = loopHead->kid1();
        if (init && init->isKind(ParseNodeKind::VarStmt)) {
          *result = true;
          return true;
        }
      } else {
        MOZ_ASSERT(loopHead->isKind(ParseNodeKind::ForIn) ||
                   loopHead->isKind(ParseNodeKind::ForOf));

        // for each? (target in ...), where only target may introduce
        // hoisted declarations.
        //
        //   -- or --
        //
        // for (target of ...), where only target may introduce hoisted
        // declarations.
        //
        // Either way, if |target| contains a declaration, it's |loopHead|'s
        // first kid.
        ParseNode* decl = loopHead->kid1();
        if (decl && decl->isKind(ParseNodeKind::VarStmt)) {
          *result = true;
          return true;
        }
      }

      ParseNode* loopBody = forNode->body();
      return ContainsHoistedDeclaration(cx, loopBody, result);
    }

    case ParseNodeKind::LexicalScope: {
      LexicalScopeNode* scope = &node->as<LexicalScopeNode>();
      ParseNode* expr = scope->scopeBody();

      if (expr->isKind(ParseNodeKind::ForStmt) || expr->is<FunctionNode>()) {
        return ContainsHoistedDeclaration(cx, expr, result);
      }

      MOZ_ASSERT(expr->isKind(ParseNodeKind::StatementList));
      return ListContainsHoistedDeclaration(
          cx, &scope->scopeBody()->as<ListNode>(), result);
    }

    // List nodes with all non-null children.
    case ParseNodeKind::StatementList:
      return ListContainsHoistedDeclaration(cx, &node->as<ListNode>(), result);

    // Grammar sub-components that should never be reached directly by this
    // method, because some parent component should have asserted itself.
    case ParseNodeKind::ObjectPropertyName:
    case ParseNodeKind::ComputedName:
    case ParseNodeKind::Spread:
    case ParseNodeKind::MutateProto:
    case ParseNodeKind::PropertyDefinition:
    case ParseNodeKind::Shorthand:
    case ParseNodeKind::ConditionalExpr:
    case ParseNodeKind::TypeOfNameExpr:
    case ParseNodeKind::TypeOfExpr:
    case ParseNodeKind::AwaitExpr:
    case ParseNodeKind::VoidExpr:
    case ParseNodeKind::NotExpr:
    case ParseNodeKind::BitNotExpr:
    case ParseNodeKind::DeleteNameExpr:
    case ParseNodeKind::DeletePropExpr:
    case ParseNodeKind::DeleteElemExpr:
    case ParseNodeKind::DeleteExpr:
    case ParseNodeKind::PosExpr:
    case ParseNodeKind::NegExpr:
    case ParseNodeKind::PreIncrementExpr:
    case ParseNodeKind::PostIncrementExpr:
    case ParseNodeKind::PreDecrementExpr:
    case ParseNodeKind::PostDecrementExpr:
    case ParseNodeKind::OrExpr:
    case ParseNodeKind::AndExpr:
    case ParseNodeKind::BitOrExpr:
    case ParseNodeKind::BitXorExpr:
    case ParseNodeKind::BitAndExpr:
    case ParseNodeKind::StrictEqExpr:
    case ParseNodeKind::EqExpr:
    case ParseNodeKind::StrictNeExpr:
    case ParseNodeKind::NeExpr:
    case ParseNodeKind::LtExpr:
    case ParseNodeKind::LeExpr:
    case ParseNodeKind::GtExpr:
    case ParseNodeKind::GeExpr:
    case ParseNodeKind::InstanceOfExpr:
    case ParseNodeKind::InExpr:
    case ParseNodeKind::LshExpr:
    case ParseNodeKind::RshExpr:
    case ParseNodeKind::UrshExpr:
    case ParseNodeKind::AddExpr:
    case ParseNodeKind::SubExpr:
    case ParseNodeKind::MulExpr:
    case ParseNodeKind::DivExpr:
    case ParseNodeKind::ModExpr:
    case ParseNodeKind::PowExpr:
    case ParseNodeKind::InitExpr:
    case ParseNodeKind::AssignExpr:
    case ParseNodeKind::AddAssignExpr:
    case ParseNodeKind::SubAssignExpr:
    case ParseNodeKind::BitOrAssignExpr:
    case ParseNodeKind::BitXorAssignExpr:
    case ParseNodeKind::BitAndAssignExpr:
    case ParseNodeKind::LshAssignExpr:
    case ParseNodeKind::RshAssignExpr:
    case ParseNodeKind::UrshAssignExpr:
    case ParseNodeKind::MulAssignExpr:
    case ParseNodeKind::DivAssignExpr:
    case ParseNodeKind::ModAssignExpr:
    case ParseNodeKind::PowAssignExpr:
    case ParseNodeKind::CommaExpr:
    case ParseNodeKind::ArrayExpr:
    case ParseNodeKind::ObjectExpr:
    case ParseNodeKind::PropertyNameExpr:
    case ParseNodeKind::DotExpr:
    case ParseNodeKind::ElemExpr:
    case ParseNodeKind::Arguments:
    case ParseNodeKind::CallExpr:
    case ParseNodeKind::Name:
    case ParseNodeKind::PrivateName:
    case ParseNodeKind::TemplateStringExpr:
    case ParseNodeKind::TemplateStringListExpr:
    case ParseNodeKind::TaggedTemplateExpr:
    case ParseNodeKind::CallSiteObj:
    case ParseNodeKind::StringExpr:
    case ParseNodeKind::RegExpExpr:
    case ParseNodeKind::TrueExpr:
    case ParseNodeKind::FalseExpr:
    case ParseNodeKind::NullExpr:
    case ParseNodeKind::RawUndefinedExpr:
    case ParseNodeKind::ThisExpr:
    case ParseNodeKind::Elision:
    case ParseNodeKind::NumberExpr:
    case ParseNodeKind::BigIntExpr:
    case ParseNodeKind::NewExpr:
    case ParseNodeKind::Generator:
    case ParseNodeKind::ParamsBody:
    case ParseNodeKind::Catch:
    case ParseNodeKind::ForIn:
    case ParseNodeKind::ForOf:
    case ParseNodeKind::ForHead:
    case ParseNodeKind::ClassMethod:
    case ParseNodeKind::ClassField:
    case ParseNodeKind::ClassMemberList:
    case ParseNodeKind::ClassNames:
    case ParseNodeKind::NewTargetExpr:
    case ParseNodeKind::ImportMetaExpr:
    case ParseNodeKind::PosHolder:
    case ParseNodeKind::SuperCallExpr:
    case ParseNodeKind::SuperBase:
    case ParseNodeKind::SetThis:
      MOZ_CRASH(
          "ContainsHoistedDeclaration should have indicated false on "
          "some parent node without recurring to test this node");

    case ParseNodeKind::PipelineExpr:
      MOZ_ASSERT(node->is<ListNode>());
      *result = false;
      return true;

    case ParseNodeKind::LastUnused:
    case ParseNodeKind::Limit:
      MOZ_CRASH("unexpected sentinel ParseNodeKind in node");
  }

  MOZ_CRASH("invalid node kind");
}

/*
 * Fold from one constant type to another.
 * XXX handles only strings and numbers for now
 */
static bool FoldType(JSContext* cx, FullParseHandler* handler, ParseNode** pnp,
                     ParseNodeKind kind) {
  const ParseNode* pn = *pnp;
  if (!pn->isKind(kind)) {
    switch (kind) {
      case ParseNodeKind::NumberExpr:
        if (pn->isKind(ParseNodeKind::StringExpr)) {
          double d;
          if (!StringToNumber(cx, pn->as<NameNode>().atom(), &d)) {
            return false;
          }
          if (!TryReplaceNode(pnp,
                              handler->newNumber(d, NoDecimal, pn->pn_pos))) {
            return false;
          }
        }
        break;

      case ParseNodeKind::StringExpr:
        if (pn->isKind(ParseNodeKind::NumberExpr)) {
          JSAtom* atom = NumberToAtom(cx, pn->as<NumericLiteral>().value());
          if (!atom) {
            return false;
          }
          if (!TryReplaceNode(pnp,
                              handler->newStringLiteral(atom, pn->pn_pos))) {
            return false;
          }
        }
        break;

      default:
        MOZ_CRASH("Invalid type in constant folding FoldType");
    }
  }
  return true;
}

static bool IsEffectless(ParseNode* node) {
  return node->isKind(ParseNodeKind::TrueExpr) ||
         node->isKind(ParseNodeKind::FalseExpr) ||
         node->isKind(ParseNodeKind::StringExpr) ||
         node->isKind(ParseNodeKind::TemplateStringExpr) ||
         node->isKind(ParseNodeKind::NumberExpr) ||
         node->isKind(ParseNodeKind::BigIntExpr) ||
         node->isKind(ParseNodeKind::NullExpr) ||
         node->isKind(ParseNodeKind::RawUndefinedExpr) ||
         node->isKind(ParseNodeKind::Function);
}

enum Truthiness { Truthy, Falsy, Unknown };

static Truthiness Boolish(ParseNode* pn) {
  switch (pn->getKind()) {
    case ParseNodeKind::NumberExpr:
      return (pn->as<NumericLiteral>().value() != 0 &&
              !IsNaN(pn->as<NumericLiteral>().value()))
                 ? Truthy
                 : Falsy;

    case ParseNodeKind::BigIntExpr:
      return (pn->as<BigIntLiteral>().box()->value()->isZero()) ? Falsy
                                                                : Truthy;

    case ParseNodeKind::StringExpr:
    case ParseNodeKind::TemplateStringExpr:
      return (pn->as<NameNode>().atom()->length() > 0) ? Truthy : Falsy;

    case ParseNodeKind::TrueExpr:
    case ParseNodeKind::Function:
      return Truthy;

    case ParseNodeKind::FalseExpr:
    case ParseNodeKind::NullExpr:
    case ParseNodeKind::RawUndefinedExpr:
      return Falsy;

    case ParseNodeKind::VoidExpr: {
      // |void <foo>| evaluates to |undefined| which isn't truthy.  But the
      // sense of this method requires that the expression be literally
      // replaceable with true/false: not the case if the nested expression
      // is effectful, might throw, &c.  Walk past the |void| (and nested
      // |void| expressions, for good measure) and check that the nested
      // expression doesn't break this requirement before indicating falsity.
      do {
        pn = pn->as<UnaryNode>().kid();
      } while (pn->isKind(ParseNodeKind::VoidExpr));

      return IsEffectless(pn) ? Falsy : Unknown;
    }

    default:
      return Unknown;
  }
}

static bool SimplifyCondition(JSContext* cx, FullParseHandler* handler,
                              ParseNode** nodePtr) {
  // Conditions fold like any other expression, but then they sometimes can be
  // further folded to constants. *nodePtr should already have been
  // constant-folded.

  ParseNode* node = *nodePtr;
  Truthiness t = Boolish(node);
  if (t != Unknown) {
    // We can turn function nodes into constant nodes here, but mutating
    // function nodes is tricky --- in particular, mutating a function node
    // that appears on a method list corrupts the method list. However,
    // methods are M's in statements of the form 'this.foo = M;', which we
    // never fold, so we're okay.
    if (!TryReplaceNode(
            nodePtr, handler->newBooleanLiteral(t == Truthy, node->pn_pos))) {
      return false;
    }
  }

  return true;
}

static bool FoldTypeOfExpr(JSContext* cx, FullParseHandler* handler,
                           ParseNode** nodePtr) {
  UnaryNode* node = &(*nodePtr)->as<UnaryNode>();
  MOZ_ASSERT(node->isKind(ParseNodeKind::TypeOfExpr));
  ParseNode* expr = node->kid();

  // Constant-fold the entire |typeof| if given a constant with known type.
  RootedPropertyName result(cx);
  if (expr->isKind(ParseNodeKind::StringExpr) ||
      expr->isKind(ParseNodeKind::TemplateStringExpr)) {
    result = cx->names().string;
  } else if (expr->isKind(ParseNodeKind::NumberExpr)) {
    result = cx->names().number;
  } else if (expr->isKind(ParseNodeKind::BigIntExpr)) {
    result = cx->names().bigint;
  } else if (expr->isKind(ParseNodeKind::NullExpr)) {
    result = cx->names().object;
  } else if (expr->isKind(ParseNodeKind::TrueExpr) ||
             expr->isKind(ParseNodeKind::FalseExpr)) {
    result = cx->names().boolean;
  } else if (expr->is<FunctionNode>()) {
    result = cx->names().function;
  }

  if (result) {
    if (!TryReplaceNode(nodePtr,
                        handler->newStringLiteral(result, node->pn_pos))) {
      return false;
    }
  }

  return true;
}

static bool FoldDeleteExpr(JSContext* cx, FullParseHandler* handler,
                           ParseNode** nodePtr) {
  UnaryNode* node = &(*nodePtr)->as<UnaryNode>();

  MOZ_ASSERT(node->isKind(ParseNodeKind::DeleteExpr));
  ParseNode* expr = node->kid();

  // Expression deletion evaluates the expression, then evaluates to true.
  // For effectless expressions, eliminate the expression evaluation.
  if (IsEffectless(expr)) {
    if (!TryReplaceNode(nodePtr,
                        handler->newBooleanLiteral(true, node->pn_pos))) {
      return false;
    }
  }

  return true;
}

static bool FoldDeleteElement(JSContext* cx, FullParseHandler* handler,
                              ParseNode** nodePtr) {
  UnaryNode* node = &(*nodePtr)->as<UnaryNode>();
  MOZ_ASSERT(node->isKind(ParseNodeKind::DeleteElemExpr));
  ParseNode* expr = node->kid();

  // If we're deleting an element, but constant-folding converted our
  // element reference into a dotted property access, we must *also*
  // morph the node's kind.
  //
  // In principle this also applies to |super["foo"] -> super.foo|,
  // but we don't constant-fold |super["foo"]| yet.
  MOZ_ASSERT(expr->isKind(ParseNodeKind::ElemExpr) ||
             expr->isKind(ParseNodeKind::DotExpr));
  if (expr->isKind(ParseNodeKind::DotExpr)) {
    // newDelete will detect and use DeletePropExpr
    if (!TryReplaceNode(nodePtr,
                        handler->newDelete(node->pn_pos.begin, expr))) {
      return false;
    }
    MOZ_ASSERT((*nodePtr)->getKind() == ParseNodeKind::DeletePropExpr);
  }

  return true;
}

static bool FoldNot(JSContext* cx, FullParseHandler* handler,
                    ParseNode** nodePtr) {
  UnaryNode* node = &(*nodePtr)->as<UnaryNode>();
  MOZ_ASSERT(node->isKind(ParseNodeKind::NotExpr));

  if (!SimplifyCondition(cx, handler, node->unsafeKidReference())) {
    return false;
  }

  ParseNode* expr = node->kid();

  if (expr->isKind(ParseNodeKind::TrueExpr) ||
      expr->isKind(ParseNodeKind::FalseExpr)) {
    bool newval = !expr->isKind(ParseNodeKind::TrueExpr);

    if (!TryReplaceNode(nodePtr,
                        handler->newBooleanLiteral(newval, node->pn_pos))) {
      return false;
    }
  }

  return true;
}

static bool FoldUnaryArithmetic(JSContext* cx, FullParseHandler* handler,
                                ParseNode** nodePtr) {
  UnaryNode* node = &(*nodePtr)->as<UnaryNode>();
  MOZ_ASSERT(node->isKind(ParseNodeKind::BitNotExpr) ||
                 node->isKind(ParseNodeKind::PosExpr) ||
                 node->isKind(ParseNodeKind::NegExpr),
             "need a different method for this node kind");

  ParseNode* expr = node->kid();

  if (expr->isKind(ParseNodeKind::NumberExpr) ||
      expr->isKind(ParseNodeKind::TrueExpr) ||
      expr->isKind(ParseNodeKind::FalseExpr)) {
    double d = expr->isKind(ParseNodeKind::NumberExpr)
                   ? expr->as<NumericLiteral>().value()
                   : double(expr->isKind(ParseNodeKind::TrueExpr));

    if (node->isKind(ParseNodeKind::BitNotExpr)) {
      d = ~ToInt32(d);
    } else if (node->isKind(ParseNodeKind::NegExpr)) {
      d = -d;
    } else {
      MOZ_ASSERT(node->isKind(ParseNodeKind::PosExpr));  // nothing to do
    }

    if (!TryReplaceNode(nodePtr,
                        handler->newNumber(d, NoDecimal, node->pn_pos))) {
      return false;
    }
  }

  return true;
}

static bool FoldAndOr(JSContext* cx, ParseNode** nodePtr) {
  ListNode* node = &(*nodePtr)->as<ListNode>();

  MOZ_ASSERT(node->isKind(ParseNodeKind::AndExpr) ||
             node->isKind(ParseNodeKind::OrExpr));

  bool isOrNode = node->isKind(ParseNodeKind::OrExpr);
  ParseNode** elem = node->unsafeHeadReference();
  do {
    Truthiness t = Boolish(*elem);

    // If we don't know the constant-folded node's truthiness, we can't
    // reduce this node with its surroundings.  Continue folding any
    // remaining nodes.
    if (t == Unknown) {
      elem = &(*elem)->pn_next;
      continue;
    }

    // If the constant-folded node's truthiness will terminate the
    // condition -- `a || true || expr` or |b && false && expr| -- then
    // trailing nodes will never be evaluated.  Truncate the list after
    // the known-truthiness node, as it's the overall result.
    if ((t == Truthy) == isOrNode) {
      for (ParseNode* next = (*elem)->pn_next; next; next = next->pn_next) {
        node->unsafeDecrementCount();
      }

      // Terminate the original and/or list at the known-truthiness
      // node.
      (*elem)->pn_next = nullptr;
      elem = &(*elem)->pn_next;
      break;
    }

    MOZ_ASSERT((t == Truthy) == !isOrNode);

    // We've encountered a vacuous node that'll never short-circuit
    // evaluation.
    if ((*elem)->pn_next) {
      // This node is never the overall result when there are
      // subsequent nodes.  Remove it.
      ParseNode* elt = *elem;
      *elem = elt->pn_next;
      node->unsafeDecrementCount();
    } else {
      // Otherwise this node is the result of the overall expression,
      // so leave it alone.  And we're done.
      elem = &(*elem)->pn_next;
      break;
    }
  } while (*elem);

  node->unsafeReplaceTail(elem);

  // If we removed nodes, we may have to replace a one-element list with
  // its element.
  if (node->count() == 1) {
    ParseNode* first = node->head();
    ReplaceNode(nodePtr, first);
  }

  return true;
}

static bool Fold(JSContext* cx, FullParseHandler* handler, ParseNode** pnp);

static bool FoldConditional(JSContext* cx, FullParseHandler* handler,
                            ParseNode** nodePtr) {
  ParseNode** nextNode = nodePtr;

  do {
    // |nextNode| on entry points to the C?T:F expression to be folded.
    // Reset it to exit the loop in the common case where F isn't another
    // ?: expression.
    nodePtr = nextNode;
    nextNode = nullptr;

    TernaryNode* node = &(*nodePtr)->as<TernaryNode>();
    MOZ_ASSERT(node->isKind(ParseNodeKind::ConditionalExpr));

    ParseNode** expr = node->unsafeKid1Reference();
    if (!Fold(cx, handler, expr)) {
      return false;
    }
    if (!SimplifyCondition(cx, handler, expr)) {
      return false;
    }

    ParseNode** ifTruthy = node->unsafeKid2Reference();
    if (!Fold(cx, handler, ifTruthy)) {
      return false;
    }

    ParseNode** ifFalsy = node->unsafeKid3Reference();

    // If our C?T:F node has F as another ?: node, *iteratively* constant-
    // fold F *after* folding C and T (and possibly eliminating C and one
    // of T/F entirely); otherwise fold F normally.  Making |nextNode| non-
    // null causes this loop to run again to fold F.
    //
    // Conceivably we could instead/also iteratively constant-fold T, if T
    // were more complex than F.  Such an optimization is unimplemented.
    if ((*ifFalsy)->isKind(ParseNodeKind::ConditionalExpr)) {
      MOZ_ASSERT((*ifFalsy)->is<TernaryNode>());
      nextNode = ifFalsy;
    } else {
      if (!Fold(cx, handler, ifFalsy)) {
        return false;
      }
    }

    // Try to constant-fold based on the condition expression.
    Truthiness t = Boolish(*expr);
    if (t == Unknown) {
      continue;
    }

    // Otherwise reduce 'C ? T : F' to T or F as directed by C.
    ParseNode* replacement = t == Truthy ? *ifTruthy : *ifFalsy;

    // Otherwise perform a replacement.  This invalidates |nextNode|, so
    // reset it (if the replacement requires folding) or clear it (if
    // |ifFalsy| is dead code) as needed.
    if (nextNode) {
      nextNode = (*nextNode == replacement) ? nodePtr : nullptr;
    }
    ReplaceNode(nodePtr, replacement);
  } while (nextNode);

  return true;
}

static bool FoldIf(JSContext* cx, FullParseHandler* handler,
                   ParseNode** nodePtr) {
  ParseNode** nextNode = nodePtr;

  do {
    // |nextNode| on entry points to the initial |if| to be folded.  Reset
    // it to exit the loop when the |else| arm isn't another |if|.
    nodePtr = nextNode;
    nextNode = nullptr;

    TernaryNode* node = &(*nodePtr)->as<TernaryNode>();
    MOZ_ASSERT(node->isKind(ParseNodeKind::IfStmt));

    ParseNode** expr = node->unsafeKid1Reference();
    if (!Fold(cx, handler, expr)) {
      return false;
    }
    if (!SimplifyCondition(cx, handler, expr)) {
      return false;
    }

    ParseNode** consequent = node->unsafeKid2Reference();
    if (!Fold(cx, handler, consequent)) {
      return false;
    }

    ParseNode** alternative = node->unsafeKid3Reference();
    if (*alternative) {
      // If in |if (C) T; else F;| we have |F| as another |if|,
      // *iteratively* constant-fold |F| *after* folding |C| and |T| (and
      // possibly completely replacing the whole thing with |T| or |F|);
      // otherwise fold F normally.  Making |nextNode| non-null causes
      // this loop to run again to fold F.
      if ((*alternative)->isKind(ParseNodeKind::IfStmt)) {
        MOZ_ASSERT((*alternative)->is<TernaryNode>());
        nextNode = alternative;
      } else {
        if (!Fold(cx, handler, alternative)) {
          return false;
        }
      }
    }

    // Eliminate the consequent or alternative if the condition has
    // constant truthiness.
    Truthiness t = Boolish(*expr);
    if (t == Unknown) {
      continue;
    }

    // Careful!  Either of these can be null: |replacement| in |if (0) T;|,
    // and |discarded| in |if (true) T;|.
    ParseNode* replacement;
    ParseNode* discarded;
    if (t == Truthy) {
      replacement = *consequent;
      discarded = *alternative;
    } else {
      replacement = *alternative;
      discarded = *consequent;
    }

    bool performReplacement = true;
    if (discarded) {
      // A declaration that hoists outside the discarded arm prevents the
      // |if| from being folded away.
      bool containsHoistedDecls;
      if (!ContainsHoistedDeclaration(cx, discarded, &containsHoistedDecls)) {
        return false;
      }

      performReplacement = !containsHoistedDecls;
    }

    if (!performReplacement) {
      continue;
    }

    if (!replacement) {
      // If there's no replacement node, we have a constantly-false |if|
      // with no |else|.  Replace the entire thing with an empty
      // statement list.
      if (!TryReplaceNode(nodePtr, handler->newStatementList(node->pn_pos))) {
        return false;
      }
    } else {
      // Replacement invalidates |nextNode|, so reset it (if the
      // replacement requires folding) or clear it (if |alternative|
      // is dead code) as needed.
      if (nextNode) {
        nextNode = (*nextNode == replacement) ? nodePtr : nullptr;
      }
      ReplaceNode(nodePtr, replacement);
    }
  } while (nextNode);

  return true;
}

static double ComputeBinary(ParseNodeKind kind, double left, double right) {
  if (kind == ParseNodeKind::AddExpr) {
    return left + right;
  }

  if (kind == ParseNodeKind::SubExpr) {
    return left - right;
  }

  if (kind == ParseNodeKind::MulExpr) {
    return left * right;
  }

  if (kind == ParseNodeKind::ModExpr) {
    return NumberMod(left, right);
  }

  if (kind == ParseNodeKind::UrshExpr) {
    return ToUint32(left) >> (ToUint32(right) & 31);
  }

  if (kind == ParseNodeKind::DivExpr) {
    return NumberDiv(left, right);
  }

  MOZ_ASSERT(kind == ParseNodeKind::LshExpr || kind == ParseNodeKind::RshExpr);

  int32_t i = ToInt32(left);
  uint32_t j = ToUint32(right) & 31;
  return int32_t((kind == ParseNodeKind::LshExpr) ? uint32_t(i) << j : i >> j);
}

static bool FoldBinaryArithmetic(JSContext* cx, FullParseHandler* handler,
                                 ParseNode** nodePtr) {
  ListNode* node = &(*nodePtr)->as<ListNode>();
  MOZ_ASSERT(node->isKind(ParseNodeKind::SubExpr) ||
             node->isKind(ParseNodeKind::MulExpr) ||
             node->isKind(ParseNodeKind::LshExpr) ||
             node->isKind(ParseNodeKind::RshExpr) ||
             node->isKind(ParseNodeKind::UrshExpr) ||
             node->isKind(ParseNodeKind::DivExpr) ||
             node->isKind(ParseNodeKind::ModExpr));
  MOZ_ASSERT(node->count() >= 2);

  // Fold each operand to a number if possible.
  ParseNode** listp = node->unsafeHeadReference();
  for (; *listp; listp = &(*listp)->pn_next) {
    if (!FoldType(cx, handler, listp, ParseNodeKind::NumberExpr)) {
      return false;
    }
  }
  node->unsafeReplaceTail(listp);

  // Now fold all leading numeric terms together into a single number.
  // (Trailing terms for the non-shift operations can't be folded together
  // due to floating point imprecision.  For example, if |x === -2**53|,
  // |x - 1 - 1 === -2**53| but |x - 2 === -2**53 - 2|.  Shifts could be
  // folded, but it doesn't seem worth the effort.)
  ParseNode** elem = node->unsafeHeadReference();
  ParseNode** next = &(*elem)->pn_next;
  if ((*elem)->isKind(ParseNodeKind::NumberExpr)) {
    ParseNodeKind kind = node->getKind();
    while (true) {
      if (!*next || !(*next)->isKind(ParseNodeKind::NumberExpr)) {
        break;
      }

      double d = ComputeBinary(kind, (*elem)->as<NumericLiteral>().value(),
                               (*next)->as<NumericLiteral>().value());

      TokenPos pos((*elem)->pn_pos.begin, (*next)->pn_pos.end);
      if (!TryReplaceNode(elem, handler->newNumber(d, NoDecimal, pos))) {
        return false;
      }

      (*elem)->pn_next = (*next)->pn_next;
      next = &(*elem)->pn_next;
      node->unsafeDecrementCount();
    }

    if (node->count() == 1) {
      MOZ_ASSERT(node->head() == *elem);
      MOZ_ASSERT((*elem)->isKind(ParseNodeKind::NumberExpr));

      if (!TryReplaceNode(nodePtr, *elem)) {
        return false;
      }
    }
  }

  return true;
}

static bool FoldExponentiation(JSContext* cx, FullParseHandler* handler,
                               ParseNode** nodePtr) {
  ListNode* node = &(*nodePtr)->as<ListNode>();
  MOZ_ASSERT(node->isKind(ParseNodeKind::PowExpr));
  MOZ_ASSERT(node->count() >= 2);

  // Fold each operand, ideally into a number.
  ParseNode** listp = node->unsafeHeadReference();
  for (; *listp; listp = &(*listp)->pn_next) {
    if (!FoldType(cx, handler, listp, ParseNodeKind::NumberExpr)) {
      return false;
    }
  }

  node->unsafeReplaceTail(listp);

  // Unlike all other binary arithmetic operators, ** is right-associative:
  // 2**3**5 is 2**(3**5), not (2**3)**5.  As list nodes singly-link their
  // children, full constant-folding requires either linear space or dodgy
  // in-place linked list reversal.  So we only fold one exponentiation: it's
  // easy and addresses common cases like |2**32|.
  if (node->count() > 2) {
    return true;
  }

  ParseNode* base = node->head();
  ParseNode* exponent = base->pn_next;
  if (!base->isKind(ParseNodeKind::NumberExpr) ||
      !exponent->isKind(ParseNodeKind::NumberExpr)) {
    return true;
  }

  double d1 = base->as<NumericLiteral>().value();
  double d2 = exponent->as<NumericLiteral>().value();

  return TryReplaceNode(
      nodePtr, handler->newNumber(ecmaPow(d1, d2), NoDecimal, node->pn_pos));
}

static bool FoldElement(JSContext* cx, FullParseHandler* handler,
                        ParseNode** nodePtr) {
  PropertyByValue* elem = &(*nodePtr)->as<PropertyByValue>();

  ParseNode* expr = &elem->expression();
  ParseNode* key = &elem->key();
  PropertyName* name = nullptr;
  if (key->isKind(ParseNodeKind::StringExpr)) {
    JSAtom* atom = key->as<NameNode>().atom();
    uint32_t index;

    if (atom->isIndex(&index)) {
      // Optimization 1: We have something like expr["100"]. This is
      // equivalent to expr[100] which is faster.
      if (!TryReplaceNode(elem->unsafeRightReference(),
                          handler->newNumber(index, NoDecimal, key->pn_pos))) {
        return false;
      }
      key = &elem->key();
    } else {
      name = atom->asPropertyName();
    }
  } else if (key->isKind(ParseNodeKind::NumberExpr)) {
    double number = key->as<NumericLiteral>().value();
    if (number != ToUint32(number)) {
      // Optimization 2: We have something like expr[3.14]. The number
      // isn't an array index, so it converts to a string ("3.14"),
      // enabling optimization 3 below.
      JSAtom* atom = NumberToAtom(cx, number);
      if (!atom) {
        return false;
      }
      name = atom->asPropertyName();
    }
  }

  // If we don't have a name, we can't optimize to getprop.
  if (!name) {
    return true;
  }

  // Optimization 3: We have expr["foo"] where foo is not an index.  Convert
  // to a property access (like expr.foo) that optimizes better downstream.

  NameNode* propertyNameExpr = handler->newPropertyName(name, key->pn_pos);
  if (!propertyNameExpr) {
    return false;
  }
  if (!TryReplaceNode(nodePtr,
                      handler->newPropertyAccess(expr, propertyNameExpr))) {
    return false;
  }

  return true;
}

static bool FoldAdd(JSContext* cx, FullParseHandler* handler,
                    ParseNode** nodePtr) {
  ListNode* node = &(*nodePtr)->as<ListNode>();

  MOZ_ASSERT(node->isKind(ParseNodeKind::AddExpr));
  MOZ_ASSERT(node->count() >= 2);

  // Fold leading numeric operands together:
  //
  //   (1 + 2 + x)  becomes  (3 + x)
  //
  // Don't go past the leading operands: additions after a string are
  // string concatenations, not additions: ("1" + 2 + 3 === "123").
  ParseNode** current = node->unsafeHeadReference();
  ParseNode** next = &(*current)->pn_next;
  if ((*current)->isKind(ParseNodeKind::NumberExpr)) {
    do {
      if (!(*next)->isKind(ParseNodeKind::NumberExpr)) {
        break;
      }

      double left = (*current)->as<NumericLiteral>().value();
      double right = (*next)->as<NumericLiteral>().value();
      TokenPos pos((*current)->pn_pos.begin, (*next)->pn_pos.end);

      if (!TryReplaceNode(current,
                          handler->newNumber(left + right, NoDecimal, pos))) {
        return false;
      }

      (*current)->pn_next = (*next)->pn_next;
      next = &(*current)->pn_next;

      node->unsafeDecrementCount();
    } while (*next);
  }

  // If any operands remain, attempt string concatenation folding.
  do {
    // If no operands remain, we're done.
    if (!*next) {
      break;
    }

    // (number + string) is string concatenation *only* at the start of
    // the list: (x + 1 + "2" !== x + "12") when x is a number.
    if ((*current)->isKind(ParseNodeKind::NumberExpr) &&
        (*next)->isKind(ParseNodeKind::StringExpr)) {
      if (!FoldType(cx, handler, current, ParseNodeKind::StringExpr)) {
        return false;
      }
      next = &(*current)->pn_next;
    }

    // The first string forces all subsequent additions to be
    // string concatenations.
    do {
      if ((*current)->isKind(ParseNodeKind::StringExpr)) {
        break;
      }

      current = next;
      next = &(*current)->pn_next;
    } while (*next);

    // If there's nothing left to fold, we're done.
    if (!*next) {
      break;
    }

    RootedString combination(cx);
    RootedString tmp(cx);
    do {
      // Create a rope of the current string and all succeeding
      // constants that we can convert to strings, then atomize it
      // and replace them all with that fresh string.
      MOZ_ASSERT((*current)->isKind(ParseNodeKind::StringExpr));

      combination = (*current)->as<NameNode>().atom();

      do {
        // Try folding the next operand to a string.
        if (!FoldType(cx, handler, next, ParseNodeKind::StringExpr)) {
          return false;
        }

        // Stop glomming once folding doesn't produce a string.
        if (!(*next)->isKind(ParseNodeKind::StringExpr)) {
          break;
        }

        // Add this string to the combination and remove the node.
        tmp = (*next)->as<NameNode>().atom();
        combination = ConcatStrings<CanGC>(cx, combination, tmp);
        if (!combination) {
          return false;
        }

        (*current)->pn_next = (*next)->pn_next;
        next = &(*current)->pn_next;

        node->unsafeDecrementCount();
      } while (*next);

      // Replace |current|'s string with the entire combination.
      MOZ_ASSERT((*current)->isKind(ParseNodeKind::StringExpr));
      combination = AtomizeString(cx, combination);
      if (!combination) {
        return false;
      }
      (*current)->as<NameNode>().setAtom(&combination->asAtom());

      // If we're out of nodes, we're done.
      if (!*next) {
        break;
      }

      current = next;
      next = &(*current)->pn_next;

      // If we're out of nodes *after* the non-foldable-to-string
      // node, we're done.
      if (!*next) {
        break;
      }

      // Otherwise find the next node foldable to a string, and loop.
      do {
        current = next;

        if (!FoldType(cx, handler, current, ParseNodeKind::StringExpr)) {
          return false;
        }
        next = &(*current)->pn_next;
      } while (!(*current)->isKind(ParseNodeKind::StringExpr) && *next);
    } while (*next);
  } while (false);

  MOZ_ASSERT(!*next, "must have considered all nodes here");
  MOZ_ASSERT(!(*current)->pn_next, "current node must be the last node");

  node->unsafeReplaceTail(&(*current)->pn_next);

  if (node->count() == 1) {
    // We reduced the list to a constant.  Replace the ParseNodeKind::Add node
    // with that constant.
    ReplaceNode(nodePtr, *current);
  }

  return true;
}

class FoldVisitor : public RewritingParseNodeVisitor<FoldVisitor> {
  using Base = RewritingParseNodeVisitor;

  FullParseHandler* handler;

 public:
  explicit FoldVisitor(JSContext* cx, FullParseHandler* handler)
      : RewritingParseNodeVisitor(cx), handler(handler) {}

  bool visitElemExpr(ParseNode*& pn) {
    return Base::visitElemExpr(pn) && FoldElement(cx_, handler, &pn);
  }

  bool visitTypeOfExpr(ParseNode*& pn) {
    return Base::visitTypeOfExpr(pn) && FoldTypeOfExpr(cx_, handler, &pn);
  }

  bool visitDeleteExpr(ParseNode*& pn) {
    return Base::visitDeleteExpr(pn) && FoldDeleteExpr(cx_, handler, &pn);
  }

  bool visitDeleteElemExpr(ParseNode*& pn) {
    return Base::visitDeleteElemExpr(pn) &&
           FoldDeleteElement(cx_, handler, &pn);
  }

  bool visitNotExpr(ParseNode*& pn) {
    return Base::visitNotExpr(pn) && FoldNot(cx_, handler, &pn);
  }

  bool visitBitNotExpr(ParseNode*& pn) {
    return Base::visitBitNotExpr(pn) && FoldUnaryArithmetic(cx_, handler, &pn);
  }

  bool visitPosExpr(ParseNode*& pn) {
    return Base::visitPosExpr(pn) && FoldUnaryArithmetic(cx_, handler, &pn);
  }

  bool visitNegExpr(ParseNode*& pn) {
    return Base::visitNegExpr(pn) && FoldUnaryArithmetic(cx_, handler, &pn);
  }

  bool visitPowExpr(ParseNode*& pn) {
    return Base::visitPowExpr(pn) && FoldExponentiation(cx_, handler, &pn);
  }

  bool visitMulExpr(ParseNode*& pn) {
    return Base::visitMulExpr(pn) && FoldBinaryArithmetic(cx_, handler, &pn);
  }

  bool visitDivExpr(ParseNode*& pn) {
    return Base::visitDivExpr(pn) && FoldBinaryArithmetic(cx_, handler, &pn);
  }

  bool visitModExpr(ParseNode*& pn) {
    return Base::visitModExpr(pn) && FoldBinaryArithmetic(cx_, handler, &pn);
  }

  bool visitAddExpr(ParseNode*& pn) {
    return Base::visitAddExpr(pn) && FoldAdd(cx_, handler, &pn);
  }

  bool visitSubExpr(ParseNode*& pn) {
    return Base::visitSubExpr(pn) && FoldBinaryArithmetic(cx_, handler, &pn);
  }

  bool visitLshExpr(ParseNode*& pn) {
    return Base::visitLshExpr(pn) && FoldBinaryArithmetic(cx_, handler, &pn);
  }

  bool visitRshExpr(ParseNode*& pn) {
    return Base::visitRshExpr(pn) && FoldBinaryArithmetic(cx_, handler, &pn);
  }

  bool visitUrshExpr(ParseNode*& pn) {
    return Base::visitUrshExpr(pn) && FoldBinaryArithmetic(cx_, handler, &pn);
  }

  bool visitAndExpr(ParseNode*& pn) {
    // Note that this does result in the unfortunate fact that dead arms of this
    // node get constant folded. The same goes for visitOr.
    return Base::visitAndExpr(pn) && FoldAndOr(cx_, &pn);
  }

  bool visitOrExpr(ParseNode*& pn) {
    return Base::visitOrExpr(pn) && FoldAndOr(cx_, &pn);
  }

  bool visitConditionalExpr(ParseNode*& pn) {
    // Don't call base-class visitConditional because FoldConditional processes
    // pn's child nodes specially to save stack space.
    return FoldConditional(cx_, handler, &pn);
  }

 private:
  bool internalVisitCall(BinaryNode* node) {
    MOZ_ASSERT(node->isKind(ParseNodeKind::CallExpr) ||
               node->isKind(ParseNodeKind::SuperCallExpr) ||
               node->isKind(ParseNodeKind::NewExpr) ||
               node->isKind(ParseNodeKind::TaggedTemplateExpr));

    // Don't fold a parenthesized callable component in an invocation, as this
    // might cause a different |this| value to be used, changing semantics:
    //
    //   var prop = "global";
    //   var obj = { prop: "obj", f: function() { return this.prop; } };
    //   assertEq((true ? obj.f : null)(), "global");
    //   assertEq(obj.f(), "obj");
    //   assertEq((true ? obj.f : null)``, "global");
    //   assertEq(obj.f``, "obj");
    //
    // As an exception to this, we do allow folding the function in
    // `(function() { ... })()` (the module pattern), because that lets us
    // constant fold code inside that function.
    //
    // See bug 537673 and bug 1182373.
    ParseNode* callee = node->left();
    if (node->isKind(ParseNodeKind::NewExpr) || !callee->isInParens() ||
        callee->is<FunctionNode>()) {
      if (!visit(*node->unsafeLeftReference())) {
        return false;
      }
    }

    if (!visit(*node->unsafeRightReference())) {
      return false;
    }

    return true;
  }

 public:
  bool visitCallExpr(ParseNode*& pn) {
    return internalVisitCall(&pn->as<BinaryNode>());
  }

  bool visitNewExpr(ParseNode*& pn) {
    return internalVisitCall(&pn->as<BinaryNode>());
  }

  bool visitSuperCallExpr(ParseNode*& pn) {
    return internalVisitCall(&pn->as<BinaryNode>());
  }

  bool visitTaggedTemplateExpr(ParseNode*& pn) {
    return internalVisitCall(&pn->as<BinaryNode>());
  }

  bool visitIfStmt(ParseNode*& pn) {
    // Don't call base-class visitIf because FoldIf processes pn's child nodes
    // specially to save stack space.
    return FoldIf(cx_, handler, &pn);
  }

  bool visitForStmt(ParseNode*& pn) {
    if (!Base::visitForStmt(pn)) {
      return false;
    }

    ForNode& stmt = pn->as<ForNode>();
    if (stmt.left()->isKind(ParseNodeKind::ForHead)) {
      TernaryNode& head = stmt.left()->as<TernaryNode>();
      ParseNode** test = head.unsafeKid2Reference();
      if (*test) {
        if (!SimplifyCondition(cx_, handler, test)) {
          return false;
        }
        if ((*test)->isKind(ParseNodeKind::TrueExpr)) {
          *test = nullptr;
        }
      }
    }

    return true;
  }

  bool visitWhileStmt(ParseNode*& pn) {
    BinaryNode& node = pn->as<BinaryNode>();
    return Base::visitWhileStmt(pn) &&
           SimplifyCondition(cx_, handler, node.unsafeLeftReference());
  }

  bool visitDoWhileStmt(ParseNode*& pn) {
    BinaryNode& node = pn->as<BinaryNode>();
    return Base::visitDoWhileStmt(pn) &&
           SimplifyCondition(cx_, handler, node.unsafeRightReference());
  }

  bool visitFunction(ParseNode*& pn) {
    FunctionNode& node = pn->as<FunctionNode>();

    // Don't constant-fold inside "use asm" code, as this could create a parse
    // tree that doesn't type-check as asm.js.
    if (node.funbox()->useAsmOrInsideUseAsm()) {
      return true;
    }

    return Base::visitFunction(pn);
  }

  bool visitArrayExpr(ParseNode*& pn) {
    if (!Base::visitArrayExpr(pn)) {
      return false;
    }

    ListNode* list = &pn->as<ListNode>();
    // Empty arrays are non-constant, since we cannot easily determine their
    // type.
    if (list->hasNonConstInitializer() && list->count() > 0) {
      for (ParseNode* node : list->contents()) {
        if (!node->isConstant()) {
          return true;
        }
      }
      list->unsetHasNonConstInitializer();
    }
    return true;
  }

  bool visitObjectExpr(ParseNode*& pn) {
    if (!Base::visitObjectExpr(pn)) {
      return false;
    }

    ListNode* list = &pn->as<ListNode>();
    if (list->hasNonConstInitializer()) {
      for (ParseNode* node : list->contents()) {
        if (node->getKind() != ParseNodeKind::PropertyDefinition) {
          return true;
        }
        BinaryNode* binary = &node->as<BinaryNode>();
        if (binary->left()->isKind(ParseNodeKind::ComputedName)) {
          return true;
        }
        if (!binary->right()->isConstant()) {
          return true;
        }
      }
      list->unsetHasNonConstInitializer();
    }
    return true;
  }
};

bool Fold(JSContext* cx, FullParseHandler* handler, ParseNode** pnp) {
  FoldVisitor visitor(cx, handler);
  return visitor.visit(*pnp);
}

bool frontend::FoldConstants(JSContext* cx, ParseNode** pnp,
                             FullParseHandler* handler) {
  AutoTraceLog traceLog(TraceLoggerForCurrentThread(cx),
                        TraceLogger_BytecodeFoldConstants);

  return Fold(cx, handler, pnp);
}