DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
******************************************************************************
* Copyright (C) 1999-2013, International Business Machines Corporation and
* others. All Rights Reserved.
******************************************************************************
*   Date        Name        Description
*   10/22/99    alan        Creation.
**********************************************************************
*/

#include "uvector.h"
#include "cmemory.h"
#include "uarrsort.h"
#include "uelement.h"

U_NAMESPACE_BEGIN

#define DEFAULT_CAPACITY 8

/*
 * Constants for hinting whether a key is an integer
 * or a pointer.  If a hint bit is zero, then the associated
 * token is assumed to be an integer. This is needed for iSeries
 */
#define HINT_KEY_POINTER   (1)
#define HINT_KEY_INTEGER   (0)
 
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(UVector)

UVector::UVector(UErrorCode &status) :
    count(0),
    capacity(0),
    elements(0),
    deleter(0),
    comparer(0)
{
    _init(DEFAULT_CAPACITY, status);
}

UVector::UVector(int32_t initialCapacity, UErrorCode &status) :
    count(0),
    capacity(0),
    elements(0),
    deleter(0),
    comparer(0)
{
    _init(initialCapacity, status);
}

UVector::UVector(UObjectDeleter *d, UElementsAreEqual *c, UErrorCode &status) :
    count(0),
    capacity(0),
    elements(0),
    deleter(d),
    comparer(c)
{
    _init(DEFAULT_CAPACITY, status);
}

UVector::UVector(UObjectDeleter *d, UElementsAreEqual *c, int32_t initialCapacity, UErrorCode &status) :
    count(0),
    capacity(0),
    elements(0),
    deleter(d),
    comparer(c)
{
    _init(initialCapacity, status);
}

void UVector::_init(int32_t initialCapacity, UErrorCode &status) {
    if (U_FAILURE(status)) {
        return;
    }
    // Fix bogus initialCapacity values; avoid malloc(0) and integer overflow
    if ((initialCapacity < 1) || (initialCapacity > (int32_t)(INT32_MAX / sizeof(UElement)))) {
        initialCapacity = DEFAULT_CAPACITY;
    }
    elements = (UElement *)uprv_malloc(sizeof(UElement)*initialCapacity);
    if (elements == 0) {
        status = U_MEMORY_ALLOCATION_ERROR;
    } else {
        capacity = initialCapacity;
    }
}

UVector::~UVector() {
    removeAllElements();
    uprv_free(elements);
    elements = 0;
}

/**
 * Assign this object to another (make this a copy of 'other').
 * Use the 'assign' function to assign each element.
 */
void UVector::assign(const UVector& other, UElementAssigner *assign, UErrorCode &ec) {
    if (ensureCapacity(other.count, ec)) {
        setSize(other.count, ec);
        if (U_SUCCESS(ec)) {
            for (int32_t i=0; i<other.count; ++i) {
                if (elements[i].pointer != 0 && deleter != 0) {
                    (*deleter)(elements[i].pointer);
                }
                (*assign)(&elements[i], &other.elements[i]);
            }
        }
    }
}

// This only does something sensible if this object has a non-null comparer
UBool UVector::operator==(const UVector& other) {
    int32_t i;
    if (count != other.count) return FALSE;
    if (comparer != NULL) {
        // Compare using this object's comparer
        for (i=0; i<count; ++i) {
            if (!(*comparer)(elements[i], other.elements[i])) {
                return FALSE;
            }
        }
    }
    return TRUE;
}

void UVector::addElement(void* obj, UErrorCode &status) {
    if (ensureCapacity(count + 1, status)) {
        elements[count++].pointer = obj;
    }
}

void UVector::addElement(int32_t elem, UErrorCode &status) {
    if (ensureCapacity(count + 1, status)) {
        elements[count].pointer = NULL;     // Pointers may be bigger than ints.
        elements[count].integer = elem;
        count++;
    }
}

void UVector::setElementAt(void* obj, int32_t index) {
    if (0 <= index && index < count) {
        if (elements[index].pointer != 0 && deleter != 0) {
            (*deleter)(elements[index].pointer);
        }
        elements[index].pointer = obj;
    }
    /* else index out of range */
}

void UVector::setElementAt(int32_t elem, int32_t index) {
    if (0 <= index && index < count) {
        if (elements[index].pointer != 0 && deleter != 0) {
            // TODO:  this should be an error.  mixing up ints and pointers.
            (*deleter)(elements[index].pointer);
        }
        elements[index].pointer = NULL;
        elements[index].integer = elem;
    }
    /* else index out of range */
}

void UVector::insertElementAt(void* obj, int32_t index, UErrorCode &status) {
    // must have 0 <= index <= count
    if (0 <= index && index <= count && ensureCapacity(count + 1, status)) {
        for (int32_t i=count; i>index; --i) {
            elements[i] = elements[i-1];
        }
        elements[index].pointer = obj;
        ++count;
    }
    /* else index out of range */
}

void UVector::insertElementAt(int32_t elem, int32_t index, UErrorCode &status) {
    // must have 0 <= index <= count
    if (0 <= index && index <= count && ensureCapacity(count + 1, status)) {
        for (int32_t i=count; i>index; --i) {
            elements[i] = elements[i-1];
        }
        elements[index].pointer = NULL;
        elements[index].integer = elem;
        ++count;
    }
    /* else index out of range */
}

void* UVector::elementAt(int32_t index) const {
    return (0 <= index && index < count) ? elements[index].pointer : 0;
}

int32_t UVector::elementAti(int32_t index) const {
    return (0 <= index && index < count) ? elements[index].integer : 0;
}

UBool UVector::containsAll(const UVector& other) const {
    for (int32_t i=0; i<other.size(); ++i) {
        if (indexOf(other.elements[i]) < 0) {
            return FALSE;
        }
    }
    return TRUE;
}

UBool UVector::containsNone(const UVector& other) const {
    for (int32_t i=0; i<other.size(); ++i) {
        if (indexOf(other.elements[i]) >= 0) {
            return FALSE;
        }
    }
    return TRUE;
}

UBool UVector::removeAll(const UVector& other) {
    UBool changed = FALSE;
    for (int32_t i=0; i<other.size(); ++i) {
        int32_t j = indexOf(other.elements[i]);
        if (j >= 0) {
            removeElementAt(j);
            changed = TRUE;
        }
    }
    return changed;
}

UBool UVector::retainAll(const UVector& other) {
    UBool changed = FALSE;
    for (int32_t j=size()-1; j>=0; --j) {
        int32_t i = other.indexOf(elements[j]);
        if (i < 0) {
            removeElementAt(j);
            changed = TRUE;
        }
    }
    return changed;
}

void UVector::removeElementAt(int32_t index) {
    void* e = orphanElementAt(index);
    if (e != 0 && deleter != 0) {
        (*deleter)(e);
    }
}

UBool UVector::removeElement(void* obj) {
    int32_t i = indexOf(obj);
    if (i >= 0) {
        removeElementAt(i);
        return TRUE;
    }
    return FALSE;
}

void UVector::removeAllElements(void) {
    if (deleter != 0) {
        for (int32_t i=0; i<count; ++i) {
            if (elements[i].pointer != 0) {
                (*deleter)(elements[i].pointer);
            }
        }
    }
    count = 0;
}

UBool   UVector::equals(const UVector &other) const {
    int      i;

    if (this->count != other.count) {
        return FALSE;
    }
    if (comparer == 0) {
        for (i=0; i<count; i++) {
            if (elements[i].pointer != other.elements[i].pointer) {
                return FALSE;
            }
        }
    } else {
        UElement key;
        for (i=0; i<count; i++) {
            key.pointer = &other.elements[i];
            if (!(*comparer)(key, elements[i])) {
                return FALSE;
            }
        }
    }
    return TRUE;
}



int32_t UVector::indexOf(void* obj, int32_t startIndex) const {
    UElement key;
    key.pointer = obj;
    return indexOf(key, startIndex, HINT_KEY_POINTER);
}

int32_t UVector::indexOf(int32_t obj, int32_t startIndex) const {
    UElement key;
    key.integer = obj;
    return indexOf(key, startIndex, HINT_KEY_INTEGER);
}

// This only works if this object has a non-null comparer
int32_t UVector::indexOf(UElement key, int32_t startIndex, int8_t hint) const {
    int32_t i;
    if (comparer != 0) {
        for (i=startIndex; i<count; ++i) {
            if ((*comparer)(key, elements[i])) {
                return i;
            }
        }
    } else {
        for (i=startIndex; i<count; ++i) {
            /* Pointers are not always the same size as ints so to perform
             * a valid comparision we need to know whether we are being
             * provided an int or a pointer. */
            if (hint & HINT_KEY_POINTER) {
                if (key.pointer == elements[i].pointer) {
                    return i;
                }
            } else {
                if (key.integer == elements[i].integer) {
                    return i;
                }
            }
        }
    }
    return -1;
}

UBool UVector::ensureCapacity(int32_t minimumCapacity, UErrorCode &status) {
	if (minimumCapacity < 0) {
        status = U_ILLEGAL_ARGUMENT_ERROR;
        return FALSE;
	}
    if (capacity < minimumCapacity) {
        if (capacity > (INT32_MAX - 1) / 2) {        	// integer overflow check
        	status = U_ILLEGAL_ARGUMENT_ERROR;
        	return FALSE;
        }
        int32_t newCap = capacity * 2;
        if (newCap < minimumCapacity) {
            newCap = minimumCapacity;
        }
        if (newCap > (int32_t)(INT32_MAX / sizeof(UElement))) {	// integer overflow check
        	// We keep the original memory contents on bad minimumCapacity.
        	status = U_ILLEGAL_ARGUMENT_ERROR;
        	return FALSE;
        }
        UElement* newElems = (UElement *)uprv_realloc(elements, sizeof(UElement)*newCap);
        if (newElems == NULL) {
            // We keep the original contents on the memory failure on realloc or bad minimumCapacity.
            status = U_MEMORY_ALLOCATION_ERROR;
            return FALSE;
        }
        elements = newElems;
        capacity = newCap;
    }
    return TRUE;
}

/**
 * Change the size of this vector as follows: If newSize is smaller,
 * then truncate the array, possibly deleting held elements for i >=
 * newSize.  If newSize is larger, grow the array, filling in new
 * slots with NULL.
 */
void UVector::setSize(int32_t newSize, UErrorCode &status) {
    int32_t i;
    if (newSize < 0) {
        return;
    }
    if (newSize > count) {
        if (!ensureCapacity(newSize, status)) {
            return;
        }
        UElement empty;
        empty.pointer = NULL;
        empty.integer = 0;
        for (i=count; i<newSize; ++i) {
            elements[i] = empty;
        }
    } else {
        /* Most efficient to count down */
        for (i=count-1; i>=newSize; --i) {
            removeElementAt(i);
        }
    }
    count = newSize;
}

/**
 * Fill in the given array with all elements of this vector.
 */
void** UVector::toArray(void** result) const {
    void** a = result;
    for (int i=0; i<count; ++i) {
        *a++ = elements[i].pointer;
    }
    return result;
}

UObjectDeleter *UVector::setDeleter(UObjectDeleter *d) {
    UObjectDeleter *old = deleter;
    deleter = d;
    return old;
}

UElementsAreEqual *UVector::setComparer(UElementsAreEqual *d) {
    UElementsAreEqual *old = comparer;
    comparer = d;
    return old;
}

/**
 * Removes the element at the given index from this vector and
 * transfer ownership of it to the caller.  After this call, the
 * caller owns the result and must delete it and the vector entry
 * at 'index' is removed, shifting all subsequent entries back by
 * one index and shortening the size of the vector by one.  If the
 * index is out of range or if there is no item at the given index
 * then 0 is returned and the vector is unchanged.
 */
void* UVector::orphanElementAt(int32_t index) {
    void* e = 0;
    if (0 <= index && index < count) {
        e = elements[index].pointer;
        for (int32_t i=index; i<count-1; ++i) {
            elements[i] = elements[i+1];
        }
        --count;
    }
    /* else index out of range */
    return e;
}

/**
 * Insert the given object into this vector at its sorted position
 * as defined by 'compare'.  The current elements are assumed to
 * be sorted already.
 */
void UVector::sortedInsert(void* obj, UElementComparator *compare, UErrorCode& ec) {
    UElement e;
    e.pointer = obj;
    sortedInsert(e, compare, ec);
}

/**
 * Insert the given integer into this vector at its sorted position
 * as defined by 'compare'.  The current elements are assumed to
 * be sorted already.
 */
void UVector::sortedInsert(int32_t obj, UElementComparator *compare, UErrorCode& ec) {
    UElement e;
    e.integer = obj;
    sortedInsert(e, compare, ec);
}

// ASSUME elements[] IS CURRENTLY SORTED
void UVector::sortedInsert(UElement e, UElementComparator *compare, UErrorCode& ec) {
    // Perform a binary search for the location to insert tok at.  Tok
    // will be inserted between two elements a and b such that a <=
    // tok && tok < b, where there is a 'virtual' elements[-1] always
    // less than tok and a 'virtual' elements[count] always greater
    // than tok.
    int32_t min = 0, max = count;
    while (min != max) {
        int32_t probe = (min + max) / 2;
        int8_t c = (*compare)(elements[probe], e);
        if (c > 0) {
            max = probe;
        } else {
            // assert(c <= 0);
            min = probe + 1;
        }
    }
    if (ensureCapacity(count + 1, ec)) {
        for (int32_t i=count; i>min; --i) {
            elements[i] = elements[i-1];
        }
        elements[min] = e;
        ++count;
    }
}

/**
  *  Array sort comparator function.
  *  Used from UVector::sort()
  *  Conforms to function signature required for uprv_sortArray().
  *  This function is essentially just a wrapper, to make a
  *  UVector style comparator function usable with uprv_sortArray().
  *
  *  The context pointer to this function is a pointer back
  *  (with some extra indirection) to the user supplied comparator.
  *  
  */
static int32_t U_CALLCONV
sortComparator(const void *context, const void *left, const void *right) {
    UElementComparator *compare = *static_cast<UElementComparator * const *>(context);
    UElement e1 = *static_cast<const UElement *>(left);
    UElement e2 = *static_cast<const UElement *>(right);
    int32_t result = (*compare)(e1, e2);
    return result;
}


/**
  *  Array sort comparison function for use from UVector::sorti()
  *  Compares int32_t vector elements.
  */
static int32_t U_CALLCONV
sortiComparator(const void * /*context */, const void *left, const void *right) {
    const UElement *e1 = static_cast<const UElement *>(left);
    const UElement *e2 = static_cast<const UElement *>(right);
    int32_t result = e1->integer < e2->integer? -1 :
                     e1->integer == e2->integer? 0 : 1;
    return result;
}

/**
  * Sort the vector, assuming it constains ints.
  *     (A more general sort would take a comparison function, but it's
  *     not clear whether UVector's UElementComparator or
  *     UComparator from uprv_sortAray would be more appropriate.)
  */
void UVector::sorti(UErrorCode &ec) {
    if (U_SUCCESS(ec)) {
        uprv_sortArray(elements, count, sizeof(UElement),
                       sortiComparator, NULL,  FALSE, &ec);
    }
}


/**
 *  Sort with a user supplied comparator.
 *
 *    The comparator function handling is confusing because the function type
 *    for UVector  (as defined for sortedInsert()) is different from the signature
 *    required by uprv_sortArray().  This is handled by passing the
 *    the UVector sort function pointer via the context pointer to a
 *    sortArray() comparator function, which can then call back to
 *    the original user functtion.
 *
 *    An additional twist is that it's not safe to pass a pointer-to-function
 *    as  a (void *) data pointer, so instead we pass a (data) pointer to a
 *    pointer-to-function variable.
 */
void UVector::sort(UElementComparator *compare, UErrorCode &ec) {
    if (U_SUCCESS(ec)) {
        uprv_sortArray(elements, count, sizeof(UElement),
                       sortComparator, &compare, FALSE, &ec);
    }
}


/**
 *  Stable sort with a user supplied comparator of type UComparator.
 */
void UVector::sortWithUComparator(UComparator *compare, const void *context, UErrorCode &ec) {
    if (U_SUCCESS(ec)) {
        uprv_sortArray(elements, count, sizeof(UElement),
                       compare, context, TRUE, &ec);
    }
}

U_NAMESPACE_END