DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
******************************************************************************
*
*   Copyright (C) 2001-2014, International Business Machines
*   Corporation and others.  All Rights Reserved.
*
******************************************************************************
*   file name:  utrie2_builder.cpp
*   encoding:   UTF-8
*   tab size:   8 (not used)
*   indentation:4
*
*   created on: 2008sep26 (split off from utrie2.c)
*   created by: Markus W. Scherer
*
*   This is a common implementation of a Unicode trie.
*   It is a kind of compressed, serializable table of 16- or 32-bit values associated with
*   Unicode code points (0..0x10ffff).
*   This is the second common version of a Unicode trie (hence the name UTrie2).
*   See utrie2.h for a comparison.
*
*   This file contains only the builder code.
*   See utrie2.c for the runtime and enumeration code.
*/
// #define UTRIE2_DEBUG
#ifdef UTRIE2_DEBUG
#   include <stdio.h>
#endif
// #define UCPTRIE_DEBUG

#include "unicode/utypes.h"
#ifdef UCPTRIE_DEBUG
#include "unicode/ucptrie.h"
#include "unicode/umutablecptrie.h"
#include "ucptrie_impl.h"
#endif
#include "cmemory.h"
#include "utrie2.h"
#include "utrie2_impl.h"

#include "utrie.h"  // for utrie2_fromUTrie()

/* Implementation notes ----------------------------------------------------- */

/*
 * The UTRIE2_SHIFT_1, UTRIE2_SHIFT_2, UTRIE2_INDEX_SHIFT and other values
 * have been chosen to minimize trie sizes overall.
 * Most of the code is flexible enough to work with a range of values,
 * within certain limits.
 *
 * Exception: Support for separate values for lead surrogate code _units_
 * vs. code _points_ was added after the constants were fixed,
 * and has not been tested nor particularly designed for different constant values.
 * (Especially the utrie2_enum() code that jumps to the special LSCP index-2
 * part and back.)
 *
 * Requires UTRIE2_SHIFT_2<=6. Otherwise 0xc0 which is the top of the ASCII-linear data
 * including the bad-UTF-8-data block is not a multiple of UTRIE2_DATA_BLOCK_LENGTH
 * and map[block>>UTRIE2_SHIFT_2] (used in reference counting and compaction
 * remapping) stops working.
 *
 * Requires UTRIE2_SHIFT_1>=10 because utrie2_enumForLeadSurrogate()
 * assumes that a single index-2 block is used for 0x400 code points
 * corresponding to one lead surrogate.
 *
 * Requires UTRIE2_SHIFT_1<=16. Otherwise one single index-2 block contains
 * more than one Unicode plane, and the split of the index-2 table into a BMP
 * part and a supplementary part, with a gap in between, would not work.
 *
 * Requires UTRIE2_INDEX_SHIFT>=1 not because of the code but because
 * there is data with more than 64k distinct values,
 * for example for Unihan collation with a separate collation weight per
 * Han character.
 */

/* Building a trie ----------------------------------------------------------*/

enum {
    /** The null index-2 block, following the gap in the index-2 table. */
    UNEWTRIE2_INDEX_2_NULL_OFFSET=UNEWTRIE2_INDEX_GAP_OFFSET+UNEWTRIE2_INDEX_GAP_LENGTH,

    /** The start of allocated index-2 blocks. */
    UNEWTRIE2_INDEX_2_START_OFFSET=UNEWTRIE2_INDEX_2_NULL_OFFSET+UTRIE2_INDEX_2_BLOCK_LENGTH,

    /**
     * The null data block.
     * Length 64=0x40 even if UTRIE2_DATA_BLOCK_LENGTH is smaller,
     * to work with 6-bit trail bytes from 2-byte UTF-8.
     */
    UNEWTRIE2_DATA_NULL_OFFSET=UTRIE2_DATA_START_OFFSET,

    /** The start of allocated data blocks. */
    UNEWTRIE2_DATA_START_OFFSET=UNEWTRIE2_DATA_NULL_OFFSET+0x40,

    /**
     * The start of data blocks for U+0800 and above.
     * Below, compaction uses a block length of 64 for 2-byte UTF-8.
     * From here on, compaction uses UTRIE2_DATA_BLOCK_LENGTH.
     * Data values for 0x780 code points beyond ASCII.
     */
    UNEWTRIE2_DATA_0800_OFFSET=UNEWTRIE2_DATA_START_OFFSET+0x780
};

/* Start with allocation of 16k data entries. */
#define UNEWTRIE2_INITIAL_DATA_LENGTH ((int32_t)1<<14)

/* Grow about 8x each time. */
#define UNEWTRIE2_MEDIUM_DATA_LENGTH ((int32_t)1<<17)

static int32_t
allocIndex2Block(UNewTrie2 *trie);

U_CAPI UTrie2 * U_EXPORT2
utrie2_open(uint32_t initialValue, uint32_t errorValue, UErrorCode *pErrorCode) {
    UTrie2 *trie;
    UNewTrie2 *newTrie;
    uint32_t *data;
    int32_t i, j;

    if(U_FAILURE(*pErrorCode)) {
        return NULL;
    }

    trie=(UTrie2 *)uprv_malloc(sizeof(UTrie2));
    newTrie=(UNewTrie2 *)uprv_malloc(sizeof(UNewTrie2));
    data=(uint32_t *)uprv_malloc(UNEWTRIE2_INITIAL_DATA_LENGTH*4);
    if(trie==NULL || newTrie==NULL || data==NULL) {
        uprv_free(trie);
        uprv_free(newTrie);
        uprv_free(data);
        *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
        return 0;
    }

    uprv_memset(trie, 0, sizeof(UTrie2));
    trie->initialValue=initialValue;
    trie->errorValue=errorValue;
    trie->highStart=0x110000;
    trie->newTrie=newTrie;
#ifdef UTRIE2_DEBUG
    trie->name="open";
#endif

    newTrie->data=data;
#ifdef UCPTRIE_DEBUG
    newTrie->t3=umutablecptrie_open(initialValue, errorValue, pErrorCode);
#endif
    newTrie->dataCapacity=UNEWTRIE2_INITIAL_DATA_LENGTH;
    newTrie->initialValue=initialValue;
    newTrie->errorValue=errorValue;
    newTrie->highStart=0x110000;
    newTrie->firstFreeBlock=0;  /* no free block in the list */
    newTrie->isCompacted=FALSE;

    /*
     * preallocate and reset
     * - ASCII
     * - the bad-UTF-8-data block
     * - the null data block
     */
    for(i=0; i<0x80; ++i) {
        newTrie->data[i]=initialValue;
    }
    for(; i<0xc0; ++i) {
        newTrie->data[i]=errorValue;
    }
    for(i=UNEWTRIE2_DATA_NULL_OFFSET; i<UNEWTRIE2_DATA_START_OFFSET; ++i) {
        newTrie->data[i]=initialValue;
    }
    newTrie->dataNullOffset=UNEWTRIE2_DATA_NULL_OFFSET;
    newTrie->dataLength=UNEWTRIE2_DATA_START_OFFSET;

    /* set the index-2 indexes for the 2=0x80>>UTRIE2_SHIFT_2 ASCII data blocks */
    for(i=0, j=0; j<0x80; ++i, j+=UTRIE2_DATA_BLOCK_LENGTH) {
        newTrie->index2[i]=j;
        newTrie->map[i]=1;
    }
    /* reference counts for the bad-UTF-8-data block */
    for(; j<0xc0; ++i, j+=UTRIE2_DATA_BLOCK_LENGTH) {
        newTrie->map[i]=0;
    }
    /*
     * Reference counts for the null data block: all blocks except for the ASCII blocks.
     * Plus 1 so that we don't drop this block during compaction.
     * Plus as many as needed for lead surrogate code points.
     */
    /* i==newTrie->dataNullOffset */
    newTrie->map[i++]=
        (0x110000>>UTRIE2_SHIFT_2)-
        (0x80>>UTRIE2_SHIFT_2)+
        1+
        UTRIE2_LSCP_INDEX_2_LENGTH;
    j+=UTRIE2_DATA_BLOCK_LENGTH;
    for(; j<UNEWTRIE2_DATA_START_OFFSET; ++i, j+=UTRIE2_DATA_BLOCK_LENGTH) {
        newTrie->map[i]=0;
    }

    /*
     * set the remaining indexes in the BMP index-2 block
     * to the null data block
     */
    for(i=0x80>>UTRIE2_SHIFT_2; i<UTRIE2_INDEX_2_BMP_LENGTH; ++i) {
        newTrie->index2[i]=UNEWTRIE2_DATA_NULL_OFFSET;
    }

    /*
     * Fill the index gap with impossible values so that compaction
     * does not overlap other index-2 blocks with the gap.
     */
    for(i=0; i<UNEWTRIE2_INDEX_GAP_LENGTH; ++i) {
        newTrie->index2[UNEWTRIE2_INDEX_GAP_OFFSET+i]=-1;
    }

    /* set the indexes in the null index-2 block */
    for(i=0; i<UTRIE2_INDEX_2_BLOCK_LENGTH; ++i) {
        newTrie->index2[UNEWTRIE2_INDEX_2_NULL_OFFSET+i]=UNEWTRIE2_DATA_NULL_OFFSET;
    }
    newTrie->index2NullOffset=UNEWTRIE2_INDEX_2_NULL_OFFSET;
    newTrie->index2Length=UNEWTRIE2_INDEX_2_START_OFFSET;

    /* set the index-1 indexes for the linear index-2 block */
    for(i=0, j=0;
        i<UTRIE2_OMITTED_BMP_INDEX_1_LENGTH;
        ++i, j+=UTRIE2_INDEX_2_BLOCK_LENGTH
    ) {
        newTrie->index1[i]=j;
    }

    /* set the remaining index-1 indexes to the null index-2 block */
    for(; i<UNEWTRIE2_INDEX_1_LENGTH; ++i) {
        newTrie->index1[i]=UNEWTRIE2_INDEX_2_NULL_OFFSET;
    }

    /*
     * Preallocate and reset data for U+0080..U+07ff,
     * for 2-byte UTF-8 which will be compacted in 64-blocks
     * even if UTRIE2_DATA_BLOCK_LENGTH is smaller.
     */
    for(i=0x80; i<0x800; i+=UTRIE2_DATA_BLOCK_LENGTH) {
        utrie2_set32(trie, i, initialValue, pErrorCode);
    }

    return trie;
}

static UNewTrie2 *
cloneBuilder(const UNewTrie2 *other) {
    UNewTrie2 *trie;

    trie=(UNewTrie2 *)uprv_malloc(sizeof(UNewTrie2));
    if(trie==NULL) {
        return NULL;
    }

    trie->data=(uint32_t *)uprv_malloc(other->dataCapacity*4);
    if(trie->data==NULL) {
        uprv_free(trie);
        return NULL;
    }
#ifdef UCPTRIE_DEBUG
    if(other->t3==nullptr) {
        trie->t3=nullptr;
    } else {
        UErrorCode errorCode=U_ZERO_ERROR;
        trie->t3=umutablecptrie_clone(other->t3, &errorCode);
    }
#endif
    trie->dataCapacity=other->dataCapacity;

    /* clone data */
    uprv_memcpy(trie->index1, other->index1, sizeof(trie->index1));
    uprv_memcpy(trie->index2, other->index2, (size_t)other->index2Length*4);
    trie->index2NullOffset=other->index2NullOffset;
    trie->index2Length=other->index2Length;

    uprv_memcpy(trie->data, other->data, (size_t)other->dataLength*4);
    trie->dataNullOffset=other->dataNullOffset;
    trie->dataLength=other->dataLength;

    /* reference counters */
    if(other->isCompacted) {
        trie->firstFreeBlock=0;
    } else {
        uprv_memcpy(trie->map, other->map, ((size_t)other->dataLength>>UTRIE2_SHIFT_2)*4);
        trie->firstFreeBlock=other->firstFreeBlock;
    }

    trie->initialValue=other->initialValue;
    trie->errorValue=other->errorValue;
    trie->highStart=other->highStart;
    trie->isCompacted=other->isCompacted;

    return trie;
}

U_CAPI UTrie2 * U_EXPORT2
utrie2_clone(const UTrie2 *other, UErrorCode *pErrorCode) {
    UTrie2 *trie;

    if(U_FAILURE(*pErrorCode)) {
        return NULL;
    }
    if(other==NULL || (other->memory==NULL && other->newTrie==NULL)) {
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return NULL;
    }

    trie=(UTrie2 *)uprv_malloc(sizeof(UTrie2));
    if(trie==NULL) {
        *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
        return NULL;
    }
    uprv_memcpy(trie, other, sizeof(UTrie2));

    if(other->memory!=NULL) {
        trie->memory=uprv_malloc(other->length);
        if(trie->memory!=NULL) {
            trie->isMemoryOwned=TRUE;
            uprv_memcpy(trie->memory, other->memory, other->length);

            /* make the clone's pointers point to its own memory */
            trie->index=(uint16_t *)trie->memory+(other->index-(uint16_t *)other->memory);
            if(other->data16!=NULL) {
                trie->data16=(uint16_t *)trie->memory+(other->data16-(uint16_t *)other->memory);
            }
            if(other->data32!=NULL) {
                trie->data32=(uint32_t *)trie->memory+(other->data32-(uint32_t *)other->memory);
            }
        }
    } else /* other->newTrie!=NULL */ {
        trie->newTrie=cloneBuilder(other->newTrie);
    }

    if(trie->memory==NULL && trie->newTrie==NULL) {
        *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
        uprv_free(trie);
        trie=NULL;
    }
    return trie;
}

typedef struct NewTrieAndStatus {
    UTrie2 *trie;
    UErrorCode errorCode;
    UBool exclusiveLimit;  /* rather than inclusive range end */
} NewTrieAndStatus;

static UBool U_CALLCONV
copyEnumRange(const void *context, UChar32 start, UChar32 end, uint32_t value) {
    NewTrieAndStatus *nt=(NewTrieAndStatus *)context;
    if(value!=nt->trie->initialValue) {
        if(nt->exclusiveLimit) {
            --end;
        }
        if(start==end) {
            utrie2_set32(nt->trie, start, value, &nt->errorCode);
        } else {
            utrie2_setRange32(nt->trie, start, end, value, TRUE, &nt->errorCode);
        }
        return U_SUCCESS(nt->errorCode);
    } else {
        return TRUE;
    }
}

#ifdef UTRIE2_DEBUG
static long countInitial(const UTrie2 *trie) {
    uint32_t initialValue=trie->initialValue;
    int32_t length=trie->dataLength;
    long count=0;
    if(trie->data16!=nullptr) {
        for(int32_t i=0; i<length; ++i) {
            if(trie->data16[i]==initialValue) { ++count; }
        }
    } else {
        for(int32_t i=0; i<length; ++i) {
            if(trie->data32[i]==initialValue) { ++count; }
        }
    }
    return count;
}

static void
utrie_printLengths(const UTrie *trie) {
    long indexLength=trie->indexLength;
    long dataLength=(long)trie->dataLength;
    long totalLength=(long)sizeof(UTrieHeader)+indexLength*2+dataLength*(trie->data32!=NULL ? 4 : 2);
    printf("**UTrieLengths** index:%6ld  data:%6ld  serialized:%6ld\n",
           indexLength, dataLength, totalLength);
}

static void
utrie2_printLengths(const UTrie2 *trie, const char *which) {
    long indexLength=trie->indexLength;
    long dataLength=(long)trie->dataLength;
    long totalLength=(long)sizeof(UTrie2Header)+indexLength*2+dataLength*(trie->data32!=NULL ? 4 : 2);
    printf("**UTrie2Lengths(%s %s)** index:%6ld  data:%6ld  countInitial:%6ld  serialized:%6ld\n",
           which, trie->name, indexLength, dataLength, countInitial(trie), totalLength);
}
#endif

U_CAPI UTrie2 * U_EXPORT2
utrie2_cloneAsThawed(const UTrie2 *other, UErrorCode *pErrorCode) {
    NewTrieAndStatus context;
    UChar lead;

    if(U_FAILURE(*pErrorCode)) {
        return NULL;
    }
    if(other==NULL || (other->memory==NULL && other->newTrie==NULL)) {
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return NULL;
    }
    if(other->newTrie!=NULL && !other->newTrie->isCompacted) {
        return utrie2_clone(other, pErrorCode);  /* clone an unfrozen trie */
    }

    /* Clone the frozen trie by enumerating it and building a new one. */
    context.trie=utrie2_open(other->initialValue, other->errorValue, pErrorCode);
    if(U_FAILURE(*pErrorCode)) {
        return NULL;
    }
    context.exclusiveLimit=FALSE;
    context.errorCode=*pErrorCode;
    utrie2_enum(other, NULL, copyEnumRange, &context);
    *pErrorCode=context.errorCode;
    for(lead=0xd800; lead<0xdc00; ++lead) {
        uint32_t value;
        if(other->data32==NULL) {
            value=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(other, lead);
        } else {
            value=UTRIE2_GET32_FROM_U16_SINGLE_LEAD(other, lead);
        }
        if(value!=other->initialValue) {
            utrie2_set32ForLeadSurrogateCodeUnit(context.trie, lead, value, pErrorCode);
        }
    }
    if(U_FAILURE(*pErrorCode)) {
        utrie2_close(context.trie);
        context.trie=NULL;
    }
    return context.trie;
}

/* Almost the same as utrie2_cloneAsThawed() but copies a UTrie and freezes the clone. */
U_CAPI UTrie2 * U_EXPORT2
utrie2_fromUTrie(const UTrie *trie1, uint32_t errorValue, UErrorCode *pErrorCode) {
    NewTrieAndStatus context;
    UChar lead;

    if(U_FAILURE(*pErrorCode)) {
        return NULL;
    }
    if(trie1==NULL) {
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return NULL;
    }
    context.trie=utrie2_open(trie1->initialValue, errorValue, pErrorCode);
    if(U_FAILURE(*pErrorCode)) {
        return NULL;
    }
    context.exclusiveLimit=TRUE;
    context.errorCode=*pErrorCode;
    utrie_enum(trie1, NULL, copyEnumRange, &context);
    *pErrorCode=context.errorCode;
    for(lead=0xd800; lead<0xdc00; ++lead) {
        uint32_t value;
        if(trie1->data32==NULL) {
            value=UTRIE_GET16_FROM_LEAD(trie1, lead);
        } else {
            value=UTRIE_GET32_FROM_LEAD(trie1, lead);
        }
        if(value!=trie1->initialValue) {
            utrie2_set32ForLeadSurrogateCodeUnit(context.trie, lead, value, pErrorCode);
        }
    }
    if(U_SUCCESS(*pErrorCode)) {
        utrie2_freeze(context.trie,
                      trie1->data32!=NULL ? UTRIE2_32_VALUE_BITS : UTRIE2_16_VALUE_BITS,
                      pErrorCode);
    }
#ifdef UTRIE2_DEBUG
    if(U_SUCCESS(*pErrorCode)) {
        utrie_printLengths(trie1);
        utrie2_printLengths(context.trie, "fromUTrie");
    }
#endif
    if(U_FAILURE(*pErrorCode)) {
        utrie2_close(context.trie);
        context.trie=NULL;
    }
    return context.trie;
}

static inline UBool
isInNullBlock(UNewTrie2 *trie, UChar32 c, UBool forLSCP) {
    int32_t i2, block;

    if(U_IS_LEAD(c) && forLSCP) {
        i2=(UTRIE2_LSCP_INDEX_2_OFFSET-(0xd800>>UTRIE2_SHIFT_2))+
            (c>>UTRIE2_SHIFT_2);
    } else {
        i2=trie->index1[c>>UTRIE2_SHIFT_1]+
            ((c>>UTRIE2_SHIFT_2)&UTRIE2_INDEX_2_MASK);
    }
    block=trie->index2[i2];
    return (UBool)(block==trie->dataNullOffset);
}

static int32_t
allocIndex2Block(UNewTrie2 *trie) {
    int32_t newBlock, newTop;

    newBlock=trie->index2Length;
    newTop=newBlock+UTRIE2_INDEX_2_BLOCK_LENGTH;
    if(newTop>UPRV_LENGTHOF(trie->index2)) {
        /*
         * Should never occur.
         * Either UTRIE2_MAX_BUILD_TIME_INDEX_LENGTH is incorrect,
         * or the code writes more values than should be possible.
         */
        return -1;
    }
    trie->index2Length=newTop;
    uprv_memcpy(trie->index2+newBlock, trie->index2+trie->index2NullOffset, UTRIE2_INDEX_2_BLOCK_LENGTH*4);
    return newBlock;
}

static int32_t
getIndex2Block(UNewTrie2 *trie, UChar32 c, UBool forLSCP) {
    int32_t i1, i2;

    if(U_IS_LEAD(c) && forLSCP) {
        return UTRIE2_LSCP_INDEX_2_OFFSET;
    }

    i1=c>>UTRIE2_SHIFT_1;
    i2=trie->index1[i1];
    if(i2==trie->index2NullOffset) {
        i2=allocIndex2Block(trie);
        if(i2<0) {
            return -1;  /* program error */
        }
        trie->index1[i1]=i2;
    }
    return i2;
}

static int32_t
allocDataBlock(UNewTrie2 *trie, int32_t copyBlock) {
    int32_t newBlock, newTop;

    if(trie->firstFreeBlock!=0) {
        /* get the first free block */
        newBlock=trie->firstFreeBlock;
        trie->firstFreeBlock=-trie->map[newBlock>>UTRIE2_SHIFT_2];
    } else {
        /* get a new block from the high end */
        newBlock=trie->dataLength;
        newTop=newBlock+UTRIE2_DATA_BLOCK_LENGTH;
        if(newTop>trie->dataCapacity) {
            /* out of memory in the data array */
            int32_t capacity;
            uint32_t *data;

            if(trie->dataCapacity<UNEWTRIE2_MEDIUM_DATA_LENGTH) {
                capacity=UNEWTRIE2_MEDIUM_DATA_LENGTH;
            } else if(trie->dataCapacity<UNEWTRIE2_MAX_DATA_LENGTH) {
                capacity=UNEWTRIE2_MAX_DATA_LENGTH;
            } else {
                /*
                 * Should never occur.
                 * Either UNEWTRIE2_MAX_DATA_LENGTH is incorrect,
                 * or the code writes more values than should be possible.
                 */
                return -1;
            }
            data=(uint32_t *)uprv_malloc(capacity*4);
            if(data==NULL) {
                return -1;
            }
            uprv_memcpy(data, trie->data, (size_t)trie->dataLength*4);
            uprv_free(trie->data);
            trie->data=data;
            trie->dataCapacity=capacity;
        }
        trie->dataLength=newTop;
    }
    uprv_memcpy(trie->data+newBlock, trie->data+copyBlock, UTRIE2_DATA_BLOCK_LENGTH*4);
    trie->map[newBlock>>UTRIE2_SHIFT_2]=0;
    return newBlock;
}

/* call when the block's reference counter reaches 0 */
static void
releaseDataBlock(UNewTrie2 *trie, int32_t block) {
    /* put this block at the front of the free-block chain */
    trie->map[block>>UTRIE2_SHIFT_2]=-trie->firstFreeBlock;
    trie->firstFreeBlock=block;
}

static inline UBool
isWritableBlock(UNewTrie2 *trie, int32_t block) {
    return (UBool)(block!=trie->dataNullOffset && 1==trie->map[block>>UTRIE2_SHIFT_2]);
}

static inline void
setIndex2Entry(UNewTrie2 *trie, int32_t i2, int32_t block) {
    int32_t oldBlock;
    ++trie->map[block>>UTRIE2_SHIFT_2];  /* increment first, in case block==oldBlock! */
    oldBlock=trie->index2[i2];
    if(0 == --trie->map[oldBlock>>UTRIE2_SHIFT_2]) {
        releaseDataBlock(trie, oldBlock);
    }
    trie->index2[i2]=block;
}

/**
 * No error checking for illegal arguments.
 *
 * @return -1 if no new data block available (out of memory in data array)
 * @internal
 */
static int32_t
getDataBlock(UNewTrie2 *trie, UChar32 c, UBool forLSCP) {
    int32_t i2, oldBlock, newBlock;

    i2=getIndex2Block(trie, c, forLSCP);
    if(i2<0) {
        return -1;  /* program error */
    }

    i2+=(c>>UTRIE2_SHIFT_2)&UTRIE2_INDEX_2_MASK;
    oldBlock=trie->index2[i2];
    if(isWritableBlock(trie, oldBlock)) {
        return oldBlock;
    }

    /* allocate a new data block */
    newBlock=allocDataBlock(trie, oldBlock);
    if(newBlock<0) {
        /* out of memory in the data array */
        return -1;
    }
    setIndex2Entry(trie, i2, newBlock);
    return newBlock;
}

/**
 * @return TRUE if the value was successfully set
 */
static void
set32(UNewTrie2 *trie,
      UChar32 c, UBool forLSCP, uint32_t value,
      UErrorCode *pErrorCode) {
    int32_t block;

    if(trie==NULL || trie->isCompacted) {
        *pErrorCode=U_NO_WRITE_PERMISSION;
        return;
    }
#ifdef UCPTRIE_DEBUG
    umutablecptrie_set(trie->t3, c, value, pErrorCode);
#endif

    block=getDataBlock(trie, c, forLSCP);
    if(block<0) {
        *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
        return;
    }

    trie->data[block+(c&UTRIE2_DATA_MASK)]=value;
}

U_CAPI void U_EXPORT2
utrie2_set32(UTrie2 *trie, UChar32 c, uint32_t value, UErrorCode *pErrorCode) {
    if(U_FAILURE(*pErrorCode)) {
        return;
    }
    if((uint32_t)c>0x10ffff) {
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return;
    }
    set32(trie->newTrie, c, TRUE, value, pErrorCode);
}

U_CAPI void U_EXPORT2
utrie2_set32ForLeadSurrogateCodeUnit(UTrie2 *trie,
                                     UChar32 c, uint32_t value,
                                     UErrorCode *pErrorCode) {
    if(U_FAILURE(*pErrorCode)) {
        return;
    }
    if(!U_IS_LEAD(c)) {
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return;
    }
    set32(trie->newTrie, c, FALSE, value, pErrorCode);
}

static void
writeBlock(uint32_t *block, uint32_t value) {
    uint32_t *limit=block+UTRIE2_DATA_BLOCK_LENGTH;
    while(block<limit) {
        *block++=value;
    }
}

/**
 * initialValue is ignored if overwrite=TRUE
 * @internal
 */
static void
fillBlock(uint32_t *block, UChar32 start, UChar32 limit,
          uint32_t value, uint32_t initialValue, UBool overwrite) {
    uint32_t *pLimit;

    pLimit=block+limit;
    block+=start;
    if(overwrite) {
        while(block<pLimit) {
            *block++=value;
        }
    } else {
        while(block<pLimit) {
            if(*block==initialValue) {
                *block=value;
            }
            ++block;
        }
    }
}

U_CAPI void U_EXPORT2
utrie2_setRange32(UTrie2 *trie,
                  UChar32 start, UChar32 end,
                  uint32_t value, UBool overwrite,
                  UErrorCode *pErrorCode) {
    /*
     * repeat value in [start..end]
     * mark index values for repeat-data blocks by setting bit 31 of the index values
     * fill around existing values if any, if(overwrite)
     */
    UNewTrie2 *newTrie;
    int32_t block, rest, repeatBlock;
    UChar32 limit;

    if(U_FAILURE(*pErrorCode)) {
        return;
    }
    if((uint32_t)start>0x10ffff || (uint32_t)end>0x10ffff || start>end) {
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return;
    }
    newTrie=trie->newTrie;
    if(newTrie==NULL || newTrie->isCompacted) {
        *pErrorCode=U_NO_WRITE_PERMISSION;
        return;
    }
#ifdef UCPTRIE_DEBUG
    umutablecptrie_setRange(newTrie->t3, start, end, value, pErrorCode);
#endif
    if(!overwrite && value==newTrie->initialValue) {
        return; /* nothing to do */
    }

    limit=end+1;
    if(start&UTRIE2_DATA_MASK) {
        UChar32 nextStart;

        /* set partial block at [start..following block boundary[ */
        block=getDataBlock(newTrie, start, TRUE);
        if(block<0) {
            *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
            return;
        }

        nextStart=(start+UTRIE2_DATA_MASK)&~UTRIE2_DATA_MASK;
        if(nextStart<=limit) {
            fillBlock(newTrie->data+block, start&UTRIE2_DATA_MASK, UTRIE2_DATA_BLOCK_LENGTH,
                      value, newTrie->initialValue, overwrite);
            start=nextStart;
        } else {
            fillBlock(newTrie->data+block, start&UTRIE2_DATA_MASK, limit&UTRIE2_DATA_MASK,
                      value, newTrie->initialValue, overwrite);
            return;
        }
    }

    /* number of positions in the last, partial block */
    rest=limit&UTRIE2_DATA_MASK;

    /* round down limit to a block boundary */
    limit&=~UTRIE2_DATA_MASK;

    /* iterate over all-value blocks */
    if(value==newTrie->initialValue) {
        repeatBlock=newTrie->dataNullOffset;
    } else {
        repeatBlock=-1;
    }

    while(start<limit) {
        int32_t i2;
        UBool setRepeatBlock=FALSE;

        if(value==newTrie->initialValue && isInNullBlock(newTrie, start, TRUE)) {
            start+=UTRIE2_DATA_BLOCK_LENGTH; /* nothing to do */
            continue;
        }

        /* get index value */
        i2=getIndex2Block(newTrie, start, TRUE);
        if(i2<0) {
            *pErrorCode=U_INTERNAL_PROGRAM_ERROR;
            return;
        }
        i2+=(start>>UTRIE2_SHIFT_2)&UTRIE2_INDEX_2_MASK;
        block=newTrie->index2[i2];
        if(isWritableBlock(newTrie, block)) {
            /* already allocated */
            if(overwrite && block>=UNEWTRIE2_DATA_0800_OFFSET) {
                /*
                 * We overwrite all values, and it's not a
                 * protected (ASCII-linear or 2-byte UTF-8) block:
                 * replace with the repeatBlock.
                 */
                setRepeatBlock=TRUE;
            } else {
                /* !overwrite, or protected block: just write the values into this block */
                fillBlock(newTrie->data+block,
                          0, UTRIE2_DATA_BLOCK_LENGTH,
                          value, newTrie->initialValue, overwrite);
            }
        } else if(newTrie->data[block]!=value && (overwrite || block==newTrie->dataNullOffset)) {
            /*
             * Set the repeatBlock instead of the null block or previous repeat block:
             *
             * If !isWritableBlock() then all entries in the block have the same value
             * because it's the null block or a range block (the repeatBlock from a previous
             * call to utrie2_setRange32()).
             * No other blocks are used multiple times before compacting.
             *
             * The null block is the only non-writable block with the initialValue because
             * of the repeatBlock initialization above. (If value==initialValue, then
             * the repeatBlock will be the null data block.)
             *
             * We set our repeatBlock if the desired value differs from the block's value,
             * and if we overwrite any data or if the data is all initial values
             * (which is the same as the block being the null block, see above).
             */
            setRepeatBlock=TRUE;
        }
        if(setRepeatBlock) {
            if(repeatBlock>=0) {
                setIndex2Entry(newTrie, i2, repeatBlock);
            } else {
                /* create and set and fill the repeatBlock */
                repeatBlock=getDataBlock(newTrie, start, TRUE);
                if(repeatBlock<0) {
                    *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
                    return;
                }
                writeBlock(newTrie->data+repeatBlock, value);
            }
        }

        start+=UTRIE2_DATA_BLOCK_LENGTH;
    }

    if(rest>0) {
        /* set partial block at [last block boundary..limit[ */
        block=getDataBlock(newTrie, start, TRUE);
        if(block<0) {
            *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
            return;
        }

        fillBlock(newTrie->data+block, 0, rest, value, newTrie->initialValue, overwrite);
    }

    return;
}

/* compaction --------------------------------------------------------------- */

static inline UBool
equal_int32(const int32_t *s, const int32_t *t, int32_t length) {
    while(length>0 && *s==*t) {
        ++s;
        ++t;
        --length;
    }
    return (UBool)(length==0);
}

static inline UBool
equal_uint32(const uint32_t *s, const uint32_t *t, int32_t length) {
    while(length>0 && *s==*t) {
        ++s;
        ++t;
        --length;
    }
    return (UBool)(length==0);
}

static int32_t
findSameIndex2Block(const int32_t *idx, int32_t index2Length, int32_t otherBlock) {
    int32_t block;

    /* ensure that we do not even partially get past index2Length */
    index2Length-=UTRIE2_INDEX_2_BLOCK_LENGTH;

    for(block=0; block<=index2Length; ++block) {
        if(equal_int32(idx+block, idx+otherBlock, UTRIE2_INDEX_2_BLOCK_LENGTH)) {
            return block;
        }
    }
    return -1;
}

static int32_t
findSameDataBlock(const uint32_t *data, int32_t dataLength, int32_t otherBlock, int32_t blockLength) {
    int32_t block;

    /* ensure that we do not even partially get past dataLength */
    dataLength-=blockLength;

    for(block=0; block<=dataLength; block+=UTRIE2_DATA_GRANULARITY) {
        if(equal_uint32(data+block, data+otherBlock, blockLength)) {
            return block;
        }
    }
    return -1;
}

/*
 * Find the start of the last range in the trie by enumerating backward.
 * Indexes for supplementary code points higher than this will be omitted.
 */
static UChar32
findHighStart(UNewTrie2 *trie, uint32_t highValue) {
    const uint32_t *data32;

    uint32_t value, initialValue;
    UChar32 c, prev;
    int32_t i1, i2, j, i2Block, prevI2Block, index2NullOffset, block, prevBlock, nullBlock;

    data32=trie->data;
    initialValue=trie->initialValue;

    index2NullOffset=trie->index2NullOffset;
    nullBlock=trie->dataNullOffset;

    /* set variables for previous range */
    if(highValue==initialValue) {
        prevI2Block=index2NullOffset;
        prevBlock=nullBlock;
    } else {
        prevI2Block=-1;
        prevBlock=-1;
    }
    prev=0x110000;

    /* enumerate index-2 blocks */
    i1=UNEWTRIE2_INDEX_1_LENGTH;
    c=prev;
    while(c>0) {
        i2Block=trie->index1[--i1];
        if(i2Block==prevI2Block) {
            /* the index-2 block is the same as the previous one, and filled with highValue */
            c-=UTRIE2_CP_PER_INDEX_1_ENTRY;
            continue;
        }
        prevI2Block=i2Block;
        if(i2Block==index2NullOffset) {
            /* this is the null index-2 block */
            if(highValue!=initialValue) {
                return c;
            }
            c-=UTRIE2_CP_PER_INDEX_1_ENTRY;
        } else {
            /* enumerate data blocks for one index-2 block */
            for(i2=UTRIE2_INDEX_2_BLOCK_LENGTH; i2>0;) {
                block=trie->index2[i2Block+ --i2];
                if(block==prevBlock) {
                    /* the block is the same as the previous one, and filled with highValue */
                    c-=UTRIE2_DATA_BLOCK_LENGTH;
                    continue;
                }
                prevBlock=block;
                if(block==nullBlock) {
                    /* this is the null data block */
                    if(highValue!=initialValue) {
                        return c;
                    }
                    c-=UTRIE2_DATA_BLOCK_LENGTH;
                } else {
                    for(j=UTRIE2_DATA_BLOCK_LENGTH; j>0;) {
                        value=data32[block+ --j];
                        if(value!=highValue) {
                            return c;
                        }
                        --c;
                    }
                }
            }
        }
    }

    /* deliver last range */
    return 0;
}

/*
 * Compact a build-time trie.
 *
 * The compaction
 * - removes blocks that are identical with earlier ones
 * - overlaps adjacent blocks as much as possible (if overlap==TRUE)
 * - moves blocks in steps of the data granularity
 * - moves and overlaps blocks that overlap with multiple values in the overlap region
 *
 * It does not
 * - try to move and overlap blocks that are not already adjacent
 */
static void
compactData(UNewTrie2 *trie) {
#ifdef UTRIE2_DEBUG
    int32_t countSame=0, sumOverlaps=0;
#endif

    int32_t start, newStart, movedStart;
    int32_t blockLength, overlap;
    int32_t i, mapIndex, blockCount;

    /* do not compact linear-ASCII data */
    newStart=UTRIE2_DATA_START_OFFSET;
    for(start=0, i=0; start<newStart; start+=UTRIE2_DATA_BLOCK_LENGTH, ++i) {
        trie->map[i]=start;
    }

    /*
     * Start with a block length of 64 for 2-byte UTF-8,
     * then switch to UTRIE2_DATA_BLOCK_LENGTH.
     */
    blockLength=64;
    blockCount=blockLength>>UTRIE2_SHIFT_2;
    for(start=newStart; start<trie->dataLength;) {
        /*
         * start: index of first entry of current block
         * newStart: index where the current block is to be moved
         *           (right after current end of already-compacted data)
         */
        if(start==UNEWTRIE2_DATA_0800_OFFSET) {
            blockLength=UTRIE2_DATA_BLOCK_LENGTH;
            blockCount=1;
        }

        /* skip blocks that are not used */
        if(trie->map[start>>UTRIE2_SHIFT_2]<=0) {
            /* advance start to the next block */
            start+=blockLength;

            /* leave newStart with the previous block! */
            continue;
        }

        /* search for an identical block */
        if( (movedStart=findSameDataBlock(trie->data, newStart, start, blockLength))
             >=0
        ) {
#ifdef UTRIE2_DEBUG
            ++countSame;
#endif
            /* found an identical block, set the other block's index value for the current block */
            for(i=blockCount, mapIndex=start>>UTRIE2_SHIFT_2; i>0; --i) {
                trie->map[mapIndex++]=movedStart;
                movedStart+=UTRIE2_DATA_BLOCK_LENGTH;
            }

            /* advance start to the next block */
            start+=blockLength;

            /* leave newStart with the previous block! */
            continue;
        }

        /* see if the beginning of this block can be overlapped with the end of the previous block */
        /* look for maximum overlap (modulo granularity) with the previous, adjacent block */
        for(overlap=blockLength-UTRIE2_DATA_GRANULARITY;
            overlap>0 && !equal_uint32(trie->data+(newStart-overlap), trie->data+start, overlap);
            overlap-=UTRIE2_DATA_GRANULARITY) {}

#ifdef UTRIE2_DEBUG
            sumOverlaps+=overlap;
#endif
        if(overlap>0 || newStart<start) {
            /* some overlap, or just move the whole block */
            movedStart=newStart-overlap;
            for(i=blockCount, mapIndex=start>>UTRIE2_SHIFT_2; i>0; --i) {
                trie->map[mapIndex++]=movedStart;
                movedStart+=UTRIE2_DATA_BLOCK_LENGTH;
            }

            /* move the non-overlapping indexes to their new positions */
            start+=overlap;
            for(i=blockLength-overlap; i>0; --i) {
                trie->data[newStart++]=trie->data[start++];
            }
        } else /* no overlap && newStart==start */ {
            for(i=blockCount, mapIndex=start>>UTRIE2_SHIFT_2; i>0; --i) {
                trie->map[mapIndex++]=start;
                start+=UTRIE2_DATA_BLOCK_LENGTH;
            }
            newStart=start;
        }
    }

    /* now adjust the index-2 table */
    for(i=0; i<trie->index2Length; ++i) {
        if(i==UNEWTRIE2_INDEX_GAP_OFFSET) {
            /* Gap indexes are invalid (-1). Skip over the gap. */
            i+=UNEWTRIE2_INDEX_GAP_LENGTH;
        }
        trie->index2[i]=trie->map[trie->index2[i]>>UTRIE2_SHIFT_2];
    }
    trie->dataNullOffset=trie->map[trie->dataNullOffset>>UTRIE2_SHIFT_2];

    /* ensure dataLength alignment */
    while((newStart&(UTRIE2_DATA_GRANULARITY-1))!=0) {
        trie->data[newStart++]=trie->initialValue;
    }

#ifdef UTRIE2_DEBUG
    /* we saved some space */
    printf("compacting UTrie2: count of 32-bit data words %lu->%lu  countSame=%ld  sumOverlaps=%ld\n",
            (long)trie->dataLength, (long)newStart, (long)countSame, (long)sumOverlaps);
#endif

    trie->dataLength=newStart;
}

static void
compactIndex2(UNewTrie2 *trie) {
    int32_t i, start, newStart, movedStart, overlap;

    /* do not compact linear-BMP index-2 blocks */
    newStart=UTRIE2_INDEX_2_BMP_LENGTH;
    for(start=0, i=0; start<newStart; start+=UTRIE2_INDEX_2_BLOCK_LENGTH, ++i) {
        trie->map[i]=start;
    }

    /* Reduce the index table gap to what will be needed at runtime. */
    newStart+=UTRIE2_UTF8_2B_INDEX_2_LENGTH+((trie->highStart-0x10000)>>UTRIE2_SHIFT_1);

    for(start=UNEWTRIE2_INDEX_2_NULL_OFFSET; start<trie->index2Length;) {
        /*
         * start: index of first entry of current block
         * newStart: index where the current block is to be moved
         *           (right after current end of already-compacted data)
         */

        /* search for an identical block */
        if( (movedStart=findSameIndex2Block(trie->index2, newStart, start))
             >=0
        ) {
            /* found an identical block, set the other block's index value for the current block */
            trie->map[start>>UTRIE2_SHIFT_1_2]=movedStart;

            /* advance start to the next block */
            start+=UTRIE2_INDEX_2_BLOCK_LENGTH;

            /* leave newStart with the previous block! */
            continue;
        }

        /* see if the beginning of this block can be overlapped with the end of the previous block */
        /* look for maximum overlap with the previous, adjacent block */
        for(overlap=UTRIE2_INDEX_2_BLOCK_LENGTH-1;
            overlap>0 && !equal_int32(trie->index2+(newStart-overlap), trie->index2+start, overlap);
            --overlap) {}

        if(overlap>0 || newStart<start) {
            /* some overlap, or just move the whole block */
            trie->map[start>>UTRIE2_SHIFT_1_2]=newStart-overlap;

            /* move the non-overlapping indexes to their new positions */
            start+=overlap;
            for(i=UTRIE2_INDEX_2_BLOCK_LENGTH-overlap; i>0; --i) {
                trie->index2[newStart++]=trie->index2[start++];
            }
        } else /* no overlap && newStart==start */ {
            trie->map[start>>UTRIE2_SHIFT_1_2]=start;
            start+=UTRIE2_INDEX_2_BLOCK_LENGTH;
            newStart=start;
        }
    }

    /* now adjust the index-1 table */
    for(i=0; i<UNEWTRIE2_INDEX_1_LENGTH; ++i) {
        trie->index1[i]=trie->map[trie->index1[i]>>UTRIE2_SHIFT_1_2];
    }
    trie->index2NullOffset=trie->map[trie->index2NullOffset>>UTRIE2_SHIFT_1_2];

    /*
     * Ensure data table alignment:
     * Needs to be granularity-aligned for 16-bit trie
     * (so that dataMove will be down-shiftable),
     * and 2-aligned for uint32_t data.
     */
    while((newStart&((UTRIE2_DATA_GRANULARITY-1)|1))!=0) {
        /* Arbitrary value: 0x3fffc not possible for real data. */
        trie->index2[newStart++]=(int32_t)0xffff<<UTRIE2_INDEX_SHIFT;
    }

#ifdef UTRIE2_DEBUG
    /* we saved some space */
    printf("compacting UTrie2: count of 16-bit index words %lu->%lu\n",
            (long)trie->index2Length, (long)newStart);
#endif

    trie->index2Length=newStart;
}

static void
compactTrie(UTrie2 *trie, UErrorCode *pErrorCode) {
    UNewTrie2 *newTrie;
    UChar32 highStart, suppHighStart;
    uint32_t highValue;

    newTrie=trie->newTrie;

    /* find highStart and round it up */
    highValue=utrie2_get32(trie, 0x10ffff);
    highStart=findHighStart(newTrie, highValue);
    highStart=(highStart+(UTRIE2_CP_PER_INDEX_1_ENTRY-1))&~(UTRIE2_CP_PER_INDEX_1_ENTRY-1);
    if(highStart==0x110000) {
        highValue=trie->errorValue;
    }

    /*
     * Set trie->highStart only after utrie2_get32(trie, highStart).
     * Otherwise utrie2_get32(trie, highStart) would try to read the highValue.
     */
    trie->highStart=newTrie->highStart=highStart;

#ifdef UTRIE2_DEBUG
    printf("UTrie2: highStart U+%06lx  highValue 0x%lx  initialValue 0x%lx\n",
            (long)highStart, (long)highValue, (long)trie->initialValue);
#endif

    if(highStart<0x110000) {
        /* Blank out [highStart..10ffff] to release associated data blocks. */
        suppHighStart= highStart<=0x10000 ? 0x10000 : highStart;
        utrie2_setRange32(trie, suppHighStart, 0x10ffff, trie->initialValue, TRUE, pErrorCode);
        if(U_FAILURE(*pErrorCode)) {
            return;
        }
    }

    compactData(newTrie);
    if(highStart>0x10000) {
        compactIndex2(newTrie);
#ifdef UTRIE2_DEBUG
    } else {
        printf("UTrie2: highStart U+%04lx  count of 16-bit index words %lu->%lu\n",
                (long)highStart, (long)trie->newTrie->index2Length, (long)UTRIE2_INDEX_1_OFFSET);
#endif
    }

    /*
     * Store the highValue in the data array and round up the dataLength.
     * Must be done after compactData() because that assumes that dataLength
     * is a multiple of UTRIE2_DATA_BLOCK_LENGTH.
     */
    newTrie->data[newTrie->dataLength++]=highValue;
    while((newTrie->dataLength&(UTRIE2_DATA_GRANULARITY-1))!=0) {
        newTrie->data[newTrie->dataLength++]=trie->initialValue;
    }

    newTrie->isCompacted=TRUE;
}

/* serialization ------------------------------------------------------------ */

/**
 * Maximum length of the runtime index array.
 * Limited by its own 16-bit index values, and by uint16_t UTrie2Header.indexLength.
 * (The actual maximum length is lower,
 * (0x110000>>UTRIE2_SHIFT_2)+UTRIE2_UTF8_2B_INDEX_2_LENGTH+UTRIE2_MAX_INDEX_1_LENGTH.)
 */
#define UTRIE2_MAX_INDEX_LENGTH 0xffff

/**
 * Maximum length of the runtime data array.
 * Limited by 16-bit index values that are left-shifted by UTRIE2_INDEX_SHIFT,
 * and by uint16_t UTrie2Header.shiftedDataLength.
 */
#define UTRIE2_MAX_DATA_LENGTH (0xffff<<UTRIE2_INDEX_SHIFT)

/* Compact and internally serialize the trie. */
U_CAPI void U_EXPORT2
utrie2_freeze(UTrie2 *trie, UTrie2ValueBits valueBits, UErrorCode *pErrorCode) {
    UNewTrie2 *newTrie;
    UTrie2Header *header;
    uint32_t *p;
    uint16_t *dest16;
    int32_t i, length;
    int32_t allIndexesLength;
    int32_t dataMove;  /* >0 if the data is moved to the end of the index array */
    UChar32 highStart;

    /* argument check */
    if(U_FAILURE(*pErrorCode)) {
        return;
    }
    if( trie==NULL ||
        valueBits<0 || UTRIE2_COUNT_VALUE_BITS<=valueBits
    ) {
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return;
    }
    newTrie=trie->newTrie;
    if(newTrie==NULL) {
        /* already frozen */
        UTrie2ValueBits frozenValueBits=
            trie->data16!=NULL ? UTRIE2_16_VALUE_BITS : UTRIE2_32_VALUE_BITS;
        if(valueBits!=frozenValueBits) {
            *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        }
        return;
    }

    /* compact if necessary */
    if(!newTrie->isCompacted) {
        compactTrie(trie, pErrorCode);
        if(U_FAILURE(*pErrorCode)) {
            return;
        }
    }
    highStart=trie->highStart;

    if(highStart<=0x10000) {
        allIndexesLength=UTRIE2_INDEX_1_OFFSET;
    } else {
        allIndexesLength=newTrie->index2Length;
    }
    if(valueBits==UTRIE2_16_VALUE_BITS) {
        dataMove=allIndexesLength;
    } else {
        dataMove=0;
    }

    /* are indexLength and dataLength within limits? */
    if( /* for unshifted indexLength */
        allIndexesLength>UTRIE2_MAX_INDEX_LENGTH ||
        /* for unshifted dataNullOffset */
        (dataMove+newTrie->dataNullOffset)>0xffff ||
        /* for unshifted 2-byte UTF-8 index-2 values */
        (dataMove+UNEWTRIE2_DATA_0800_OFFSET)>0xffff ||
        /* for shiftedDataLength */
        (dataMove+newTrie->dataLength)>UTRIE2_MAX_DATA_LENGTH
    ) {
        *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
        return;
    }

    /* calculate the total serialized length */
    length=sizeof(UTrie2Header)+allIndexesLength*2;
    if(valueBits==UTRIE2_16_VALUE_BITS) {
        length+=newTrie->dataLength*2;
    } else {
        length+=newTrie->dataLength*4;
    }

    trie->memory=uprv_malloc(length);
    if(trie->memory==NULL) {
        *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
        return;
    }
    trie->length=length;
    trie->isMemoryOwned=TRUE;

    trie->indexLength=allIndexesLength;
    trie->dataLength=newTrie->dataLength;
    if(highStart<=0x10000) {
        trie->index2NullOffset=0xffff;
    } else {
        trie->index2NullOffset=static_cast<uint16_t>(UTRIE2_INDEX_2_OFFSET+newTrie->index2NullOffset);
    }
    trie->dataNullOffset=(uint16_t)(dataMove+newTrie->dataNullOffset);
    trie->highValueIndex=dataMove+trie->dataLength-UTRIE2_DATA_GRANULARITY;

    /* set the header fields */
    header=(UTrie2Header *)trie->memory;

    header->signature=UTRIE2_SIG; /* "Tri2" */
    header->options=(uint16_t)valueBits;

    header->indexLength=(uint16_t)trie->indexLength;
    header->shiftedDataLength=(uint16_t)(trie->dataLength>>UTRIE2_INDEX_SHIFT);
    header->index2NullOffset=trie->index2NullOffset;
    header->dataNullOffset=trie->dataNullOffset;
    header->shiftedHighStart=(uint16_t)(highStart>>UTRIE2_SHIFT_1);

    /* fill the index and data arrays */
    dest16=(uint16_t *)(header+1);
    trie->index=dest16;

    /* write the index-2 array values shifted right by UTRIE2_INDEX_SHIFT, after adding dataMove */
    p=(uint32_t *)newTrie->index2;
    for(i=UTRIE2_INDEX_2_BMP_LENGTH; i>0; --i) {
        *dest16++=(uint16_t)((dataMove + *p++)>>UTRIE2_INDEX_SHIFT);
    }

    /* write UTF-8 2-byte index-2 values, not right-shifted */
    for(i=0; i<(0xc2-0xc0); ++i) {                                  /* C0..C1 */
        *dest16++=(uint16_t)(dataMove+UTRIE2_BAD_UTF8_DATA_OFFSET);
    }
    for(; i<(0xe0-0xc0); ++i) {                                     /* C2..DF */
        *dest16++=(uint16_t)(dataMove+newTrie->index2[i<<(6-UTRIE2_SHIFT_2)]);
    }

    if(highStart>0x10000) {
        int32_t index1Length=(highStart-0x10000)>>UTRIE2_SHIFT_1;
        int32_t index2Offset=UTRIE2_INDEX_2_BMP_LENGTH+UTRIE2_UTF8_2B_INDEX_2_LENGTH+index1Length;

        /* write 16-bit index-1 values for supplementary code points */
        p=(uint32_t *)newTrie->index1+UTRIE2_OMITTED_BMP_INDEX_1_LENGTH;
        for(i=index1Length; i>0; --i) {
            *dest16++=(uint16_t)(UTRIE2_INDEX_2_OFFSET + *p++);
        }

        /*
         * write the index-2 array values for supplementary code points,
         * shifted right by UTRIE2_INDEX_SHIFT, after adding dataMove
         */
        p=(uint32_t *)newTrie->index2+index2Offset;
        for(i=newTrie->index2Length-index2Offset; i>0; --i) {
            *dest16++=(uint16_t)((dataMove + *p++)>>UTRIE2_INDEX_SHIFT);
        }
    }

    /* write the 16/32-bit data array */
    switch(valueBits) {
    case UTRIE2_16_VALUE_BITS:
        /* write 16-bit data values */
        trie->data16=dest16;
        trie->data32=NULL;
        p=newTrie->data;
        for(i=newTrie->dataLength; i>0; --i) {
            *dest16++=(uint16_t)*p++;
        }
        break;
    case UTRIE2_32_VALUE_BITS:
        /* write 32-bit data values */
        trie->data16=NULL;
        trie->data32=(uint32_t *)dest16;
        uprv_memcpy(dest16, newTrie->data, (size_t)newTrie->dataLength*4);
        break;
    default:
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return;
    }

#ifdef UTRIE2_DEBUG
    utrie2_printLengths(trie, "");
#endif

#ifdef UCPTRIE_DEBUG
    umutablecptrie_setName(newTrie->t3, trie->name);
    ucptrie_close(
        umutablecptrie_buildImmutable(
            newTrie->t3, UCPTRIE_TYPE_FAST, (UCPTrieValueWidth)valueBits, pErrorCode));
#endif
    /* Delete the UNewTrie2. */
    uprv_free(newTrie->data);
    uprv_free(newTrie);
    trie->newTrie=NULL;
}