DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
******************************************************************************
*
*   Copyright (C) 2001-2012, International Business Machines
*   Corporation and others.  All Rights Reserved.
*
******************************************************************************
*   file name:  utrie.cpp
*   encoding:   UTF-8
*   tab size:   8 (not used)
*   indentation:4
*
*   created on: 2001oct20
*   created by: Markus W. Scherer
*
*   This is a common implementation of a "folded" trie.
*   It is a kind of compressed, serializable table of 16- or 32-bit values associated with
*   Unicode code points (0..0x10ffff).
*/

#ifdef UTRIE_DEBUG
#   include <stdio.h>
#endif

#include "unicode/utypes.h"
#include "cmemory.h"
#include "utrie.h"

/* miscellaneous ------------------------------------------------------------ */

#undef ABS
#define ABS(x) ((x)>=0 ? (x) : -(x))

static inline UBool
equal_uint32(const uint32_t *s, const uint32_t *t, int32_t length) {
    while(length>0 && *s==*t) {
        ++s;
        ++t;
        --length;
    }
    return (UBool)(length==0);
}

/* Building a trie ----------------------------------------------------------*/

U_CAPI UNewTrie * U_EXPORT2
utrie_open(UNewTrie *fillIn,
           uint32_t *aliasData, int32_t maxDataLength,
           uint32_t initialValue, uint32_t leadUnitValue,
           UBool latin1Linear) {
    UNewTrie *trie;
    int32_t i, j;

    if( maxDataLength<UTRIE_DATA_BLOCK_LENGTH ||
        (latin1Linear && maxDataLength<1024)
    ) {
        return NULL;
    }

    if(fillIn!=NULL) {
        trie=fillIn;
    } else {
        trie=(UNewTrie *)uprv_malloc(sizeof(UNewTrie));
        if(trie==NULL) {
            return NULL;
        }
    }
    uprv_memset(trie, 0, sizeof(UNewTrie));
    trie->isAllocated= (UBool)(fillIn==NULL);

    if(aliasData!=NULL) {
        trie->data=aliasData;
        trie->isDataAllocated=FALSE;
    } else {
        trie->data=(uint32_t *)uprv_malloc(maxDataLength*4);
        if(trie->data==NULL) {
            uprv_free(trie);
            return NULL;
        }
        trie->isDataAllocated=TRUE;
    }

    /* preallocate and reset the first data block (block index 0) */
    j=UTRIE_DATA_BLOCK_LENGTH;

    if(latin1Linear) {
        /* preallocate and reset the first block (number 0) and Latin-1 (U+0000..U+00ff) after that */
        /* made sure above that maxDataLength>=1024 */

        /* set indexes to point to consecutive data blocks */
        i=0;
        do {
            /* do this at least for trie->index[0] even if that block is only partly used for Latin-1 */
            trie->index[i++]=j;
            j+=UTRIE_DATA_BLOCK_LENGTH;
        } while(i<(256>>UTRIE_SHIFT));
    }

    /* reset the initially allocated blocks to the initial value */
    trie->dataLength=j;
    while(j>0) {
        trie->data[--j]=initialValue;
    }

    trie->leadUnitValue=leadUnitValue;
    trie->indexLength=UTRIE_MAX_INDEX_LENGTH;
    trie->dataCapacity=maxDataLength;
    trie->isLatin1Linear=latin1Linear;
    trie->isCompacted=FALSE;
    return trie;
}

U_CAPI UNewTrie * U_EXPORT2
utrie_clone(UNewTrie *fillIn, const UNewTrie *other, uint32_t *aliasData, int32_t aliasDataCapacity) {
    UNewTrie *trie;
    UBool isDataAllocated;

    /* do not clone if other is not valid or already compacted */
    if(other==NULL || other->data==NULL || other->isCompacted) {
        return NULL;
    }

    /* clone data */
    if(aliasData!=NULL && aliasDataCapacity>=other->dataCapacity) {
        isDataAllocated=FALSE;
    } else {
        aliasDataCapacity=other->dataCapacity;
        aliasData=(uint32_t *)uprv_malloc(other->dataCapacity*4);
        if(aliasData==NULL) {
            return NULL;
        }
        isDataAllocated=TRUE;
    }

    trie=utrie_open(fillIn, aliasData, aliasDataCapacity,
                    other->data[0], other->leadUnitValue,
                    other->isLatin1Linear);
    if(trie==NULL) {
        uprv_free(aliasData);
    } else {
        uprv_memcpy(trie->index, other->index, sizeof(trie->index));
        uprv_memcpy(trie->data, other->data, (size_t)other->dataLength*4);
        trie->dataLength=other->dataLength;
        trie->isDataAllocated=isDataAllocated;
    }

    return trie;
}

U_CAPI void U_EXPORT2
utrie_close(UNewTrie *trie) {
    if(trie!=NULL) {
        if(trie->isDataAllocated) {
            uprv_free(trie->data);
            trie->data=NULL;
        }
        if(trie->isAllocated) {
            uprv_free(trie);
        }
    }
}

U_CAPI uint32_t * U_EXPORT2
utrie_getData(UNewTrie *trie, int32_t *pLength) {
    if(trie==NULL || pLength==NULL) {
        return NULL;
    }

    *pLength=trie->dataLength;
    return trie->data;
}

static int32_t
utrie_allocDataBlock(UNewTrie *trie) {
    int32_t newBlock, newTop;

    newBlock=trie->dataLength;
    newTop=newBlock+UTRIE_DATA_BLOCK_LENGTH;
    if(newTop>trie->dataCapacity) {
        /* out of memory in the data array */
        return -1;
    }
    trie->dataLength=newTop;
    return newBlock;
}

/**
 * No error checking for illegal arguments.
 *
 * @return -1 if no new data block available (out of memory in data array)
 * @internal
 */
static int32_t
utrie_getDataBlock(UNewTrie *trie, UChar32 c) {
    int32_t indexValue, newBlock;

    c>>=UTRIE_SHIFT;
    indexValue=trie->index[c];
    if(indexValue>0) {
        return indexValue;
    }

    /* allocate a new data block */
    newBlock=utrie_allocDataBlock(trie);
    if(newBlock<0) {
        /* out of memory in the data array */
        return -1;
    }
    trie->index[c]=newBlock;

    /* copy-on-write for a block from a setRange() */
    uprv_memcpy(trie->data+newBlock, trie->data-indexValue, 4*UTRIE_DATA_BLOCK_LENGTH);
    return newBlock;
}

/**
 * @return TRUE if the value was successfully set
 */
U_CAPI UBool U_EXPORT2
utrie_set32(UNewTrie *trie, UChar32 c, uint32_t value) {
    int32_t block;

    /* valid, uncompacted trie and valid c? */
    if(trie==NULL || trie->isCompacted || (uint32_t)c>0x10ffff) {
        return FALSE;
    }

    block=utrie_getDataBlock(trie, c);
    if(block<0) {
        return FALSE;
    }

    trie->data[block+(c&UTRIE_MASK)]=value;
    return TRUE;
}

U_CAPI uint32_t U_EXPORT2
utrie_get32(UNewTrie *trie, UChar32 c, UBool *pInBlockZero) {
    int32_t block;

    /* valid, uncompacted trie and valid c? */
    if(trie==NULL || trie->isCompacted || (uint32_t)c>0x10ffff) {
        if(pInBlockZero!=NULL) {
            *pInBlockZero=TRUE;
        }
        return 0;
    }

    block=trie->index[c>>UTRIE_SHIFT];
    if(pInBlockZero!=NULL) {
        *pInBlockZero= (UBool)(block==0);
    }

    return trie->data[ABS(block)+(c&UTRIE_MASK)];
}

/**
 * @internal
 */
static void
utrie_fillBlock(uint32_t *block, UChar32 start, UChar32 limit,
                uint32_t value, uint32_t initialValue, UBool overwrite) {
    uint32_t *pLimit;

    pLimit=block+limit;
    block+=start;
    if(overwrite) {
        while(block<pLimit) {
            *block++=value;
        }
    } else {
        while(block<pLimit) {
            if(*block==initialValue) {
                *block=value;
            }
            ++block;
        }
    }
}

U_CAPI UBool U_EXPORT2
utrie_setRange32(UNewTrie *trie, UChar32 start, UChar32 limit, uint32_t value, UBool overwrite) {
    /*
     * repeat value in [start..limit[
     * mark index values for repeat-data blocks by setting bit 31 of the index values
     * fill around existing values if any, if(overwrite)
     */
    uint32_t initialValue;
    int32_t block, rest, repeatBlock;

    /* valid, uncompacted trie and valid indexes? */
    if( trie==NULL || trie->isCompacted ||
        (uint32_t)start>0x10ffff || (uint32_t)limit>0x110000 || start>limit
    ) {
        return FALSE;
    }
    if(start==limit) {
        return TRUE; /* nothing to do */
    }

    initialValue=trie->data[0];
    if(start&UTRIE_MASK) {
        UChar32 nextStart;

        /* set partial block at [start..following block boundary[ */
        block=utrie_getDataBlock(trie, start);
        if(block<0) {
            return FALSE;
        }

        nextStart=(start+UTRIE_DATA_BLOCK_LENGTH)&~UTRIE_MASK;
        if(nextStart<=limit) {
            utrie_fillBlock(trie->data+block, start&UTRIE_MASK, UTRIE_DATA_BLOCK_LENGTH,
                            value, initialValue, overwrite);
            start=nextStart;
        } else {
            utrie_fillBlock(trie->data+block, start&UTRIE_MASK, limit&UTRIE_MASK,
                            value, initialValue, overwrite);
            return TRUE;
        }
    }

    /* number of positions in the last, partial block */
    rest=limit&UTRIE_MASK;

    /* round down limit to a block boundary */
    limit&=~UTRIE_MASK;

    /* iterate over all-value blocks */
    if(value==initialValue) {
        repeatBlock=0;
    } else {
        repeatBlock=-1;
    }
    while(start<limit) {
        /* get index value */
        block=trie->index[start>>UTRIE_SHIFT];
        if(block>0) {
            /* already allocated, fill in value */
            utrie_fillBlock(trie->data+block, 0, UTRIE_DATA_BLOCK_LENGTH, value, initialValue, overwrite);
        } else if(trie->data[-block]!=value && (block==0 || overwrite)) {
            /* set the repeatBlock instead of the current block 0 or range block */
            if(repeatBlock>=0) {
                trie->index[start>>UTRIE_SHIFT]=-repeatBlock;
            } else {
                /* create and set and fill the repeatBlock */
                repeatBlock=utrie_getDataBlock(trie, start);
                if(repeatBlock<0) {
                    return FALSE;
                }

                /* set the negative block number to indicate that it is a repeat block */
                trie->index[start>>UTRIE_SHIFT]=-repeatBlock;
                utrie_fillBlock(trie->data+repeatBlock, 0, UTRIE_DATA_BLOCK_LENGTH, value, initialValue, TRUE);
            }
        }

        start+=UTRIE_DATA_BLOCK_LENGTH;
    }

    if(rest>0) {
        /* set partial block at [last block boundary..limit[ */
        block=utrie_getDataBlock(trie, start);
        if(block<0) {
            return FALSE;
        }

        utrie_fillBlock(trie->data+block, 0, rest, value, initialValue, overwrite);
    }

    return TRUE;
}

static int32_t
_findSameIndexBlock(const int32_t *idx, int32_t indexLength,
                    int32_t otherBlock) {
    int32_t block, i;

    for(block=UTRIE_BMP_INDEX_LENGTH; block<indexLength; block+=UTRIE_SURROGATE_BLOCK_COUNT) {
        for(i=0; i<UTRIE_SURROGATE_BLOCK_COUNT; ++i) {
            if(idx[block+i]!=idx[otherBlock+i]) {
                break;
            }
        }
        if(i==UTRIE_SURROGATE_BLOCK_COUNT) {
            return block;
        }
    }
    return indexLength;
}

/*
 * Fold the normalization data for supplementary code points into
 * a compact area on top of the BMP-part of the trie index,
 * with the lead surrogates indexing this compact area.
 *
 * Duplicate the index values for lead surrogates:
 * From inside the BMP area, where some may be overridden with folded values,
 * to just after the BMP area, where they can be retrieved for
 * code point lookups.
 */
static void
utrie_fold(UNewTrie *trie, UNewTrieGetFoldedValue *getFoldedValue, UErrorCode *pErrorCode) {
    int32_t leadIndexes[UTRIE_SURROGATE_BLOCK_COUNT];
    int32_t *idx;
    uint32_t value;
    UChar32 c;
    int32_t indexLength, block;
#ifdef UTRIE_DEBUG
    int countLeadCUWithData=0;
#endif

    idx=trie->index;

    /* copy the lead surrogate indexes into a temporary array */
    uprv_memcpy(leadIndexes, idx+(0xd800>>UTRIE_SHIFT), 4*UTRIE_SURROGATE_BLOCK_COUNT);

    /*
     * set all values for lead surrogate code *units* to leadUnitValue
     * so that, by default, runtime lookups will find no data for associated
     * supplementary code points, unless there is data for such code points
     * which will result in a non-zero folding value below that is set for
     * the respective lead units
     *
     * the above saved the indexes for surrogate code *points*
     * fill the indexes with simplified code from utrie_setRange32()
     */
    if(trie->leadUnitValue==trie->data[0]) {
        block=0; /* leadUnitValue==initialValue, use all-initial-value block */
    } else {
        /* create and fill the repeatBlock */
        block=utrie_allocDataBlock(trie);
        if(block<0) {
            /* data table overflow */
            *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
            return;
        }
        utrie_fillBlock(trie->data+block, 0, UTRIE_DATA_BLOCK_LENGTH, trie->leadUnitValue, trie->data[0], TRUE);
        block=-block; /* negative block number to indicate that it is a repeat block */
    }
    for(c=(0xd800>>UTRIE_SHIFT); c<(0xdc00>>UTRIE_SHIFT); ++c) {
        trie->index[c]=block;
    }

    /*
     * Fold significant index values into the area just after the BMP indexes.
     * In case the first lead surrogate has significant data,
     * its index block must be used first (in which case the folding is a no-op).
     * Later all folded index blocks are moved up one to insert the copied
     * lead surrogate indexes.
     */
    indexLength=UTRIE_BMP_INDEX_LENGTH;

    /* search for any index (stage 1) entries for supplementary code points */
    for(c=0x10000; c<0x110000;) {
        if(idx[c>>UTRIE_SHIFT]!=0) {
            /* there is data, treat the full block for a lead surrogate */
            c&=~0x3ff;

#ifdef UTRIE_DEBUG
            ++countLeadCUWithData;
            /* printf("supplementary data for lead surrogate U+%04lx\n", (long)(0xd7c0+(c>>10))); */
#endif

            /* is there an identical index block? */
            block=_findSameIndexBlock(idx, indexLength, c>>UTRIE_SHIFT);

            /*
             * get a folded value for [c..c+0x400[ and,
             * if different from the value for the lead surrogate code point,
             * set it for the lead surrogate code unit
             */
            value=getFoldedValue(trie, c, block+UTRIE_SURROGATE_BLOCK_COUNT);
            if(value!=utrie_get32(trie, U16_LEAD(c), NULL)) {
                if(!utrie_set32(trie, U16_LEAD(c), value)) {
                    /* data table overflow */
                    *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
                    return;
                }

                /* if we did not find an identical index block... */
                if(block==indexLength) {
                    /* move the actual index (stage 1) entries from the supplementary position to the new one */
                    uprv_memmove(idx+indexLength,
                                 idx+(c>>UTRIE_SHIFT),
                                 4*UTRIE_SURROGATE_BLOCK_COUNT);
                    indexLength+=UTRIE_SURROGATE_BLOCK_COUNT;
                }
            }
            c+=0x400;
        } else {
            c+=UTRIE_DATA_BLOCK_LENGTH;
        }
    }
#ifdef UTRIE_DEBUG
    if(countLeadCUWithData>0) {
        printf("supplementary data for %d lead surrogates\n", countLeadCUWithData);
    }
#endif

    /*
     * index array overflow?
     * This is to guarantee that a folding offset is of the form
     * UTRIE_BMP_INDEX_LENGTH+n*UTRIE_SURROGATE_BLOCK_COUNT with n=0..1023.
     * If the index is too large, then n>=1024 and more than 10 bits are necessary.
     *
     * In fact, it can only ever become n==1024 with completely unfoldable data and
     * the additional block of duplicated values for lead surrogates.
     */
    if(indexLength>=UTRIE_MAX_INDEX_LENGTH) {
        *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
        return;
    }

    /*
     * make space for the lead surrogate index block and
     * insert it between the BMP indexes and the folded ones
     */
    uprv_memmove(idx+UTRIE_BMP_INDEX_LENGTH+UTRIE_SURROGATE_BLOCK_COUNT,
                 idx+UTRIE_BMP_INDEX_LENGTH,
                 4*(indexLength-UTRIE_BMP_INDEX_LENGTH));
    uprv_memcpy(idx+UTRIE_BMP_INDEX_LENGTH,
                leadIndexes,
                4*UTRIE_SURROGATE_BLOCK_COUNT);
    indexLength+=UTRIE_SURROGATE_BLOCK_COUNT;

#ifdef UTRIE_DEBUG
    printf("trie index count: BMP %ld  all Unicode %ld  folded %ld\n",
           UTRIE_BMP_INDEX_LENGTH, (long)UTRIE_MAX_INDEX_LENGTH, indexLength);
#endif

    trie->indexLength=indexLength;
}

/*
 * Set a value in the trie index map to indicate which data block
 * is referenced and which one is not.
 * utrie_compact() will remove data blocks that are not used at all.
 * Set
 * - 0 if it is used
 * - -1 if it is not used
 */
static void
_findUnusedBlocks(UNewTrie *trie) {
    int32_t i;

    /* fill the entire map with "not used" */
    uprv_memset(trie->map, 0xff, (UTRIE_MAX_BUILD_TIME_DATA_LENGTH>>UTRIE_SHIFT)*4);

    /* mark each block that _is_ used with 0 */
    for(i=0; i<trie->indexLength; ++i) {
        trie->map[ABS(trie->index[i])>>UTRIE_SHIFT]=0;
    }

    /* never move the all-initial-value block 0 */
    trie->map[0]=0;
}

static int32_t
_findSameDataBlock(const uint32_t *data, int32_t dataLength,
                   int32_t otherBlock, int32_t step) {
    int32_t block;

    /* ensure that we do not even partially get past dataLength */
    dataLength-=UTRIE_DATA_BLOCK_LENGTH;

    for(block=0; block<=dataLength; block+=step) {
        if(equal_uint32(data+block, data+otherBlock, UTRIE_DATA_BLOCK_LENGTH)) {
            return block;
        }
    }
    return -1;
}

/*
 * Compact a folded build-time trie.
 *
 * The compaction
 * - removes blocks that are identical with earlier ones
 * - overlaps adjacent blocks as much as possible (if overlap==TRUE)
 * - moves blocks in steps of the data granularity
 * - moves and overlaps blocks that overlap with multiple values in the overlap region
 *
 * It does not
 * - try to move and overlap blocks that are not already adjacent
 */
static void
utrie_compact(UNewTrie *trie, UBool overlap, UErrorCode *pErrorCode) {
    int32_t i, start, newStart, overlapStart;

    if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
        return;
    }

    /* valid, uncompacted trie? */
    if(trie==NULL) {
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return;
    }
    if(trie->isCompacted) {
        return; /* nothing left to do */
    }

    /* compaction */

    /* initialize the index map with "block is used/unused" flags */
    _findUnusedBlocks(trie);

    /* if Latin-1 is preallocated and linear, then do not compact Latin-1 data */
    if(trie->isLatin1Linear && UTRIE_SHIFT<=8) {
        overlapStart=UTRIE_DATA_BLOCK_LENGTH+256;
    } else {
        overlapStart=UTRIE_DATA_BLOCK_LENGTH;
    }

    newStart=UTRIE_DATA_BLOCK_LENGTH;
    for(start=newStart; start<trie->dataLength;) {
        /*
         * start: index of first entry of current block
         * newStart: index where the current block is to be moved
         *           (right after current end of already-compacted data)
         */

        /* skip blocks that are not used */
        if(trie->map[start>>UTRIE_SHIFT]<0) {
            /* advance start to the next block */
            start+=UTRIE_DATA_BLOCK_LENGTH;

            /* leave newStart with the previous block! */
            continue;
        }

        /* search for an identical block */
        if( start>=overlapStart &&
            (i=_findSameDataBlock(trie->data, newStart, start,
                            overlap ? UTRIE_DATA_GRANULARITY : UTRIE_DATA_BLOCK_LENGTH))
             >=0
        ) {
            /* found an identical block, set the other block's index value for the current block */
            trie->map[start>>UTRIE_SHIFT]=i;

            /* advance start to the next block */
            start+=UTRIE_DATA_BLOCK_LENGTH;

            /* leave newStart with the previous block! */
            continue;
        }

        /* see if the beginning of this block can be overlapped with the end of the previous block */
        if(overlap && start>=overlapStart) {
            /* look for maximum overlap (modulo granularity) with the previous, adjacent block */
            for(i=UTRIE_DATA_BLOCK_LENGTH-UTRIE_DATA_GRANULARITY;
                i>0 && !equal_uint32(trie->data+(newStart-i), trie->data+start, i);
                i-=UTRIE_DATA_GRANULARITY) {}
        } else {
            i=0;
        }

        if(i>0) {
            /* some overlap */
            trie->map[start>>UTRIE_SHIFT]=newStart-i;

            /* move the non-overlapping indexes to their new positions */
            start+=i;
            for(i=UTRIE_DATA_BLOCK_LENGTH-i; i>0; --i) {
                trie->data[newStart++]=trie->data[start++];
            }
        } else if(newStart<start) {
            /* no overlap, just move the indexes to their new positions */
            trie->map[start>>UTRIE_SHIFT]=newStart;
            for(i=UTRIE_DATA_BLOCK_LENGTH; i>0; --i) {
                trie->data[newStart++]=trie->data[start++];
            }
        } else /* no overlap && newStart==start */ {
            trie->map[start>>UTRIE_SHIFT]=start;
            newStart+=UTRIE_DATA_BLOCK_LENGTH;
            start=newStart;
        }
    }

    /* now adjust the index (stage 1) table */
    for(i=0; i<trie->indexLength; ++i) {
        trie->index[i]=trie->map[ABS(trie->index[i])>>UTRIE_SHIFT];
    }

#ifdef UTRIE_DEBUG
    /* we saved some space */
    printf("compacting trie: count of 32-bit words %lu->%lu\n",
            (long)trie->dataLength, (long)newStart);
#endif

    trie->dataLength=newStart;
}

/* serialization ------------------------------------------------------------ */

/*
 * Default function for the folding value:
 * Just store the offset (16 bits) if there is any non-initial-value entry.
 *
 * The offset parameter is never 0.
 * Returning the offset itself is safe for UTRIE_SHIFT>=5 because
 * for UTRIE_SHIFT==5 the maximum index length is UTRIE_MAX_INDEX_LENGTH==0x8800
 * which fits into 16-bit trie values;
 * for higher UTRIE_SHIFT, UTRIE_MAX_INDEX_LENGTH decreases.
 *
 * Theoretically, it would be safer for all possible UTRIE_SHIFT including
 * those of 4 and lower to return offset>>UTRIE_SURROGATE_BLOCK_BITS
 * which would always result in a value of 0x40..0x43f
 * (start/end 1k blocks of supplementary Unicode code points).
 * However, this would be uglier, and would not work for some existing
 * binary data file formats.
 *
 * Also, we do not plan to change UTRIE_SHIFT because it would change binary
 * data file formats, and we would probably not make it smaller because of
 * the then even larger BMP index length even for empty tries.
 */
static uint32_t U_CALLCONV
defaultGetFoldedValue(UNewTrie *trie, UChar32 start, int32_t offset) {
    uint32_t value, initialValue;
    UChar32 limit;
    UBool inBlockZero;

    initialValue=trie->data[0];
    limit=start+0x400;
    while(start<limit) {
        value=utrie_get32(trie, start, &inBlockZero);
        if(inBlockZero) {
            start+=UTRIE_DATA_BLOCK_LENGTH;
        } else if(value!=initialValue) {
            return (uint32_t)offset;
        } else {
            ++start;
        }
    }
    return 0;
}

U_CAPI int32_t U_EXPORT2
utrie_serialize(UNewTrie *trie, void *dt, int32_t capacity,
                UNewTrieGetFoldedValue *getFoldedValue,
                UBool reduceTo16Bits,
                UErrorCode *pErrorCode) {
    UTrieHeader *header;
    uint32_t *p;
    uint16_t *dest16;
    int32_t i, length;
    uint8_t* data = NULL;

    /* argument check */
    if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
        return 0;
    }

    if(trie==NULL || capacity<0 || (capacity>0 && dt==NULL)) {
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return 0;
    }
    if(getFoldedValue==NULL) {
        getFoldedValue=defaultGetFoldedValue;
    }

    data = (uint8_t*)dt;
    /* fold and compact if necessary, also checks that indexLength is within limits */
    if(!trie->isCompacted) {
        /* compact once without overlap to improve folding */
        utrie_compact(trie, FALSE, pErrorCode);

        /* fold the supplementary part of the index array */
        utrie_fold(trie, getFoldedValue, pErrorCode);

        /* compact again with overlap for minimum data array length */
        utrie_compact(trie, TRUE, pErrorCode);

        trie->isCompacted=TRUE;
        if(U_FAILURE(*pErrorCode)) {
            return 0;
        }
    }

    /* is dataLength within limits? */
    if( (reduceTo16Bits ? (trie->dataLength+trie->indexLength) : trie->dataLength) >= UTRIE_MAX_DATA_LENGTH) {
        *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
    }

    length=sizeof(UTrieHeader)+2*trie->indexLength;
    if(reduceTo16Bits) {
        length+=2*trie->dataLength;
    } else {
        length+=4*trie->dataLength;
    }

    if(length>capacity) {
        return length; /* preflighting */
    }

#ifdef UTRIE_DEBUG
    printf("**UTrieLengths(serialize)** index:%6ld  data:%6ld  serialized:%6ld\n",
           (long)trie->indexLength, (long)trie->dataLength, (long)length);
#endif

    /* set the header fields */
    header=(UTrieHeader *)data;
    data+=sizeof(UTrieHeader);

    header->signature=0x54726965; /* "Trie" */
    header->options=UTRIE_SHIFT | (UTRIE_INDEX_SHIFT<<UTRIE_OPTIONS_INDEX_SHIFT);

    if(!reduceTo16Bits) {
        header->options|=UTRIE_OPTIONS_DATA_IS_32_BIT;
    }
    if(trie->isLatin1Linear) {
        header->options|=UTRIE_OPTIONS_LATIN1_IS_LINEAR;
    }

    header->indexLength=trie->indexLength;
    header->dataLength=trie->dataLength;

    /* write the index (stage 1) array and the 16/32-bit data (stage 2) array */
    if(reduceTo16Bits) {
        /* write 16-bit index values shifted right by UTRIE_INDEX_SHIFT, after adding indexLength */
        p=(uint32_t *)trie->index;
        dest16=(uint16_t *)data;
        for(i=trie->indexLength; i>0; --i) {
            *dest16++=(uint16_t)((*p++ + trie->indexLength)>>UTRIE_INDEX_SHIFT);
        }

        /* write 16-bit data values */
        p=trie->data;
        for(i=trie->dataLength; i>0; --i) {
            *dest16++=(uint16_t)*p++;
        }
    } else {
        /* write 16-bit index values shifted right by UTRIE_INDEX_SHIFT */
        p=(uint32_t *)trie->index;
        dest16=(uint16_t *)data;
        for(i=trie->indexLength; i>0; --i) {
            *dest16++=(uint16_t)(*p++ >> UTRIE_INDEX_SHIFT);
        }

        /* write 32-bit data values */
        uprv_memcpy(dest16, trie->data, 4*(size_t)trie->dataLength);
    }

    return length;
}

/* inverse to defaultGetFoldedValue() */
U_CAPI int32_t U_EXPORT2
utrie_defaultGetFoldingOffset(uint32_t data) {
    return (int32_t)data;
}

U_CAPI int32_t U_EXPORT2
utrie_unserialize(UTrie *trie, const void *data, int32_t length, UErrorCode *pErrorCode) {
    const UTrieHeader *header;
    const uint16_t *p16;
    uint32_t options;

    if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
        return -1;
    }

    /* enough data for a trie header? */
    if(length<(int32_t)sizeof(UTrieHeader)) {
        *pErrorCode=U_INVALID_FORMAT_ERROR;
        return -1;
    }

    /* check the signature */
    header=(const UTrieHeader *)data;
    if(header->signature!=0x54726965) {
        *pErrorCode=U_INVALID_FORMAT_ERROR;
        return -1;
    }

    /* get the options and check the shift values */
    options=header->options;
    if( (options&UTRIE_OPTIONS_SHIFT_MASK)!=UTRIE_SHIFT ||
        ((options>>UTRIE_OPTIONS_INDEX_SHIFT)&UTRIE_OPTIONS_SHIFT_MASK)!=UTRIE_INDEX_SHIFT
    ) {
        *pErrorCode=U_INVALID_FORMAT_ERROR;
        return -1;
    }
    trie->isLatin1Linear= (UBool)((options&UTRIE_OPTIONS_LATIN1_IS_LINEAR)!=0);

    /* get the length values */
    trie->indexLength=header->indexLength;
    trie->dataLength=header->dataLength;

    length-=(int32_t)sizeof(UTrieHeader);

    /* enough data for the index? */
    if(length<2*trie->indexLength) {
        *pErrorCode=U_INVALID_FORMAT_ERROR;
        return -1;
    }
    p16=(const uint16_t *)(header+1);
    trie->index=p16;
    p16+=trie->indexLength;
    length-=2*trie->indexLength;

    /* get the data */
    if(options&UTRIE_OPTIONS_DATA_IS_32_BIT) {
        if(length<4*trie->dataLength) {
            *pErrorCode=U_INVALID_FORMAT_ERROR;
            return -1;
        }
        trie->data32=(const uint32_t *)p16;
        trie->initialValue=trie->data32[0];
        length=(int32_t)sizeof(UTrieHeader)+2*trie->indexLength+4*trie->dataLength;
    } else {
        if(length<2*trie->dataLength) {
            *pErrorCode=U_INVALID_FORMAT_ERROR;
            return -1;
        }

        /* the "data16" data is used via the index pointer */
        trie->data32=NULL;
        trie->initialValue=trie->index[trie->indexLength];
        length=(int32_t)sizeof(UTrieHeader)+2*trie->indexLength+2*trie->dataLength;
    }

    trie->getFoldingOffset=utrie_defaultGetFoldingOffset;

    return length;
}

U_CAPI int32_t U_EXPORT2
utrie_unserializeDummy(UTrie *trie,
                       void *data, int32_t length,
                       uint32_t initialValue, uint32_t leadUnitValue,
                       UBool make16BitTrie,
                       UErrorCode *pErrorCode) {
    uint16_t *p16;
    int32_t actualLength, latin1Length, i, limit;
    uint16_t block;

    if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
        return -1;
    }

    /* calculate the actual size of the dummy trie data */

    /* max(Latin-1, block 0) */
    latin1Length= 256; /*UTRIE_SHIFT<=8 ? 256 : UTRIE_DATA_BLOCK_LENGTH;*/

    trie->indexLength=UTRIE_BMP_INDEX_LENGTH+UTRIE_SURROGATE_BLOCK_COUNT;
    trie->dataLength=latin1Length;
    if(leadUnitValue!=initialValue) {
        trie->dataLength+=UTRIE_DATA_BLOCK_LENGTH;
    }

    actualLength=trie->indexLength*2;
    if(make16BitTrie) {
        actualLength+=trie->dataLength*2;
    } else {
        actualLength+=trie->dataLength*4;
    }

    /* enough space for the dummy trie? */
    if(length<actualLength) {
        *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
        return actualLength;
    }

    trie->isLatin1Linear=TRUE;
    trie->initialValue=initialValue;

    /* fill the index and data arrays */
    p16=(uint16_t *)data;
    trie->index=p16;

    if(make16BitTrie) {
        /* indexes to block 0 */
        block=(uint16_t)(trie->indexLength>>UTRIE_INDEX_SHIFT);
        limit=trie->indexLength;
        for(i=0; i<limit; ++i) {
            p16[i]=block;
        }

        if(leadUnitValue!=initialValue) {
            /* indexes for lead surrogate code units to the block after Latin-1 */
            block+=(uint16_t)(latin1Length>>UTRIE_INDEX_SHIFT);
            i=0xd800>>UTRIE_SHIFT;
            limit=0xdc00>>UTRIE_SHIFT;
            for(; i<limit; ++i) {
                p16[i]=block;
            }
        }

        trie->data32=NULL;

        /* Latin-1 data */
        p16+=trie->indexLength;
        for(i=0; i<latin1Length; ++i) {
            p16[i]=(uint16_t)initialValue;
        }

        /* data for lead surrogate code units */
        if(leadUnitValue!=initialValue) {
            limit=latin1Length+UTRIE_DATA_BLOCK_LENGTH;
            for(/* i=latin1Length */; i<limit; ++i) {
                p16[i]=(uint16_t)leadUnitValue;
            }
        }
    } else {
        uint32_t *p32;

        /* indexes to block 0 */
        uprv_memset(p16, 0, trie->indexLength*2);

        if(leadUnitValue!=initialValue) {
            /* indexes for lead surrogate code units to the block after Latin-1 */
            block=(uint16_t)(latin1Length>>UTRIE_INDEX_SHIFT);
            i=0xd800>>UTRIE_SHIFT;
            limit=0xdc00>>UTRIE_SHIFT;
            for(; i<limit; ++i) {
                p16[i]=block;
            }
        }

        trie->data32=p32=(uint32_t *)(p16+trie->indexLength);

        /* Latin-1 data */
        for(i=0; i<latin1Length; ++i) {
            p32[i]=initialValue;
        }

        /* data for lead surrogate code units */
        if(leadUnitValue!=initialValue) {
            limit=latin1Length+UTRIE_DATA_BLOCK_LENGTH;
            for(/* i=latin1Length */; i<limit; ++i) {
                p32[i]=leadUnitValue;
            }
        }
    }

    trie->getFoldingOffset=utrie_defaultGetFoldingOffset;

    return actualLength;
}

/* enumeration -------------------------------------------------------------- */

/* default UTrieEnumValue() returns the input value itself */
static uint32_t U_CALLCONV
enumSameValue(const void * /*context*/, uint32_t value) {
    return value;
}

/**
 * Enumerate all ranges of code points with the same relevant values.
 * The values are transformed from the raw trie entries by the enumValue function.
 */
U_CAPI void U_EXPORT2
utrie_enum(const UTrie *trie,
           UTrieEnumValue *enumValue, UTrieEnumRange *enumRange, const void *context) {
    const uint32_t *data32;
    const uint16_t *idx;

    uint32_t value, prevValue, initialValue;
    UChar32 c, prev;
    int32_t l, i, j, block, prevBlock, nullBlock, offset;

    /* check arguments */
    if(trie==NULL || trie->index==NULL || enumRange==NULL) {
        return;
    }
    if(enumValue==NULL) {
        enumValue=enumSameValue;
    }

    idx=trie->index;
    data32=trie->data32;

    /* get the enumeration value that corresponds to an initial-value trie data entry */
    initialValue=enumValue(context, trie->initialValue);

    if(data32==NULL) {
        nullBlock=trie->indexLength;
    } else {
        nullBlock=0;
    }

    /* set variables for previous range */
    prevBlock=nullBlock;
    prev=0;
    prevValue=initialValue;

    /* enumerate BMP - the main loop enumerates data blocks */
    for(i=0, c=0; c<=0xffff; ++i) {
        if(c==0xd800) {
            /* skip lead surrogate code _units_, go to lead surr. code _points_ */
            i=UTRIE_BMP_INDEX_LENGTH;
        } else if(c==0xdc00) {
            /* go back to regular BMP code points */
            i=c>>UTRIE_SHIFT;
        }

        block=idx[i]<<UTRIE_INDEX_SHIFT;
        if(block==prevBlock) {
            /* the block is the same as the previous one, and filled with value */
            c+=UTRIE_DATA_BLOCK_LENGTH;
        } else if(block==nullBlock) {
            /* this is the all-initial-value block */
            if(prevValue!=initialValue) {
                if(prev<c) {
                    if(!enumRange(context, prev, c, prevValue)) {
                        return;
                    }
                }
                prevBlock=nullBlock;
                prev=c;
                prevValue=initialValue;
            }
            c+=UTRIE_DATA_BLOCK_LENGTH;
        } else {
            prevBlock=block;
            for(j=0; j<UTRIE_DATA_BLOCK_LENGTH; ++j) {
                value=enumValue(context, data32!=NULL ? data32[block+j] : idx[block+j]);
                if(value!=prevValue) {
                    if(prev<c) {
                        if(!enumRange(context, prev, c, prevValue)) {
                            return;
                        }
                    }
                    if(j>0) {
                        /* the block is not filled with all the same value */
                        prevBlock=-1;
                    }
                    prev=c;
                    prevValue=value;
                }
                ++c;
            }
        }
    }

    /* enumerate supplementary code points */
    for(l=0xd800; l<0xdc00;) {
        /* lead surrogate access */
        offset=idx[l>>UTRIE_SHIFT]<<UTRIE_INDEX_SHIFT;
        if(offset==nullBlock) {
            /* no entries for a whole block of lead surrogates */
            if(prevValue!=initialValue) {
                if(prev<c) {
                    if(!enumRange(context, prev, c, prevValue)) {
                        return;
                    }
                }
                prevBlock=nullBlock;
                prev=c;
                prevValue=initialValue;
            }

            l+=UTRIE_DATA_BLOCK_LENGTH;
            c+=UTRIE_DATA_BLOCK_LENGTH<<10;
            continue;
        }

        value= data32!=NULL ? data32[offset+(l&UTRIE_MASK)] : idx[offset+(l&UTRIE_MASK)];

        /* enumerate trail surrogates for this lead surrogate */
        offset=trie->getFoldingOffset(value);
        if(offset<=0) {
            /* no data for this lead surrogate */
            if(prevValue!=initialValue) {
                if(prev<c) {
                    if(!enumRange(context, prev, c, prevValue)) {
                        return;
                    }
                }
                prevBlock=nullBlock;
                prev=c;
                prevValue=initialValue;
            }

            /* nothing else to do for the supplementary code points for this lead surrogate */
            c+=0x400;
        } else {
            /* enumerate code points for this lead surrogate */
            i=offset;
            offset+=UTRIE_SURROGATE_BLOCK_COUNT;
            do {
                /* copy of most of the body of the BMP loop */
                block=idx[i]<<UTRIE_INDEX_SHIFT;
                if(block==prevBlock) {
                    /* the block is the same as the previous one, and filled with value */
                    c+=UTRIE_DATA_BLOCK_LENGTH;
                } else if(block==nullBlock) {
                    /* this is the all-initial-value block */
                    if(prevValue!=initialValue) {
                        if(prev<c) {
                            if(!enumRange(context, prev, c, prevValue)) {
                                return;
                            }
                        }
                        prevBlock=nullBlock;
                        prev=c;
                        prevValue=initialValue;
                    }
                    c+=UTRIE_DATA_BLOCK_LENGTH;
                } else {
                    prevBlock=block;
                    for(j=0; j<UTRIE_DATA_BLOCK_LENGTH; ++j) {
                        value=enumValue(context, data32!=NULL ? data32[block+j] : idx[block+j]);
                        if(value!=prevValue) {
                            if(prev<c) {
                                if(!enumRange(context, prev, c, prevValue)) {
                                    return;
                                }
                            }
                            if(j>0) {
                                /* the block is not filled with all the same value */
                                prevBlock=-1;
                            }
                            prev=c;
                            prevValue=value;
                        }
                        ++c;
                    }
                }
            } while(++i<offset);
        }

        ++l;
    }

    /* deliver last range */
    enumRange(context, prev, c, prevValue);
}