DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
*******************************************************************************
*
*   Copyright (C) 2001-2014, International Business Machines
*   Corporation and others.  All Rights Reserved.
*
*******************************************************************************
*   file name:  unormcmp.cpp
*   encoding:   UTF-8
*   tab size:   8 (not used)
*   indentation:4
*
*   created on: 2004sep13
*   created by: Markus W. Scherer
*
*   unorm_compare() function moved here from unorm.cpp for better modularization.
*   Depends on both normalization and case folding.
*   Allows unorm.cpp to not depend on any character properties code.
*/

#include "unicode/utypes.h"

#if !UCONFIG_NO_NORMALIZATION

#include "unicode/unorm.h"
#include "unicode/ustring.h"
#include "cmemory.h"
#include "normalizer2impl.h"
#include "ucase.h"
#include "uprops.h"
#include "ustr_imp.h"

U_NAMESPACE_USE

/* compare canonically equivalent ------------------------------------------- */

/*
 * Compare two strings for canonical equivalence.
 * Further options include case-insensitive comparison and
 * code point order (as opposed to code unit order).
 *
 * In this function, canonical equivalence is optional as well.
 * If canonical equivalence is tested, then both strings must fulfill
 * the FCD check.
 *
 * Semantically, this is equivalent to
 *   strcmp[CodePointOrder](NFD(foldCase(s1)), NFD(foldCase(s2)))
 * where code point order, NFD and foldCase are all optional.
 *
 * String comparisons almost always yield results before processing both strings
 * completely.
 * They are generally more efficient working incrementally instead of
 * performing the sub-processing (strlen, normalization, case-folding)
 * on the entire strings first.
 *
 * It is also unnecessary to not normalize identical characters.
 *
 * This function works in principle as follows:
 *
 * loop {
 *   get one code unit c1 from s1 (-1 if end of source)
 *   get one code unit c2 from s2 (-1 if end of source)
 *
 *   if(either string finished) {
 *     return result;
 *   }
 *   if(c1==c2) {
 *     continue;
 *   }
 *
 *   // c1!=c2
 *   try to decompose/case-fold c1/c2, and continue if one does;
 *
 *   // still c1!=c2 and neither decomposes/case-folds, return result
 *   return c1-c2;
 * }
 *
 * When a character decomposes, then the pointer for that source changes to
 * the decomposition, pushing the previous pointer onto a stack.
 * When the end of the decomposition is reached, then the code unit reader
 * pops the previous source from the stack.
 * (Same for case-folding.)
 *
 * This is complicated further by operating on variable-width UTF-16.
 * The top part of the loop works on code units, while lookups for decomposition
 * and case-folding need code points.
 * Code points are assembled after the equality/end-of-source part.
 * The source pointer is only advanced beyond all code units when the code point
 * actually decomposes/case-folds.
 *
 * If we were on a trail surrogate unit when assembling a code point,
 * and the code point decomposes/case-folds, then the decomposition/folding
 * result must be compared with the part of the other string that corresponds to
 * this string's lead surrogate.
 * Since we only assemble a code point when hitting a trail unit when the
 * preceding lead units were identical, we back up the other string by one unit
 * in such a case.
 *
 * The optional code point order comparison at the end works with
 * the same fix-up as the other code point order comparison functions.
 * See ustring.c and the comment near the end of this function.
 *
 * Assumption: A decomposition or case-folding result string never contains
 * a single surrogate. This is a safe assumption in the Unicode Standard.
 * Therefore, we do not need to check for surrogate pairs across
 * decomposition/case-folding boundaries.
 *
 * Further assumptions (see verifications tstnorm.cpp):
 * The API function checks for FCD first, while the core function
 * first case-folds and then decomposes. This requires that case-folding does not
 * un-FCD any strings.
 *
 * The API function may also NFD the input and turn off decomposition.
 * This requires that case-folding does not un-NFD strings either.
 *
 * TODO If any of the above two assumptions is violated,
 * then this entire code must be re-thought.
 * If this happens, then a simple solution is to case-fold both strings up front
 * and to turn off UNORM_INPUT_IS_FCD.
 * We already do this when not both strings are in FCD because makeFCD
 * would be a partial NFD before the case folding, which does not work.
 * Note that all of this is only a problem when case-folding _and_
 * canonical equivalence come together.
 * (Comments in unorm_compare() are more up to date than this TODO.)
 */

/* stack element for previous-level source/decomposition pointers */
struct CmpEquivLevel {
    const UChar *start, *s, *limit;
};
typedef struct CmpEquivLevel CmpEquivLevel;

/**
 * Internal option for unorm_cmpEquivFold() for decomposing.
 * If not set, just do strcasecmp().
 */
#define _COMPARE_EQUIV 0x80000

/* internal function */
static int32_t
unorm_cmpEquivFold(const UChar *s1, int32_t length1,
                   const UChar *s2, int32_t length2,
                   uint32_t options,
                   UErrorCode *pErrorCode) {
    const Normalizer2Impl *nfcImpl;

    /* current-level start/limit - s1/s2 as current */
    const UChar *start1, *start2, *limit1, *limit2;

    /* decomposition and case folding variables */
    const UChar *p;
    int32_t length;

    /* stacks of previous-level start/current/limit */
    CmpEquivLevel stack1[2], stack2[2];

    /* buffers for algorithmic decompositions */
    UChar decomp1[4], decomp2[4];

    /* case folding buffers, only use current-level start/limit */
    UChar fold1[UCASE_MAX_STRING_LENGTH+1], fold2[UCASE_MAX_STRING_LENGTH+1];

    /* track which is the current level per string */
    int32_t level1, level2;

    /* current code units, and code points for lookups */
    UChar32 c1, c2, cp1, cp2;

    /* no argument error checking because this itself is not an API */

    /*
     * assume that at least one of the options _COMPARE_EQUIV and U_COMPARE_IGNORE_CASE is set
     * otherwise this function must behave exactly as uprv_strCompare()
     * not checking for that here makes testing this function easier
     */

    /* normalization/properties data loaded? */
    if((options&_COMPARE_EQUIV)!=0) {
        nfcImpl=Normalizer2Factory::getNFCImpl(*pErrorCode);
    } else {
        nfcImpl=NULL;
    }
    if(U_FAILURE(*pErrorCode)) {
        return 0;
    }

    /* initialize */
    start1=s1;
    if(length1==-1) {
        limit1=NULL;
    } else {
        limit1=s1+length1;
    }

    start2=s2;
    if(length2==-1) {
        limit2=NULL;
    } else {
        limit2=s2+length2;
    }

    level1=level2=0;
    c1=c2=-1;

    /* comparison loop */
    for(;;) {
        /*
         * here a code unit value of -1 means "get another code unit"
         * below it will mean "this source is finished"
         */

        if(c1<0) {
            /* get next code unit from string 1, post-increment */
            for(;;) {
                if(s1==limit1 || ((c1=*s1)==0 && (limit1==NULL || (options&_STRNCMP_STYLE)))) {
                    if(level1==0) {
                        c1=-1;
                        break;
                    }
                } else {
                    ++s1;
                    break;
                }

                /* reached end of level buffer, pop one level */
                do {
                    --level1;
                    start1=stack1[level1].start;    /*Not uninitialized*/
                } while(start1==NULL);
                s1=stack1[level1].s;                /*Not uninitialized*/
                limit1=stack1[level1].limit;        /*Not uninitialized*/
            }
        }

        if(c2<0) {
            /* get next code unit from string 2, post-increment */
            for(;;) {
                if(s2==limit2 || ((c2=*s2)==0 && (limit2==NULL || (options&_STRNCMP_STYLE)))) {
                    if(level2==0) {
                        c2=-1;
                        break;
                    }
                } else {
                    ++s2;
                    break;
                }

                /* reached end of level buffer, pop one level */
                do {
                    --level2;
                    start2=stack2[level2].start;    /*Not uninitialized*/
                } while(start2==NULL);
                s2=stack2[level2].s;                /*Not uninitialized*/
                limit2=stack2[level2].limit;        /*Not uninitialized*/
            }
        }

        /*
         * compare c1 and c2
         * either variable c1, c2 is -1 only if the corresponding string is finished
         */
        if(c1==c2) {
            if(c1<0) {
                return 0;   /* c1==c2==-1 indicating end of strings */
            }
            c1=c2=-1;       /* make us fetch new code units */
            continue;
        } else if(c1<0) {
            return -1;      /* string 1 ends before string 2 */
        } else if(c2<0) {
            return 1;       /* string 2 ends before string 1 */
        }
        /* c1!=c2 && c1>=0 && c2>=0 */

        /* get complete code points for c1, c2 for lookups if either is a surrogate */
        cp1=c1;
        if(U_IS_SURROGATE(c1)) {
            UChar c;

            if(U_IS_SURROGATE_LEAD(c1)) {
                if(s1!=limit1 && U16_IS_TRAIL(c=*s1)) {
                    /* advance ++s1; only below if cp1 decomposes/case-folds */
                    cp1=U16_GET_SUPPLEMENTARY(c1, c);
                }
            } else /* isTrail(c1) */ {
                if(start1<=(s1-2) && U16_IS_LEAD(c=*(s1-2))) {
                    cp1=U16_GET_SUPPLEMENTARY(c, c1);
                }
            }
        }

        cp2=c2;
        if(U_IS_SURROGATE(c2)) {
            UChar c;

            if(U_IS_SURROGATE_LEAD(c2)) {
                if(s2!=limit2 && U16_IS_TRAIL(c=*s2)) {
                    /* advance ++s2; only below if cp2 decomposes/case-folds */
                    cp2=U16_GET_SUPPLEMENTARY(c2, c);
                }
            } else /* isTrail(c2) */ {
                if(start2<=(s2-2) && U16_IS_LEAD(c=*(s2-2))) {
                    cp2=U16_GET_SUPPLEMENTARY(c, c2);
                }
            }
        }

        /*
         * go down one level for each string
         * continue with the main loop as soon as there is a real change
         */

        if( level1==0 && (options&U_COMPARE_IGNORE_CASE) &&
            (length=ucase_toFullFolding((UChar32)cp1, &p, options))>=0
        ) {
            /* cp1 case-folds to the code point "length" or to p[length] */
            if(U_IS_SURROGATE(c1)) {
                if(U_IS_SURROGATE_LEAD(c1)) {
                    /* advance beyond source surrogate pair if it case-folds */
                    ++s1;
                } else /* isTrail(c1) */ {
                    /*
                     * we got a supplementary code point when hitting its trail surrogate,
                     * therefore the lead surrogate must have been the same as in the other string;
                     * compare this decomposition with the lead surrogate in the other string
                     * remember that this simulates bulk text replacement:
                     * the decomposition would replace the entire code point
                     */
                    --s2;
                    c2=*(s2-1);
                }
            }

            /* push current level pointers */
            stack1[0].start=start1;
            stack1[0].s=s1;
            stack1[0].limit=limit1;
            ++level1;

            /* copy the folding result to fold1[] */
            if(length<=UCASE_MAX_STRING_LENGTH) {
                u_memcpy(fold1, p, length);
            } else {
                int32_t i=0;
                U16_APPEND_UNSAFE(fold1, i, length);
                length=i;
            }

            /* set next level pointers to case folding */
            start1=s1=fold1;
            limit1=fold1+length;

            /* get ready to read from decomposition, continue with loop */
            c1=-1;
            continue;
        }

        if( level2==0 && (options&U_COMPARE_IGNORE_CASE) &&
            (length=ucase_toFullFolding((UChar32)cp2, &p, options))>=0
        ) {
            /* cp2 case-folds to the code point "length" or to p[length] */
            if(U_IS_SURROGATE(c2)) {
                if(U_IS_SURROGATE_LEAD(c2)) {
                    /* advance beyond source surrogate pair if it case-folds */
                    ++s2;
                } else /* isTrail(c2) */ {
                    /*
                     * we got a supplementary code point when hitting its trail surrogate,
                     * therefore the lead surrogate must have been the same as in the other string;
                     * compare this decomposition with the lead surrogate in the other string
                     * remember that this simulates bulk text replacement:
                     * the decomposition would replace the entire code point
                     */
                    --s1;
                    c1=*(s1-1);
                }
            }

            /* push current level pointers */
            stack2[0].start=start2;
            stack2[0].s=s2;
            stack2[0].limit=limit2;
            ++level2;

            /* copy the folding result to fold2[] */
            if(length<=UCASE_MAX_STRING_LENGTH) {
                u_memcpy(fold2, p, length);
            } else {
                int32_t i=0;
                U16_APPEND_UNSAFE(fold2, i, length);
                length=i;
            }

            /* set next level pointers to case folding */
            start2=s2=fold2;
            limit2=fold2+length;

            /* get ready to read from decomposition, continue with loop */
            c2=-1;
            continue;
        }

        if( level1<2 && (options&_COMPARE_EQUIV) &&
            0!=(p=nfcImpl->getDecomposition((UChar32)cp1, decomp1, length))
        ) {
            /* cp1 decomposes into p[length] */
            if(U_IS_SURROGATE(c1)) {
                if(U_IS_SURROGATE_LEAD(c1)) {
                    /* advance beyond source surrogate pair if it decomposes */
                    ++s1;
                } else /* isTrail(c1) */ {
                    /*
                     * we got a supplementary code point when hitting its trail surrogate,
                     * therefore the lead surrogate must have been the same as in the other string;
                     * compare this decomposition with the lead surrogate in the other string
                     * remember that this simulates bulk text replacement:
                     * the decomposition would replace the entire code point
                     */
                    --s2;
                    c2=*(s2-1);
                }
            }

            /* push current level pointers */
            stack1[level1].start=start1;
            stack1[level1].s=s1;
            stack1[level1].limit=limit1;
            ++level1;

            /* set empty intermediate level if skipped */
            if(level1<2) {
                stack1[level1++].start=NULL;
            }

            /* set next level pointers to decomposition */
            start1=s1=p;
            limit1=p+length;

            /* get ready to read from decomposition, continue with loop */
            c1=-1;
            continue;
        }

        if( level2<2 && (options&_COMPARE_EQUIV) &&
            0!=(p=nfcImpl->getDecomposition((UChar32)cp2, decomp2, length))
        ) {
            /* cp2 decomposes into p[length] */
            if(U_IS_SURROGATE(c2)) {
                if(U_IS_SURROGATE_LEAD(c2)) {
                    /* advance beyond source surrogate pair if it decomposes */
                    ++s2;
                } else /* isTrail(c2) */ {
                    /*
                     * we got a supplementary code point when hitting its trail surrogate,
                     * therefore the lead surrogate must have been the same as in the other string;
                     * compare this decomposition with the lead surrogate in the other string
                     * remember that this simulates bulk text replacement:
                     * the decomposition would replace the entire code point
                     */
                    --s1;
                    c1=*(s1-1);
                }
            }

            /* push current level pointers */
            stack2[level2].start=start2;
            stack2[level2].s=s2;
            stack2[level2].limit=limit2;
            ++level2;

            /* set empty intermediate level if skipped */
            if(level2<2) {
                stack2[level2++].start=NULL;
            }

            /* set next level pointers to decomposition */
            start2=s2=p;
            limit2=p+length;

            /* get ready to read from decomposition, continue with loop */
            c2=-1;
            continue;
        }

        /*
         * no decomposition/case folding, max level for both sides:
         * return difference result
         *
         * code point order comparison must not just return cp1-cp2
         * because when single surrogates are present then the surrogate pairs
         * that formed cp1 and cp2 may be from different string indexes
         *
         * example: { d800 d800 dc01 } vs. { d800 dc00 }, compare at second code units
         * c1=d800 cp1=10001 c2=dc00 cp2=10000
         * cp1-cp2>0 but c1-c2<0 and in fact in UTF-32 it is { d800 10001 } < { 10000 }
         *
         * therefore, use same fix-up as in ustring.c/uprv_strCompare()
         * except: uprv_strCompare() fetches c=*s while this functions fetches c=*s++
         * so we have slightly different pointer/start/limit comparisons here
         */

        if(c1>=0xd800 && c2>=0xd800 && (options&U_COMPARE_CODE_POINT_ORDER)) {
            /* subtract 0x2800 from BMP code points to make them smaller than supplementary ones */
            if(
                (c1<=0xdbff && s1!=limit1 && U16_IS_TRAIL(*s1)) ||
                (U16_IS_TRAIL(c1) && start1!=(s1-1) && U16_IS_LEAD(*(s1-2)))
            ) {
                /* part of a surrogate pair, leave >=d800 */
            } else {
                /* BMP code point - may be surrogate code point - make <d800 */
                c1-=0x2800;
            }

            if(
                (c2<=0xdbff && s2!=limit2 && U16_IS_TRAIL(*s2)) ||
                (U16_IS_TRAIL(c2) && start2!=(s2-1) && U16_IS_LEAD(*(s2-2)))
            ) {
                /* part of a surrogate pair, leave >=d800 */
            } else {
                /* BMP code point - may be surrogate code point - make <d800 */
                c2-=0x2800;
            }
        }

        return c1-c2;
    }
}

static
UBool _normalize(const Normalizer2 *n2, const UChar *s, int32_t length,
                UnicodeString &normalized, UErrorCode *pErrorCode) {
    UnicodeString str(length<0, s, length);

    // check if s fulfill the conditions
    int32_t spanQCYes=n2->spanQuickCheckYes(str, *pErrorCode);
    if (U_FAILURE(*pErrorCode)) {
        return FALSE;
    }
    /*
     * ICU 2.4 had a further optimization:
     * If both strings were not in FCD, then they were both NFD'ed,
     * and the _COMPARE_EQUIV option was turned off.
     * It is not entirely clear that this is valid with the current
     * definition of the canonical caseless match.
     * Therefore, ICU 2.6 removes that optimization.
     */
    if(spanQCYes<str.length()) {
        UnicodeString unnormalized=str.tempSubString(spanQCYes);
        normalized.setTo(FALSE, str.getBuffer(), spanQCYes);
        n2->normalizeSecondAndAppend(normalized, unnormalized, *pErrorCode);
        if (U_SUCCESS(*pErrorCode)) {
            return TRUE;
        }
    }
    return FALSE;
}

U_CAPI int32_t U_EXPORT2
unorm_compare(const UChar *s1, int32_t length1,
              const UChar *s2, int32_t length2,
              uint32_t options,
              UErrorCode *pErrorCode) {
    /* argument checking */
    if(U_FAILURE(*pErrorCode)) {
        return 0;
    }
    if(s1==0 || length1<-1 || s2==0 || length2<-1) {
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return 0;
    }

    UnicodeString fcd1, fcd2;
    int32_t normOptions=(int32_t)(options>>UNORM_COMPARE_NORM_OPTIONS_SHIFT);
    options|=_COMPARE_EQUIV;

    /*
     * UAX #21 Case Mappings, as fixed for Unicode version 4
     * (see Jitterbug 2021), defines a canonical caseless match as
     *
     * A string X is a canonical caseless match
     * for a string Y if and only if
     * NFD(toCasefold(NFD(X))) = NFD(toCasefold(NFD(Y)))
     *
     * For better performance, we check for FCD (or let the caller tell us that
     * both strings are in FCD) for the inner normalization.
     * BasicNormalizerTest::FindFoldFCDExceptions() makes sure that
     * case-folding preserves the FCD-ness of a string.
     * The outer normalization is then only performed by unorm_cmpEquivFold()
     * when there is a difference.
     *
     * Exception: When using the Turkic case-folding option, we do perform
     * full NFD first. This is because in the Turkic case precomposed characters
     * with 0049 capital I or 0069 small i fold differently whether they
     * are first decomposed or not, so an FCD check - a check only for
     * canonical order - is not sufficient.
     */
    if(!(options&UNORM_INPUT_IS_FCD) || (options&U_FOLD_CASE_EXCLUDE_SPECIAL_I)) {
        const Normalizer2 *n2;
        if(options&U_FOLD_CASE_EXCLUDE_SPECIAL_I) {
            n2=Normalizer2::getNFDInstance(*pErrorCode);
        } else {
            n2=Normalizer2Factory::getFCDInstance(*pErrorCode);
        }
        if (U_FAILURE(*pErrorCode)) {
            return 0;
        }

        if(normOptions&UNORM_UNICODE_3_2) {
            const UnicodeSet *uni32=uniset_getUnicode32Instance(*pErrorCode);
            FilteredNormalizer2 fn2(*n2, *uni32);
            if(_normalize(&fn2, s1, length1, fcd1, pErrorCode)) {
                s1=fcd1.getBuffer();
                length1=fcd1.length();
            }
            if(_normalize(&fn2, s2, length2, fcd2, pErrorCode)) {
                s2=fcd2.getBuffer();
                length2=fcd2.length();
            }
        } else {
            if(_normalize(n2, s1, length1, fcd1, pErrorCode)) {
                s1=fcd1.getBuffer();
                length1=fcd1.length();
            }
            if(_normalize(n2, s2, length2, fcd2, pErrorCode)) {
                s2=fcd2.getBuffer();
                length2=fcd2.length();
            }
        }
    }

    if(U_SUCCESS(*pErrorCode)) {
        return unorm_cmpEquivFold(s1, length1, s2, length2, options, pErrorCode);
    } else {
        return 0;
    }
}

#endif /* #if !UCONFIG_NO_NORMALIZATION */