DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
// © 2017 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html

// ucptrie.cpp (modified from utrie2.cpp)
// created: 2017dec29 Markus W. Scherer

// #define UCPTRIE_DEBUG
#ifdef UCPTRIE_DEBUG
#   include <stdio.h>
#endif

#include "unicode/utypes.h"
#include "unicode/ucptrie.h"
#include "unicode/utf.h"
#include "unicode/utf8.h"
#include "unicode/utf16.h"
#include "cmemory.h"
#include "uassert.h"
#include "ucptrie_impl.h"

U_CAPI UCPTrie * U_EXPORT2
ucptrie_openFromBinary(UCPTrieType type, UCPTrieValueWidth valueWidth,
                       const void *data, int32_t length, int32_t *pActualLength,
                       UErrorCode *pErrorCode) {
    if (U_FAILURE(*pErrorCode)) {
        return nullptr;
    }

    if (length <= 0 || (U_POINTER_MASK_LSB(data, 3) != 0) ||
            type < UCPTRIE_TYPE_ANY || UCPTRIE_TYPE_SMALL < type ||
            valueWidth < UCPTRIE_VALUE_BITS_ANY || UCPTRIE_VALUE_BITS_8 < valueWidth) {
        *pErrorCode = U_ILLEGAL_ARGUMENT_ERROR;
        return nullptr;
    }

    // Enough data for a trie header?
    if (length < (int32_t)sizeof(UCPTrieHeader)) {
        *pErrorCode = U_INVALID_FORMAT_ERROR;
        return nullptr;
    }

    // Check the signature.
    const UCPTrieHeader *header = (const UCPTrieHeader *)data;
    if (header->signature != UCPTRIE_SIG) {
        *pErrorCode = U_INVALID_FORMAT_ERROR;
        return nullptr;
    }

    int32_t options = header->options;
    int32_t typeInt = (options >> 6) & 3;
    int32_t valueWidthInt = options & UCPTRIE_OPTIONS_VALUE_BITS_MASK;
    if (typeInt > UCPTRIE_TYPE_SMALL || valueWidthInt > UCPTRIE_VALUE_BITS_8 ||
            (options & UCPTRIE_OPTIONS_RESERVED_MASK) != 0) {
        *pErrorCode = U_INVALID_FORMAT_ERROR;
        return nullptr;
    }
    UCPTrieType actualType = (UCPTrieType)typeInt;
    UCPTrieValueWidth actualValueWidth = (UCPTrieValueWidth)valueWidthInt;
    if (type < 0) {
        type = actualType;
    }
    if (valueWidth < 0) {
        valueWidth = actualValueWidth;
    }
    if (type != actualType || valueWidth != actualValueWidth) {
        *pErrorCode = U_INVALID_FORMAT_ERROR;
        return nullptr;
    }

    // Get the length values and offsets.
    UCPTrie tempTrie;
    uprv_memset(&tempTrie, 0, sizeof(tempTrie));
    tempTrie.indexLength = header->indexLength;
    tempTrie.dataLength =
        ((options & UCPTRIE_OPTIONS_DATA_LENGTH_MASK) << 4) | header->dataLength;
    tempTrie.index3NullOffset = header->index3NullOffset;
    tempTrie.dataNullOffset =
        ((options & UCPTRIE_OPTIONS_DATA_NULL_OFFSET_MASK) << 8) | header->dataNullOffset;

    tempTrie.highStart = header->shiftedHighStart << UCPTRIE_SHIFT_2;
    tempTrie.shifted12HighStart = (tempTrie.highStart + 0xfff) >> 12;
    tempTrie.type = type;
    tempTrie.valueWidth = valueWidth;

    // Calculate the actual length.
    int32_t actualLength = (int32_t)sizeof(UCPTrieHeader) + tempTrie.indexLength * 2;
    if (valueWidth == UCPTRIE_VALUE_BITS_16) {
        actualLength += tempTrie.dataLength * 2;
    } else if (valueWidth == UCPTRIE_VALUE_BITS_32) {
        actualLength += tempTrie.dataLength * 4;
    } else {
        actualLength += tempTrie.dataLength;
    }
    if (length < actualLength) {
        *pErrorCode = U_INVALID_FORMAT_ERROR;  // Not enough bytes.
        return nullptr;
    }

    // Allocate the trie.
    UCPTrie *trie = (UCPTrie *)uprv_malloc(sizeof(UCPTrie));
    if (trie == nullptr) {
        *pErrorCode = U_MEMORY_ALLOCATION_ERROR;
        return nullptr;
    }
    uprv_memcpy(trie, &tempTrie, sizeof(tempTrie));
#ifdef UCPTRIE_DEBUG
    trie->name = "fromSerialized";
#endif

    // Set the pointers to its index and data arrays.
    const uint16_t *p16 = (const uint16_t *)(header + 1);
    trie->index = p16;
    p16 += trie->indexLength;

    // Get the data.
    int32_t nullValueOffset = trie->dataNullOffset;
    if (nullValueOffset >= trie->dataLength) {
        nullValueOffset = trie->dataLength - UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET;
    }
    switch (valueWidth) {
    case UCPTRIE_VALUE_BITS_16:
        trie->data.ptr16 = p16;
        trie->nullValue = trie->data.ptr16[nullValueOffset];
        break;
    case UCPTRIE_VALUE_BITS_32:
        trie->data.ptr32 = (const uint32_t *)p16;
        trie->nullValue = trie->data.ptr32[nullValueOffset];
        break;
    case UCPTRIE_VALUE_BITS_8:
        trie->data.ptr8 = (const uint8_t *)p16;
        trie->nullValue = trie->data.ptr8[nullValueOffset];
        break;
    default:
        // Unreachable because valueWidth was checked above.
        *pErrorCode = U_INVALID_FORMAT_ERROR;
        return nullptr;
    }

    if (pActualLength != nullptr) {
        *pActualLength = actualLength;
    }
    return trie;
}

U_CAPI void U_EXPORT2
ucptrie_close(UCPTrie *trie) {
    uprv_free(trie);
}

U_CAPI UCPTrieType U_EXPORT2
ucptrie_getType(const UCPTrie *trie) {
    return (UCPTrieType)trie->type;
}

U_CAPI UCPTrieValueWidth U_EXPORT2
ucptrie_getValueWidth(const UCPTrie *trie) {
    return (UCPTrieValueWidth)trie->valueWidth;
}

U_CAPI int32_t U_EXPORT2
ucptrie_internalSmallIndex(const UCPTrie *trie, UChar32 c) {
    int32_t i1 = c >> UCPTRIE_SHIFT_1;
    if (trie->type == UCPTRIE_TYPE_FAST) {
        U_ASSERT(0xffff < c && c < trie->highStart);
        i1 += UCPTRIE_BMP_INDEX_LENGTH - UCPTRIE_OMITTED_BMP_INDEX_1_LENGTH;
    } else {
        U_ASSERT((uint32_t)c < (uint32_t)trie->highStart && trie->highStart > UCPTRIE_SMALL_LIMIT);
        i1 += UCPTRIE_SMALL_INDEX_LENGTH;
    }
    int32_t i3Block = trie->index[
        (int32_t)trie->index[i1] + ((c >> UCPTRIE_SHIFT_2) & UCPTRIE_INDEX_2_MASK)];
    int32_t i3 = (c >> UCPTRIE_SHIFT_3) & UCPTRIE_INDEX_3_MASK;
    int32_t dataBlock;
    if ((i3Block & 0x8000) == 0) {
        // 16-bit indexes
        dataBlock = trie->index[i3Block + i3];
    } else {
        // 18-bit indexes stored in groups of 9 entries per 8 indexes.
        i3Block = (i3Block & 0x7fff) + (i3 & ~7) + (i3 >> 3);
        i3 &= 7;
        dataBlock = ((int32_t)trie->index[i3Block++] << (2 + (2 * i3))) & 0x30000;
        dataBlock |= trie->index[i3Block + i3];
    }
    return dataBlock + (c & UCPTRIE_SMALL_DATA_MASK);
}

U_CAPI int32_t U_EXPORT2
ucptrie_internalSmallU8Index(const UCPTrie *trie, int32_t lt1, uint8_t t2, uint8_t t3) {
    UChar32 c = (lt1 << 12) | (t2 << 6) | t3;
    if (c >= trie->highStart) {
        // Possible because the UTF-8 macro compares with shifted12HighStart which may be higher.
        return trie->dataLength - UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET;
    }
    return ucptrie_internalSmallIndex(trie, c);
}

U_CAPI int32_t U_EXPORT2
ucptrie_internalU8PrevIndex(const UCPTrie *trie, UChar32 c,
                            const uint8_t *start, const uint8_t *src) {
    int32_t i, length;
    // Support 64-bit pointers by avoiding cast of arbitrary difference.
    if ((src - start) <= 7) {
        i = length = (int32_t)(src - start);
    } else {
        i = length = 7;
        start = src - 7;
    }
    c = utf8_prevCharSafeBody(start, 0, &i, c, -1);
    i = length - i;  // Number of bytes read backward from src.
    int32_t idx = _UCPTRIE_CP_INDEX(trie, 0xffff, c);
    return (idx << 3) | i;
}

namespace {

inline uint32_t getValue(UCPTrieData data, UCPTrieValueWidth valueWidth, int32_t dataIndex) {
    switch (valueWidth) {
    case UCPTRIE_VALUE_BITS_16:
        return data.ptr16[dataIndex];
    case UCPTRIE_VALUE_BITS_32:
        return data.ptr32[dataIndex];
    case UCPTRIE_VALUE_BITS_8:
        return data.ptr8[dataIndex];
    default:
        // Unreachable if the trie is properly initialized.
        return 0xffffffff;
    }
}

}  // namespace

U_CAPI uint32_t U_EXPORT2
ucptrie_get(const UCPTrie *trie, UChar32 c) {
    int32_t dataIndex;
    if ((uint32_t)c <= 0x7f) {
        // linear ASCII
        dataIndex = c;
    } else {
        UChar32 fastMax = trie->type == UCPTRIE_TYPE_FAST ? 0xffff : UCPTRIE_SMALL_MAX;
        dataIndex = _UCPTRIE_CP_INDEX(trie, fastMax, c);
    }
    return getValue(trie->data, (UCPTrieValueWidth)trie->valueWidth, dataIndex);
}

namespace {

constexpr int32_t MAX_UNICODE = 0x10ffff;

inline uint32_t maybeFilterValue(uint32_t value, uint32_t trieNullValue, uint32_t nullValue,
                                 UCPMapValueFilter *filter, const void *context) {
    if (value == trieNullValue) {
        value = nullValue;
    } else if (filter != nullptr) {
        value = filter(context, value);
    }
    return value;
}

UChar32 getRange(const void *t, UChar32 start,
                 UCPMapValueFilter *filter, const void *context, uint32_t *pValue) {
    if ((uint32_t)start > MAX_UNICODE) {
        return U_SENTINEL;
    }
    const UCPTrie *trie = reinterpret_cast<const UCPTrie *>(t);
    UCPTrieValueWidth valueWidth = (UCPTrieValueWidth)trie->valueWidth;
    if (start >= trie->highStart) {
        if (pValue != nullptr) {
            int32_t di = trie->dataLength - UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET;
            uint32_t value = getValue(trie->data, valueWidth, di);
            if (filter != nullptr) { value = filter(context, value); }
            *pValue = value;
        }
        return MAX_UNICODE;
    }

    uint32_t nullValue = trie->nullValue;
    if (filter != nullptr) { nullValue = filter(context, nullValue); }
    const uint16_t *index = trie->index;

    int32_t prevI3Block = -1;
    int32_t prevBlock = -1;
    UChar32 c = start;
    uint32_t trieValue, value;
    bool haveValue = false;
    do {
        int32_t i3Block;
        int32_t i3;
        int32_t i3BlockLength;
        int32_t dataBlockLength;
        if (c <= 0xffff && (trie->type == UCPTRIE_TYPE_FAST || c <= UCPTRIE_SMALL_MAX)) {
            i3Block = 0;
            i3 = c >> UCPTRIE_FAST_SHIFT;
            i3BlockLength = trie->type == UCPTRIE_TYPE_FAST ?
                UCPTRIE_BMP_INDEX_LENGTH : UCPTRIE_SMALL_INDEX_LENGTH;
            dataBlockLength = UCPTRIE_FAST_DATA_BLOCK_LENGTH;
        } else {
            // Use the multi-stage index.
            int32_t i1 = c >> UCPTRIE_SHIFT_1;
            if (trie->type == UCPTRIE_TYPE_FAST) {
                U_ASSERT(0xffff < c && c < trie->highStart);
                i1 += UCPTRIE_BMP_INDEX_LENGTH - UCPTRIE_OMITTED_BMP_INDEX_1_LENGTH;
            } else {
                U_ASSERT(c < trie->highStart && trie->highStart > UCPTRIE_SMALL_LIMIT);
                i1 += UCPTRIE_SMALL_INDEX_LENGTH;
            }
            i3Block = trie->index[
                (int32_t)trie->index[i1] + ((c >> UCPTRIE_SHIFT_2) & UCPTRIE_INDEX_2_MASK)];
            if (i3Block == prevI3Block && (c - start) >= UCPTRIE_CP_PER_INDEX_2_ENTRY) {
                // The index-3 block is the same as the previous one, and filled with value.
                U_ASSERT((c & (UCPTRIE_CP_PER_INDEX_2_ENTRY - 1)) == 0);
                c += UCPTRIE_CP_PER_INDEX_2_ENTRY;
                continue;
            }
            prevI3Block = i3Block;
            if (i3Block == trie->index3NullOffset) {
                // This is the index-3 null block.
                if (haveValue) {
                    if (nullValue != value) {
                        return c - 1;
                    }
                } else {
                    trieValue = trie->nullValue;
                    value = nullValue;
                    if (pValue != nullptr) { *pValue = nullValue; }
                    haveValue = true;
                }
                prevBlock = trie->dataNullOffset;
                c = (c + UCPTRIE_CP_PER_INDEX_2_ENTRY) & ~(UCPTRIE_CP_PER_INDEX_2_ENTRY - 1);
                continue;
            }
            i3 = (c >> UCPTRIE_SHIFT_3) & UCPTRIE_INDEX_3_MASK;
            i3BlockLength = UCPTRIE_INDEX_3_BLOCK_LENGTH;
            dataBlockLength = UCPTRIE_SMALL_DATA_BLOCK_LENGTH;
        }
        // Enumerate data blocks for one index-3 block.
        do {
            int32_t block;
            if ((i3Block & 0x8000) == 0) {
                block = index[i3Block + i3];
            } else {
                // 18-bit indexes stored in groups of 9 entries per 8 indexes.
                int32_t group = (i3Block & 0x7fff) + (i3 & ~7) + (i3 >> 3);
                int32_t gi = i3 & 7;
                block = ((int32_t)index[group++] << (2 + (2 * gi))) & 0x30000;
                block |= index[group + gi];
            }
            if (block == prevBlock && (c - start) >= dataBlockLength) {
                // The block is the same as the previous one, and filled with value.
                U_ASSERT((c & (dataBlockLength - 1)) == 0);
                c += dataBlockLength;
            } else {
                int32_t dataMask = dataBlockLength - 1;
                prevBlock = block;
                if (block == trie->dataNullOffset) {
                    // This is the data null block.
                    if (haveValue) {
                        if (nullValue != value) {
                            return c - 1;
                        }
                    } else {
                        trieValue = trie->nullValue;
                        value = nullValue;
                        if (pValue != nullptr) { *pValue = nullValue; }
                        haveValue = true;
                    }
                    c = (c + dataBlockLength) & ~dataMask;
                } else {
                    int32_t di = block + (c & dataMask);
                    uint32_t trieValue2 = getValue(trie->data, valueWidth, di);
                    if (haveValue) {
                        if (trieValue2 != trieValue) {
                            if (filter == nullptr ||
                                    maybeFilterValue(trieValue2, trie->nullValue, nullValue,
                                                     filter, context) != value) {
                                return c - 1;
                            }
                            trieValue = trieValue2;  // may or may not help
                        }
                    } else {
                        trieValue = trieValue2;
                        value = maybeFilterValue(trieValue2, trie->nullValue, nullValue,
                                                 filter, context);
                        if (pValue != nullptr) { *pValue = value; }
                        haveValue = true;
                    }
                    while ((++c & dataMask) != 0) {
                        trieValue2 = getValue(trie->data, valueWidth, ++di);
                        if (trieValue2 != trieValue) {
                            if (filter == nullptr ||
                                    maybeFilterValue(trieValue2, trie->nullValue, nullValue,
                                                     filter, context) != value) {
                                return c - 1;
                            }
                            trieValue = trieValue2;  // may or may not help
                        }
                    }
                }
            }
        } while (++i3 < i3BlockLength);
    } while (c < trie->highStart);
    U_ASSERT(haveValue);
    int32_t di = trie->dataLength - UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET;
    uint32_t highValue = getValue(trie->data, valueWidth, di);
    if (maybeFilterValue(highValue, trie->nullValue, nullValue,
                         filter, context) != value) {
        return c - 1;
    } else {
        return MAX_UNICODE;
    }
}

}  // namespace

U_CFUNC UChar32
ucptrie_internalGetRange(UCPTrieGetRange *getRange,
                         const void *trie, UChar32 start,
                         UCPMapRangeOption option, uint32_t surrogateValue,
                         UCPMapValueFilter *filter, const void *context, uint32_t *pValue) {
    if (option == UCPMAP_RANGE_NORMAL) {
        return getRange(trie, start, filter, context, pValue);
    }
    uint32_t value;
    if (pValue == nullptr) {
        // We need to examine the range value even if the caller does not want it.
        pValue = &value;
    }
    UChar32 surrEnd = option == UCPMAP_RANGE_FIXED_ALL_SURROGATES ? 0xdfff : 0xdbff;
    UChar32 end = getRange(trie, start, filter, context, pValue);
    if (end < 0xd7ff || start > surrEnd) {
        return end;
    }
    // The range overlaps with surrogates, or ends just before the first one.
    if (*pValue == surrogateValue) {
        if (end >= surrEnd) {
            // Surrogates followed by a non-surrogateValue range,
            // or surrogates are part of a larger surrogateValue range.
            return end;
        }
    } else {
        if (start <= 0xd7ff) {
            return 0xd7ff;  // Non-surrogateValue range ends before surrogateValue surrogates.
        }
        // Start is a surrogate with a non-surrogateValue code *unit* value.
        // Return a surrogateValue code *point* range.
        *pValue = surrogateValue;
        if (end > surrEnd) {
            return surrEnd;  // Surrogate range ends before non-surrogateValue rest of range.
        }
    }
    // See if the surrogateValue surrogate range can be merged with
    // an immediately following range.
    uint32_t value2;
    UChar32 end2 = getRange(trie, surrEnd + 1, filter, context, &value2);
    if (value2 == surrogateValue) {
        return end2;
    }
    return surrEnd;
}

U_CAPI UChar32 U_EXPORT2
ucptrie_getRange(const UCPTrie *trie, UChar32 start,
                 UCPMapRangeOption option, uint32_t surrogateValue,
                 UCPMapValueFilter *filter, const void *context, uint32_t *pValue) {
    return ucptrie_internalGetRange(getRange, trie, start,
                                    option, surrogateValue,
                                    filter, context, pValue);
}

U_CAPI int32_t U_EXPORT2
ucptrie_toBinary(const UCPTrie *trie,
                 void *data, int32_t capacity,
                 UErrorCode *pErrorCode) {
    if (U_FAILURE(*pErrorCode)) {
        return 0;
    }

    UCPTrieType type = (UCPTrieType)trie->type;
    UCPTrieValueWidth valueWidth = (UCPTrieValueWidth)trie->valueWidth;
    if (type < UCPTRIE_TYPE_FAST || UCPTRIE_TYPE_SMALL < type ||
            valueWidth < UCPTRIE_VALUE_BITS_16 || UCPTRIE_VALUE_BITS_8 < valueWidth ||
            capacity < 0 ||
            (capacity > 0 && (data == nullptr || (U_POINTER_MASK_LSB(data, 3) != 0)))) {
        *pErrorCode = U_ILLEGAL_ARGUMENT_ERROR;
        return 0;
    }

    int32_t length = (int32_t)sizeof(UCPTrieHeader) + trie->indexLength * 2;
    switch (valueWidth) {
    case UCPTRIE_VALUE_BITS_16:
        length += trie->dataLength * 2;
        break;
    case UCPTRIE_VALUE_BITS_32:
        length += trie->dataLength * 4;
        break;
    case UCPTRIE_VALUE_BITS_8:
        length += trie->dataLength;
        break;
    default:
        // unreachable
        break;
    }
    if (capacity < length) {
        *pErrorCode = U_BUFFER_OVERFLOW_ERROR;
        return length;
    }

    char *bytes = (char *)data;
    UCPTrieHeader *header = (UCPTrieHeader *)bytes;
    header->signature = UCPTRIE_SIG;  // "Tri3"
    header->options = (uint16_t)(
        ((trie->dataLength & 0xf0000) >> 4) |
        ((trie->dataNullOffset & 0xf0000) >> 8) |
        (trie->type << 6) |
        valueWidth);
    header->indexLength = (uint16_t)trie->indexLength;
    header->dataLength = (uint16_t)trie->dataLength;
    header->index3NullOffset = trie->index3NullOffset;
    header->dataNullOffset = (uint16_t)trie->dataNullOffset;
    header->shiftedHighStart = trie->highStart >> UCPTRIE_SHIFT_2;
    bytes += sizeof(UCPTrieHeader);

    uprv_memcpy(bytes, trie->index, trie->indexLength * 2);
    bytes += trie->indexLength * 2;

    switch (valueWidth) {
    case UCPTRIE_VALUE_BITS_16:
        uprv_memcpy(bytes, trie->data.ptr16, trie->dataLength * 2);
        break;
    case UCPTRIE_VALUE_BITS_32:
        uprv_memcpy(bytes, trie->data.ptr32, trie->dataLength * 4);
        break;
    case UCPTRIE_VALUE_BITS_8:
        uprv_memcpy(bytes, trie->data.ptr8, trie->dataLength);
        break;
    default:
        // unreachable
        break;
    }
    return length;
}

namespace {

#ifdef UCPTRIE_DEBUG
long countNull(const UCPTrie *trie) {
    uint32_t nullValue=trie->nullValue;
    int32_t length=trie->dataLength;
    long count=0;
    switch (trie->valueWidth) {
    case UCPTRIE_VALUE_BITS_16:
        for(int32_t i=0; i<length; ++i) {
            if(trie->data.ptr16[i]==nullValue) { ++count; }
        }
        break;
    case UCPTRIE_VALUE_BITS_32:
        for(int32_t i=0; i<length; ++i) {
            if(trie->data.ptr32[i]==nullValue) { ++count; }
        }
        break;
    case UCPTRIE_VALUE_BITS_8:
        for(int32_t i=0; i<length; ++i) {
            if(trie->data.ptr8[i]==nullValue) { ++count; }
        }
        break;
    default:
        // unreachable
        break;
    }
    return count;
}

U_CFUNC void
ucptrie_printLengths(const UCPTrie *trie, const char *which) {
    long indexLength=trie->indexLength;
    long dataLength=(long)trie->dataLength;
    long totalLength=(long)sizeof(UCPTrieHeader)+indexLength*2+
            dataLength*(trie->valueWidth==UCPTRIE_VALUE_BITS_16 ? 2 :
                        trie->valueWidth==UCPTRIE_VALUE_BITS_32 ? 4 : 1);
    printf("**UCPTrieLengths(%s %s)** index:%6ld  data:%6ld  countNull:%6ld  serialized:%6ld\n",
           which, trie->name, indexLength, dataLength, countNull(trie), totalLength);
}
#endif

}  // namespace

// UCPMap ----
// Initially, this is the same as UCPTrie. This may well change.

U_CAPI uint32_t U_EXPORT2
ucpmap_get(const UCPMap *map, UChar32 c) {
    return ucptrie_get(reinterpret_cast<const UCPTrie *>(map), c);
}

U_CAPI UChar32 U_EXPORT2
ucpmap_getRange(const UCPMap *map, UChar32 start,
                UCPMapRangeOption option, uint32_t surrogateValue,
                UCPMapValueFilter *filter, const void *context, uint32_t *pValue) {
    return ucptrie_getRange(reinterpret_cast<const UCPTrie *>(map), start,
                            option, surrogateValue,
                            filter, context, pValue);
}