DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
*******************************************************************************
*
*   Copyright (C) 2009-2014, International Business Machines
*   Corporation and others.  All Rights Reserved.
*
*******************************************************************************
*   file name:  normalizer2impl.h
*   encoding:   UTF-8
*   tab size:   8 (not used)
*   indentation:4
*
*   created on: 2009nov22
*   created by: Markus W. Scherer
*/

#ifndef __NORMALIZER2IMPL_H__
#define __NORMALIZER2IMPL_H__

#include "unicode/utypes.h"

#if !UCONFIG_NO_NORMALIZATION

#include "unicode/normalizer2.h"
#include "unicode/ucptrie.h"
#include "unicode/unistr.h"
#include "unicode/unorm.h"
#include "unicode/utf.h"
#include "unicode/utf16.h"
#include "mutex.h"
#include "udataswp.h"
#include "uset_imp.h"

// When the nfc.nrm data is *not* hardcoded into the common library
// (with this constant set to 0),
// then it needs to be built into the data package:
// Add nfc.nrm to icu4c/source/data/Makefile.in DAT_FILES_SHORT
#define NORM2_HARDCODE_NFC_DATA 1

U_NAMESPACE_BEGIN

struct CanonIterData;

class ByteSink;
class Edits;
class InitCanonIterData;
class LcccContext;

class U_COMMON_API Hangul {
public:
    /* Korean Hangul and Jamo constants */
    enum {
        JAMO_L_BASE=0x1100,     /* "lead" jamo */
        JAMO_L_END=0x1112,
        JAMO_V_BASE=0x1161,     /* "vowel" jamo */
        JAMO_V_END=0x1175,
        JAMO_T_BASE=0x11a7,     /* "trail" jamo */
        JAMO_T_END=0x11c2,

        HANGUL_BASE=0xac00,
        HANGUL_END=0xd7a3,

        JAMO_L_COUNT=19,
        JAMO_V_COUNT=21,
        JAMO_T_COUNT=28,

        JAMO_VT_COUNT=JAMO_V_COUNT*JAMO_T_COUNT,

        HANGUL_COUNT=JAMO_L_COUNT*JAMO_V_COUNT*JAMO_T_COUNT,
        HANGUL_LIMIT=HANGUL_BASE+HANGUL_COUNT
    };

    static inline UBool isHangul(UChar32 c) {
        return HANGUL_BASE<=c && c<HANGUL_LIMIT;
    }
    static inline UBool
    isHangulLV(UChar32 c) {
        c-=HANGUL_BASE;
        return 0<=c && c<HANGUL_COUNT && c%JAMO_T_COUNT==0;
    }
    static inline UBool isJamoL(UChar32 c) {
        return (uint32_t)(c-JAMO_L_BASE)<JAMO_L_COUNT;
    }
    static inline UBool isJamoV(UChar32 c) {
        return (uint32_t)(c-JAMO_V_BASE)<JAMO_V_COUNT;
    }
    static inline UBool isJamoT(UChar32 c) {
        int32_t t=c-JAMO_T_BASE;
        return 0<t && t<JAMO_T_COUNT;  // not JAMO_T_BASE itself
    }
    static UBool isJamo(UChar32 c) {
        return JAMO_L_BASE<=c && c<=JAMO_T_END &&
            (c<=JAMO_L_END || (JAMO_V_BASE<=c && c<=JAMO_V_END) || JAMO_T_BASE<c);
    }

    /**
     * Decomposes c, which must be a Hangul syllable, into buffer
     * and returns the length of the decomposition (2 or 3).
     */
    static inline int32_t decompose(UChar32 c, UChar buffer[3]) {
        c-=HANGUL_BASE;
        UChar32 c2=c%JAMO_T_COUNT;
        c/=JAMO_T_COUNT;
        buffer[0]=(UChar)(JAMO_L_BASE+c/JAMO_V_COUNT);
        buffer[1]=(UChar)(JAMO_V_BASE+c%JAMO_V_COUNT);
        if(c2==0) {
            return 2;
        } else {
            buffer[2]=(UChar)(JAMO_T_BASE+c2);
            return 3;
        }
    }

    /**
     * Decomposes c, which must be a Hangul syllable, into buffer.
     * This is the raw, not recursive, decomposition. Its length is always 2.
     */
    static inline void getRawDecomposition(UChar32 c, UChar buffer[2]) {
        UChar32 orig=c;
        c-=HANGUL_BASE;
        UChar32 c2=c%JAMO_T_COUNT;
        if(c2==0) {
            c/=JAMO_T_COUNT;
            buffer[0]=(UChar)(JAMO_L_BASE+c/JAMO_V_COUNT);
            buffer[1]=(UChar)(JAMO_V_BASE+c%JAMO_V_COUNT);
        } else {
            buffer[0]=(UChar)(orig-c2);  // LV syllable
            buffer[1]=(UChar)(JAMO_T_BASE+c2);
        }
    }
private:
    Hangul();  // no instantiation
};

class Normalizer2Impl;

class U_COMMON_API ReorderingBuffer : public UMemory {
public:
    /** Constructs only; init() should be called. */
    ReorderingBuffer(const Normalizer2Impl &ni, UnicodeString &dest) :
        impl(ni), str(dest),
        start(NULL), reorderStart(NULL), limit(NULL),
        remainingCapacity(0), lastCC(0) {}
    /** Constructs, removes the string contents, and initializes for a small initial capacity. */
    ReorderingBuffer(const Normalizer2Impl &ni, UnicodeString &dest, UErrorCode &errorCode);
    ~ReorderingBuffer() {
        if(start!=NULL) {
            str.releaseBuffer((int32_t)(limit-start));
        }
    }
    UBool init(int32_t destCapacity, UErrorCode &errorCode);

    UBool isEmpty() const { return start==limit; }
    int32_t length() const { return (int32_t)(limit-start); }
    UChar *getStart() { return start; }
    UChar *getLimit() { return limit; }
    uint8_t getLastCC() const { return lastCC; }

    UBool equals(const UChar *start, const UChar *limit) const;
    UBool equals(const uint8_t *otherStart, const uint8_t *otherLimit) const;

    UBool append(UChar32 c, uint8_t cc, UErrorCode &errorCode) {
        return (c<=0xffff) ?
            appendBMP((UChar)c, cc, errorCode) :
            appendSupplementary(c, cc, errorCode);
    }
    UBool append(const UChar *s, int32_t length, UBool isNFD,
                 uint8_t leadCC, uint8_t trailCC,
                 UErrorCode &errorCode);
    UBool appendBMP(UChar c, uint8_t cc, UErrorCode &errorCode) {
        if(remainingCapacity==0 && !resize(1, errorCode)) {
            return FALSE;
        }
        if(lastCC<=cc || cc==0) {
            *limit++=c;
            lastCC=cc;
            if(cc<=1) {
                reorderStart=limit;
            }
        } else {
            insert(c, cc);
        }
        --remainingCapacity;
        return TRUE;
    }
    UBool appendZeroCC(UChar32 c, UErrorCode &errorCode);
    UBool appendZeroCC(const UChar *s, const UChar *sLimit, UErrorCode &errorCode);
    void remove();
    void removeSuffix(int32_t suffixLength);
    void setReorderingLimit(UChar *newLimit) {
        remainingCapacity+=(int32_t)(limit-newLimit);
        reorderStart=limit=newLimit;
        lastCC=0;
    }
    void copyReorderableSuffixTo(UnicodeString &s) const {
        s.setTo(ConstChar16Ptr(reorderStart), (int32_t)(limit-reorderStart));
    }
private:
    /*
     * TODO: Revisit whether it makes sense to track reorderStart.
     * It is set to after the last known character with cc<=1,
     * which stops previousCC() before it reads that character and looks up its cc.
     * previousCC() is normally only called from insert().
     * In other words, reorderStart speeds up the insertion of a combining mark
     * into a multi-combining mark sequence where it does not belong at the end.
     * This might not be worth the trouble.
     * On the other hand, it's not a huge amount of trouble.
     *
     * We probably need it for UNORM_SIMPLE_APPEND.
     */

    UBool appendSupplementary(UChar32 c, uint8_t cc, UErrorCode &errorCode);
    void insert(UChar32 c, uint8_t cc);
    static void writeCodePoint(UChar *p, UChar32 c) {
        if(c<=0xffff) {
            *p=(UChar)c;
        } else {
            p[0]=U16_LEAD(c);
            p[1]=U16_TRAIL(c);
        }
    }
    UBool resize(int32_t appendLength, UErrorCode &errorCode);

    const Normalizer2Impl &impl;
    UnicodeString &str;
    UChar *start, *reorderStart, *limit;
    int32_t remainingCapacity;
    uint8_t lastCC;

    // private backward iterator
    void setIterator() { codePointStart=limit; }
    void skipPrevious();  // Requires start<codePointStart.
    uint8_t previousCC();  // Returns 0 if there is no previous character.

    UChar *codePointStart, *codePointLimit;
};

/**
 * Low-level implementation of the Unicode Normalization Algorithm.
 * For the data structure and details see the documentation at the end of
 * this normalizer2impl.h and in the design doc at
 * http://site.icu-project.org/design/normalization/custom
 */
class U_COMMON_API Normalizer2Impl : public UObject {
public:
    Normalizer2Impl() : normTrie(NULL), fCanonIterData(NULL) {
        fCanonIterDataInitOnce.reset();
    }
    virtual ~Normalizer2Impl();

    void init(const int32_t *inIndexes, const UCPTrie *inTrie,
              const uint16_t *inExtraData, const uint8_t *inSmallFCD);

    void addLcccChars(UnicodeSet &set) const;
    void addPropertyStarts(const USetAdder *sa, UErrorCode &errorCode) const;
    void addCanonIterPropertyStarts(const USetAdder *sa, UErrorCode &errorCode) const;

    // low-level properties ------------------------------------------------ ***

    UBool ensureCanonIterData(UErrorCode &errorCode) const;

    // The trie stores values for lead surrogate code *units*.
    // Surrogate code *points* are inert.
    uint16_t getNorm16(UChar32 c) const {
        return U_IS_LEAD(c) ?
            static_cast<uint16_t>(INERT) :
            UCPTRIE_FAST_GET(normTrie, UCPTRIE_16, c);
    }
    uint16_t getRawNorm16(UChar32 c) const { return UCPTRIE_FAST_GET(normTrie, UCPTRIE_16, c); }

    UNormalizationCheckResult getCompQuickCheck(uint16_t norm16) const {
        if(norm16<minNoNo || MIN_YES_YES_WITH_CC<=norm16) {
            return UNORM_YES;
        } else if(minMaybeYes<=norm16) {
            return UNORM_MAYBE;
        } else {
            return UNORM_NO;
        }
    }
    UBool isAlgorithmicNoNo(uint16_t norm16) const { return limitNoNo<=norm16 && norm16<minMaybeYes; }
    UBool isCompNo(uint16_t norm16) const { return minNoNo<=norm16 && norm16<minMaybeYes; }
    UBool isDecompYes(uint16_t norm16) const { return norm16<minYesNo || minMaybeYes<=norm16; }

    uint8_t getCC(uint16_t norm16) const {
        if(norm16>=MIN_NORMAL_MAYBE_YES) {
            return getCCFromNormalYesOrMaybe(norm16);
        }
        if(norm16<minNoNo || limitNoNo<=norm16) {
            return 0;
        }
        return getCCFromNoNo(norm16);
    }
    static uint8_t getCCFromNormalYesOrMaybe(uint16_t norm16) {
        return (uint8_t)(norm16 >> OFFSET_SHIFT);
    }
    static uint8_t getCCFromYesOrMaybe(uint16_t norm16) {
        return norm16>=MIN_NORMAL_MAYBE_YES ? getCCFromNormalYesOrMaybe(norm16) : 0;
    }
    uint8_t getCCFromYesOrMaybeCP(UChar32 c) const {
        if (c < minCompNoMaybeCP) { return 0; }
        return getCCFromYesOrMaybe(getNorm16(c));
    }

    /**
     * Returns the FCD data for code point c.
     * @param c A Unicode code point.
     * @return The lccc(c) in bits 15..8 and tccc(c) in bits 7..0.
     */
    uint16_t getFCD16(UChar32 c) const {
        if(c<minDecompNoCP) {
            return 0;
        } else if(c<=0xffff) {
            if(!singleLeadMightHaveNonZeroFCD16(c)) { return 0; }
        }
        return getFCD16FromNormData(c);
    }
    /**
     * Returns the FCD data for the next code point (post-increment).
     * Might skip only a lead surrogate rather than the whole surrogate pair if none of
     * the supplementary code points associated with the lead surrogate have non-zero FCD data.
     * @param s A valid pointer into a string. Requires s!=limit.
     * @param limit The end of the string, or NULL.
     * @return The lccc(c) in bits 15..8 and tccc(c) in bits 7..0.
     */
    uint16_t nextFCD16(const UChar *&s, const UChar *limit) const {
        UChar32 c=*s++;
        if(c<minDecompNoCP || !singleLeadMightHaveNonZeroFCD16(c)) {
            return 0;
        }
        UChar c2;
        if(U16_IS_LEAD(c) && s!=limit && U16_IS_TRAIL(c2=*s)) {
            c=U16_GET_SUPPLEMENTARY(c, c2);
            ++s;
        }
        return getFCD16FromNormData(c);
    }
    /**
     * Returns the FCD data for the previous code point (pre-decrement).
     * @param start The start of the string.
     * @param s A valid pointer into a string. Requires start<s.
     * @return The lccc(c) in bits 15..8 and tccc(c) in bits 7..0.
     */
    uint16_t previousFCD16(const UChar *start, const UChar *&s) const {
        UChar32 c=*--s;
        if(c<minDecompNoCP) {
            return 0;
        }
        if(!U16_IS_TRAIL(c)) {
            if(!singleLeadMightHaveNonZeroFCD16(c)) {
                return 0;
            }
        } else {
            UChar c2;
            if(start<s && U16_IS_LEAD(c2=*(s-1))) {
                c=U16_GET_SUPPLEMENTARY(c2, c);
                --s;
            }
        }
        return getFCD16FromNormData(c);
    }

    /** Returns TRUE if the single-or-lead code unit c might have non-zero FCD data. */
    UBool singleLeadMightHaveNonZeroFCD16(UChar32 lead) const {
        // 0<=lead<=0xffff
        uint8_t bits=smallFCD[lead>>8];
        if(bits==0) { return false; }
        return (UBool)((bits>>((lead>>5)&7))&1);
    }
    /** Returns the FCD value from the regular normalization data. */
    uint16_t getFCD16FromNormData(UChar32 c) const;

    /**
     * Gets the decomposition for one code point.
     * @param c code point
     * @param buffer out-only buffer for algorithmic decompositions
     * @param length out-only, takes the length of the decomposition, if any
     * @return pointer to the decomposition, or NULL if none
     */
    const UChar *getDecomposition(UChar32 c, UChar buffer[4], int32_t &length) const;

    /**
     * Gets the raw decomposition for one code point.
     * @param c code point
     * @param buffer out-only buffer for algorithmic decompositions
     * @param length out-only, takes the length of the decomposition, if any
     * @return pointer to the decomposition, or NULL if none
     */
    const UChar *getRawDecomposition(UChar32 c, UChar buffer[30], int32_t &length) const;

    UChar32 composePair(UChar32 a, UChar32 b) const;

    UBool isCanonSegmentStarter(UChar32 c) const;
    UBool getCanonStartSet(UChar32 c, UnicodeSet &set) const;

    enum {
        // Fixed norm16 values.
        MIN_YES_YES_WITH_CC=0xfe02,
        JAMO_VT=0xfe00,
        MIN_NORMAL_MAYBE_YES=0xfc00,
        JAMO_L=2,  // offset=1 hasCompBoundaryAfter=FALSE
        INERT=1,  // offset=0 hasCompBoundaryAfter=TRUE

        // norm16 bit 0 is comp-boundary-after.
        HAS_COMP_BOUNDARY_AFTER=1,
        OFFSET_SHIFT=1,

        // For algorithmic one-way mappings, norm16 bits 2..1 indicate the
        // tccc (0, 1, >1) for quick FCC boundary-after tests.
        DELTA_TCCC_0=0,
        DELTA_TCCC_1=2,
        DELTA_TCCC_GT_1=4,
        DELTA_TCCC_MASK=6,
        DELTA_SHIFT=3,

        MAX_DELTA=0x40
    };

    enum {
        // Byte offsets from the start of the data, after the generic header.
        IX_NORM_TRIE_OFFSET,
        IX_EXTRA_DATA_OFFSET,
        IX_SMALL_FCD_OFFSET,
        IX_RESERVED3_OFFSET,
        IX_RESERVED4_OFFSET,
        IX_RESERVED5_OFFSET,
        IX_RESERVED6_OFFSET,
        IX_TOTAL_SIZE,

        // Code point thresholds for quick check codes.
        IX_MIN_DECOMP_NO_CP,
        IX_MIN_COMP_NO_MAYBE_CP,

        // Norm16 value thresholds for quick check combinations and types of extra data.

        /** Mappings & compositions in [minYesNo..minYesNoMappingsOnly[. */
        IX_MIN_YES_NO,
        /** Mappings are comp-normalized. */
        IX_MIN_NO_NO,
        IX_LIMIT_NO_NO,
        IX_MIN_MAYBE_YES,

        /** Mappings only in [minYesNoMappingsOnly..minNoNo[. */
        IX_MIN_YES_NO_MAPPINGS_ONLY,
        /** Mappings are not comp-normalized but have a comp boundary before. */
        IX_MIN_NO_NO_COMP_BOUNDARY_BEFORE,
        /** Mappings do not have a comp boundary before. */
        IX_MIN_NO_NO_COMP_NO_MAYBE_CC,
        /** Mappings to the empty string. */
        IX_MIN_NO_NO_EMPTY,

        IX_MIN_LCCC_CP,
        IX_RESERVED19,
        IX_COUNT
    };

    enum {
        MAPPING_HAS_CCC_LCCC_WORD=0x80,
        MAPPING_HAS_RAW_MAPPING=0x40,
        // unused bit 0x20,
        MAPPING_LENGTH_MASK=0x1f
    };

    enum {
        COMP_1_LAST_TUPLE=0x8000,
        COMP_1_TRIPLE=1,
        COMP_1_TRAIL_LIMIT=0x3400,
        COMP_1_TRAIL_MASK=0x7ffe,
        COMP_1_TRAIL_SHIFT=9,  // 10-1 for the "triple" bit
        COMP_2_TRAIL_SHIFT=6,
        COMP_2_TRAIL_MASK=0xffc0
    };

    // higher-level functionality ------------------------------------------ ***

    // NFD without an NFD Normalizer2 instance.
    UnicodeString &decompose(const UnicodeString &src, UnicodeString &dest,
                             UErrorCode &errorCode) const;
    /**
     * Decomposes [src, limit[ and writes the result to dest.
     * limit can be NULL if src is NUL-terminated.
     * destLengthEstimate is the initial dest buffer capacity and can be -1.
     */
    void decompose(const UChar *src, const UChar *limit,
                   UnicodeString &dest, int32_t destLengthEstimate,
                   UErrorCode &errorCode) const;

    const UChar *decompose(const UChar *src, const UChar *limit,
                           ReorderingBuffer *buffer, UErrorCode &errorCode) const;
    void decomposeAndAppend(const UChar *src, const UChar *limit,
                            UBool doDecompose,
                            UnicodeString &safeMiddle,
                            ReorderingBuffer &buffer,
                            UErrorCode &errorCode) const;
    UBool compose(const UChar *src, const UChar *limit,
                  UBool onlyContiguous,
                  UBool doCompose,
                  ReorderingBuffer &buffer,
                  UErrorCode &errorCode) const;
    const UChar *composeQuickCheck(const UChar *src, const UChar *limit,
                                   UBool onlyContiguous,
                                   UNormalizationCheckResult *pQCResult) const;
    void composeAndAppend(const UChar *src, const UChar *limit,
                          UBool doCompose,
                          UBool onlyContiguous,
                          UnicodeString &safeMiddle,
                          ReorderingBuffer &buffer,
                          UErrorCode &errorCode) const;

    /** sink==nullptr: isNormalized() */
    UBool composeUTF8(uint32_t options, UBool onlyContiguous,
                      const uint8_t *src, const uint8_t *limit,
                      ByteSink *sink, icu::Edits *edits, UErrorCode &errorCode) const;

    const UChar *makeFCD(const UChar *src, const UChar *limit,
                         ReorderingBuffer *buffer, UErrorCode &errorCode) const;
    void makeFCDAndAppend(const UChar *src, const UChar *limit,
                          UBool doMakeFCD,
                          UnicodeString &safeMiddle,
                          ReorderingBuffer &buffer,
                          UErrorCode &errorCode) const;

    UBool hasDecompBoundaryBefore(UChar32 c) const;
    UBool norm16HasDecompBoundaryBefore(uint16_t norm16) const;
    UBool hasDecompBoundaryAfter(UChar32 c) const;
    UBool norm16HasDecompBoundaryAfter(uint16_t norm16) const;
    UBool isDecompInert(UChar32 c) const { return isDecompYesAndZeroCC(getNorm16(c)); }

    UBool hasCompBoundaryBefore(UChar32 c) const {
        return c<minCompNoMaybeCP || norm16HasCompBoundaryBefore(getNorm16(c));
    }
    UBool hasCompBoundaryAfter(UChar32 c, UBool onlyContiguous) const {
        return norm16HasCompBoundaryAfter(getNorm16(c), onlyContiguous);
    }
    UBool isCompInert(UChar32 c, UBool onlyContiguous) const {
        uint16_t norm16=getNorm16(c);
        return isCompYesAndZeroCC(norm16) &&
            (norm16 & HAS_COMP_BOUNDARY_AFTER) != 0 &&
            (!onlyContiguous || isInert(norm16) || *getMapping(norm16) <= 0x1ff);
    }

    UBool hasFCDBoundaryBefore(UChar32 c) const { return hasDecompBoundaryBefore(c); }
    UBool hasFCDBoundaryAfter(UChar32 c) const { return hasDecompBoundaryAfter(c); }
    UBool isFCDInert(UChar32 c) const { return getFCD16(c)<=1; }
private:
    friend class InitCanonIterData;
    friend class LcccContext;

    UBool isMaybe(uint16_t norm16) const { return minMaybeYes<=norm16 && norm16<=JAMO_VT; }
    UBool isMaybeOrNonZeroCC(uint16_t norm16) const { return norm16>=minMaybeYes; }
    static UBool isInert(uint16_t norm16) { return norm16==INERT; }
    static UBool isJamoL(uint16_t norm16) { return norm16==JAMO_L; }
    static UBool isJamoVT(uint16_t norm16) { return norm16==JAMO_VT; }
    uint16_t hangulLVT() const { return minYesNoMappingsOnly|HAS_COMP_BOUNDARY_AFTER; }
    UBool isHangulLV(uint16_t norm16) const { return norm16==minYesNo; }
    UBool isHangulLVT(uint16_t norm16) const {
        return norm16==hangulLVT();
    }
    UBool isCompYesAndZeroCC(uint16_t norm16) const { return norm16<minNoNo; }
    // UBool isCompYes(uint16_t norm16) const {
    //     return norm16>=MIN_YES_YES_WITH_CC || norm16<minNoNo;
    // }
    // UBool isCompYesOrMaybe(uint16_t norm16) const {
    //     return norm16<minNoNo || minMaybeYes<=norm16;
    // }
    // UBool hasZeroCCFromDecompYes(uint16_t norm16) const {
    //     return norm16<=MIN_NORMAL_MAYBE_YES || norm16==JAMO_VT;
    // }
    UBool isDecompYesAndZeroCC(uint16_t norm16) const {
        return norm16<minYesNo ||
               norm16==JAMO_VT ||
               (minMaybeYes<=norm16 && norm16<=MIN_NORMAL_MAYBE_YES);
    }
    /**
     * A little faster and simpler than isDecompYesAndZeroCC() but does not include
     * the MaybeYes which combine-forward and have ccc=0.
     * (Standard Unicode 10 normalization does not have such characters.)
     */
    UBool isMostDecompYesAndZeroCC(uint16_t norm16) const {
        return norm16<minYesNo || norm16==MIN_NORMAL_MAYBE_YES || norm16==JAMO_VT;
    }
    UBool isDecompNoAlgorithmic(uint16_t norm16) const { return norm16>=limitNoNo; }

    // For use with isCompYes().
    // Perhaps the compiler can combine the two tests for MIN_YES_YES_WITH_CC.
    // static uint8_t getCCFromYes(uint16_t norm16) {
    //     return norm16>=MIN_YES_YES_WITH_CC ? getCCFromNormalYesOrMaybe(norm16) : 0;
    // }
    uint8_t getCCFromNoNo(uint16_t norm16) const {
        const uint16_t *mapping=getMapping(norm16);
        if(*mapping&MAPPING_HAS_CCC_LCCC_WORD) {
            return (uint8_t)*(mapping-1);
        } else {
            return 0;
        }
    }
    // requires that the [cpStart..cpLimit[ character passes isCompYesAndZeroCC()
    uint8_t getTrailCCFromCompYesAndZeroCC(uint16_t norm16) const {
        if(norm16<=minYesNo) {
            return 0;  // yesYes and Hangul LV have ccc=tccc=0
        } else {
            // For Hangul LVT we harmlessly fetch a firstUnit with tccc=0 here.
            return (uint8_t)(*getMapping(norm16)>>8);  // tccc from yesNo
        }
    }
    uint8_t getPreviousTrailCC(const UChar *start, const UChar *p) const;
    uint8_t getPreviousTrailCC(const uint8_t *start, const uint8_t *p) const;

    // Requires algorithmic-NoNo.
    UChar32 mapAlgorithmic(UChar32 c, uint16_t norm16) const {
        return c+(norm16>>DELTA_SHIFT)-centerNoNoDelta;
    }
    UChar32 getAlgorithmicDelta(uint16_t norm16) const {
        return (norm16>>DELTA_SHIFT)-centerNoNoDelta;
    }

    // Requires minYesNo<norm16<limitNoNo.
    const uint16_t *getMapping(uint16_t norm16) const { return extraData+(norm16>>OFFSET_SHIFT); }
    const uint16_t *getCompositionsListForDecompYes(uint16_t norm16) const {
        if(norm16<JAMO_L || MIN_NORMAL_MAYBE_YES<=norm16) {
            return NULL;
        } else if(norm16<minMaybeYes) {
            return getMapping(norm16);  // for yesYes; if Jamo L: harmless empty list
        } else {
            return maybeYesCompositions+norm16-minMaybeYes;
        }
    }
    const uint16_t *getCompositionsListForComposite(uint16_t norm16) const {
        // A composite has both mapping & compositions list.
        const uint16_t *list=getMapping(norm16);
        return list+  // mapping pointer
            1+  // +1 to skip the first unit with the mapping length
            (*list&MAPPING_LENGTH_MASK);  // + mapping length
    }
    const uint16_t *getCompositionsListForMaybe(uint16_t norm16) const {
        // minMaybeYes<=norm16<MIN_NORMAL_MAYBE_YES
        return maybeYesCompositions+((norm16-minMaybeYes)>>OFFSET_SHIFT);
    }
    /**
     * @param c code point must have compositions
     * @return compositions list pointer
     */
    const uint16_t *getCompositionsList(uint16_t norm16) const {
        return isDecompYes(norm16) ?
                getCompositionsListForDecompYes(norm16) :
                getCompositionsListForComposite(norm16);
    }

    const UChar *copyLowPrefixFromNulTerminated(const UChar *src,
                                                UChar32 minNeedDataCP,
                                                ReorderingBuffer *buffer,
                                                UErrorCode &errorCode) const;
    const UChar *decomposeShort(const UChar *src, const UChar *limit,
                                UBool stopAtCompBoundary, UBool onlyContiguous,
                                ReorderingBuffer &buffer, UErrorCode &errorCode) const;
    UBool decompose(UChar32 c, uint16_t norm16,
                    ReorderingBuffer &buffer, UErrorCode &errorCode) const;

    const uint8_t *decomposeShort(const uint8_t *src, const uint8_t *limit,
                                  UBool stopAtCompBoundary, UBool onlyContiguous,
                                  ReorderingBuffer &buffer, UErrorCode &errorCode) const;

    static int32_t combine(const uint16_t *list, UChar32 trail);
    void addComposites(const uint16_t *list, UnicodeSet &set) const;
    void recompose(ReorderingBuffer &buffer, int32_t recomposeStartIndex,
                   UBool onlyContiguous) const;

    UBool hasCompBoundaryBefore(UChar32 c, uint16_t norm16) const {
        return c<minCompNoMaybeCP || norm16HasCompBoundaryBefore(norm16);
    }
    UBool norm16HasCompBoundaryBefore(uint16_t norm16) const  {
        return norm16 < minNoNoCompNoMaybeCC || isAlgorithmicNoNo(norm16);
    }
    UBool hasCompBoundaryBefore(const UChar *src, const UChar *limit) const;
    UBool hasCompBoundaryBefore(const uint8_t *src, const uint8_t *limit) const;
    UBool hasCompBoundaryAfter(const UChar *start, const UChar *p,
                               UBool onlyContiguous) const;
    UBool hasCompBoundaryAfter(const uint8_t *start, const uint8_t *p,
                               UBool onlyContiguous) const;
    UBool norm16HasCompBoundaryAfter(uint16_t norm16, UBool onlyContiguous) const {
        return (norm16 & HAS_COMP_BOUNDARY_AFTER) != 0 &&
            (!onlyContiguous || isTrailCC01ForCompBoundaryAfter(norm16));
    }
    /** For FCC: Given norm16 HAS_COMP_BOUNDARY_AFTER, does it have tccc<=1? */
    UBool isTrailCC01ForCompBoundaryAfter(uint16_t norm16) const {
        return isInert(norm16) || (isDecompNoAlgorithmic(norm16) ?
            (norm16 & DELTA_TCCC_MASK) <= DELTA_TCCC_1 : *getMapping(norm16) <= 0x1ff);
    }

    const UChar *findPreviousCompBoundary(const UChar *start, const UChar *p, UBool onlyContiguous) const;
    const UChar *findNextCompBoundary(const UChar *p, const UChar *limit, UBool onlyContiguous) const;

    const UChar *findPreviousFCDBoundary(const UChar *start, const UChar *p) const;
    const UChar *findNextFCDBoundary(const UChar *p, const UChar *limit) const;

    void makeCanonIterDataFromNorm16(UChar32 start, UChar32 end, const uint16_t norm16,
                                     CanonIterData &newData, UErrorCode &errorCode) const;

    int32_t getCanonValue(UChar32 c) const;
    const UnicodeSet &getCanonStartSet(int32_t n) const;

    // UVersionInfo dataVersion;

    // BMP code point thresholds for quick check loops looking at single UTF-16 code units.
    UChar minDecompNoCP;
    UChar minCompNoMaybeCP;
    UChar minLcccCP;

    // Norm16 value thresholds for quick check combinations and types of extra data.
    uint16_t minYesNo;
    uint16_t minYesNoMappingsOnly;
    uint16_t minNoNo;
    uint16_t minNoNoCompBoundaryBefore;
    uint16_t minNoNoCompNoMaybeCC;
    uint16_t minNoNoEmpty;
    uint16_t limitNoNo;
    uint16_t centerNoNoDelta;
    uint16_t minMaybeYes;

    const UCPTrie *normTrie;
    const uint16_t *maybeYesCompositions;
    const uint16_t *extraData;  // mappings and/or compositions for yesYes, yesNo & noNo characters
    const uint8_t *smallFCD;  // [0x100] one bit per 32 BMP code points, set if any FCD!=0

    UInitOnce       fCanonIterDataInitOnce;
    CanonIterData  *fCanonIterData;
};

// bits in canonIterData
#define CANON_NOT_SEGMENT_STARTER 0x80000000
#define CANON_HAS_COMPOSITIONS 0x40000000
#define CANON_HAS_SET 0x200000
#define CANON_VALUE_MASK 0x1fffff

/**
 * ICU-internal shortcut for quick access to standard Unicode normalization.
 */
class U_COMMON_API Normalizer2Factory {
public:
    static const Normalizer2 *getFCDInstance(UErrorCode &errorCode);
    static const Normalizer2 *getFCCInstance(UErrorCode &errorCode);
    static const Normalizer2 *getNoopInstance(UErrorCode &errorCode);

    static const Normalizer2 *getInstance(UNormalizationMode mode, UErrorCode &errorCode);

    static const Normalizer2Impl *getNFCImpl(UErrorCode &errorCode);
    static const Normalizer2Impl *getNFKCImpl(UErrorCode &errorCode);
    static const Normalizer2Impl *getNFKC_CFImpl(UErrorCode &errorCode);

    // Get the Impl instance of the Normalizer2.
    // Must be used only when it is known that norm2 is a Normalizer2WithImpl instance.
    static const Normalizer2Impl *getImpl(const Normalizer2 *norm2);
private:
    Normalizer2Factory();  // No instantiation.
};

U_NAMESPACE_END

U_CAPI int32_t U_EXPORT2
unorm2_swap(const UDataSwapper *ds,
            const void *inData, int32_t length, void *outData,
            UErrorCode *pErrorCode);

/**
 * Get the NF*_QC property for a code point, for u_getIntPropertyValue().
 * @internal
 */
U_CFUNC UNormalizationCheckResult
unorm_getQuickCheck(UChar32 c, UNormalizationMode mode);

/**
 * Gets the 16-bit FCD value (lead & trail CCs) for a code point, for u_getIntPropertyValue().
 * @internal
 */
U_CFUNC uint16_t
unorm_getFCD16(UChar32 c);

/**
 * Format of Normalizer2 .nrm data files.
 * Format version 4.0.
 *
 * Normalizer2 .nrm data files provide data for the Unicode Normalization algorithms.
 * ICU ships with data files for standard Unicode Normalization Forms
 * NFC and NFD (nfc.nrm), NFKC and NFKD (nfkc.nrm) and NFKC_Casefold (nfkc_cf.nrm).
 * Custom (application-specific) data can be built into additional .nrm files
 * with the gennorm2 build tool.
 * ICU ships with one such file, uts46.nrm, for the implementation of UTS #46.
 *
 * Normalizer2.getInstance() causes a .nrm file to be loaded, unless it has been
 * cached already. Internally, Normalizer2Impl.load() reads the .nrm file.
 *
 * A .nrm file begins with a standard ICU data file header
 * (DataHeader, see ucmndata.h and unicode/udata.h).
 * The UDataInfo.dataVersion field usually contains the Unicode version
 * for which the data was generated.
 *
 * After the header, the file contains the following parts.
 * Constants are defined as enum values of the Normalizer2Impl class.
 *
 * Many details of the data structures are described in the design doc
 * which is at http://site.icu-project.org/design/normalization/custom
 *
 * int32_t indexes[indexesLength]; -- indexesLength=indexes[IX_NORM_TRIE_OFFSET]/4;
 *
 *      The first eight indexes are byte offsets in ascending order.
 *      Each byte offset marks the start of the next part in the data file,
 *      and the end of the previous one.
 *      When two consecutive byte offsets are the same, then the corresponding part is empty.
 *      Byte offsets are offsets from after the header,
 *      that is, from the beginning of the indexes[].
 *      Each part starts at an offset with proper alignment for its data.
 *      If necessary, the previous part may include padding bytes to achieve this alignment.
 *
 *      minDecompNoCP=indexes[IX_MIN_DECOMP_NO_CP] is the lowest code point
 *      with a decomposition mapping, that is, with NF*D_QC=No.
 *      minCompNoMaybeCP=indexes[IX_MIN_COMP_NO_MAYBE_CP] is the lowest code point
 *      with NF*C_QC=No (has a one-way mapping) or Maybe (combines backward).
 *      minLcccCP=indexes[IX_MIN_LCCC_CP] (index 18, new in formatVersion 3)
 *      is the lowest code point with lccc!=0.
 *
 *      The next eight indexes are thresholds of 16-bit trie values for ranges of
 *      values indicating multiple normalization properties.
 *      They are listed here in threshold order, not in the order they are stored in the indexes.
 *          minYesNo=indexes[IX_MIN_YES_NO];
 *          minYesNoMappingsOnly=indexes[IX_MIN_YES_NO_MAPPINGS_ONLY];
 *          minNoNo=indexes[IX_MIN_NO_NO];
 *          minNoNoCompBoundaryBefore=indexes[IX_MIN_NO_NO_COMP_BOUNDARY_BEFORE];
 *          minNoNoCompNoMaybeCC=indexes[IX_MIN_NO_NO_COMP_NO_MAYBE_CC];
 *          minNoNoEmpty=indexes[IX_MIN_NO_NO_EMPTY];
 *          limitNoNo=indexes[IX_LIMIT_NO_NO];
 *          minMaybeYes=indexes[IX_MIN_MAYBE_YES];
 *      See the normTrie description below and the design doc for details.
 *
 * UCPTrie normTrie; -- see ucptrie_impl.h and ucptrie.h, same as Java CodePointTrie
 *
 *      The trie holds the main normalization data. Each code point is mapped to a 16-bit value.
 *      Rather than using independent bits in the value (which would require more than 16 bits),
 *      information is extracted primarily via range checks.
 *      Except, format version 3 uses bit 0 for hasCompBoundaryAfter().
 *      For example, a 16-bit value norm16 in the range minYesNo<=norm16<minNoNo
 *      means that the character has NF*C_QC=Yes and NF*D_QC=No properties,
 *      which means it has a two-way (round-trip) decomposition mapping.
 *      Values in the range 2<=norm16<limitNoNo are also directly indexes into the extraData
 *      pointing to mappings, compositions lists, or both.
 *      Value norm16==INERT (0 in versions 1 & 2, 1 in version 3)
 *      means that the character is normalization-inert, that is,
 *      it does not have a mapping, does not participate in composition, has a zero
 *      canonical combining class, and forms a boundary where text before it and after it
 *      can be normalized independently.
 *      For details about how multiple properties are encoded in 16-bit values
 *      see the design doc.
 *      Note that the encoding cannot express all combinations of the properties involved;
 *      it only supports those combinations that are allowed by
 *      the Unicode Normalization algorithms. Details are in the design doc as well.
 *      The gennorm2 tool only builds .nrm files for data that conforms to the limitations.
 *
 *      The trie has a value for each lead surrogate code unit representing the "worst case"
 *      properties of the 1024 supplementary characters whose UTF-16 form starts with
 *      the lead surrogate. If all of the 1024 supplementary characters are normalization-inert,
 *      then their lead surrogate code unit has the trie value INERT.
 *      When the lead surrogate unit's value exceeds the quick check minimum during processing,
 *      the properties for the full supplementary code point need to be looked up.
 *
 * uint16_t maybeYesCompositions[MIN_NORMAL_MAYBE_YES-minMaybeYes];
 * uint16_t extraData[];
 *
 *      There is only one byte offset for the end of these two arrays.
 *      The split between them is given by the constant and variable mentioned above.
 *      In version 3, the difference must be shifted right by OFFSET_SHIFT.
 *
 *      The maybeYesCompositions array contains compositions lists for characters that
 *      combine both forward (as starters in composition pairs)
 *      and backward (as trailing characters in composition pairs).
 *      Such characters do not occur in Unicode 5.2 but are allowed by
 *      the Unicode Normalization algorithms.
 *      If there are no such characters, then minMaybeYes==MIN_NORMAL_MAYBE_YES
 *      and the maybeYesCompositions array is empty.
 *      If there are such characters, then minMaybeYes is subtracted from their norm16 values
 *      to get the index into this array.
 *
 *      The extraData array contains compositions lists for "YesYes" characters,
 *      followed by mappings and optional compositions lists for "YesNo" characters,
 *      followed by only mappings for "NoNo" characters.
 *      (Referring to pairs of NFC/NFD quick check values.)
 *      The norm16 values of those characters are directly indexes into the extraData array.
 *      In version 3, the norm16 values must be shifted right by OFFSET_SHIFT
 *      for accessing extraData.
 *
 *      The data structures for compositions lists and mappings are described in the design doc.
 *
 * uint8_t smallFCD[0x100]; -- new in format version 2
 *
 *      This is a bit set to help speed up FCD value lookups in the absence of a full
 *      UTrie2 or other large data structure with the full FCD value mapping.
 *
 *      Each smallFCD bit is set if any of the corresponding 32 BMP code points
 *      has a non-zero FCD value (lccc!=0 or tccc!=0).
 *      Bit 0 of smallFCD[0] is for U+0000..U+001F. Bit 7 of smallFCD[0xff] is for U+FFE0..U+FFFF.
 *      A bit for 32 lead surrogates is set if any of the 32k corresponding
 *      _supplementary_ code points has a non-zero FCD value.
 *
 *      This bit set is most useful for the large blocks of CJK characters with FCD=0.
 *
 * Changes from format version 1 to format version 2 ---------------------------
 *
 * - Addition of data for raw (not recursively decomposed) mappings.
 *   + The MAPPING_NO_COMP_BOUNDARY_AFTER bit in the extraData is now also set when
 *     the mapping is to an empty string or when the character combines-forward.
 *     This subsumes the one actual use of the MAPPING_PLUS_COMPOSITION_LIST bit which
 *     is then repurposed for the MAPPING_HAS_RAW_MAPPING bit.
 *   + For details see the design doc.
 * - Addition of indexes[IX_MIN_YES_NO_MAPPINGS_ONLY] and separation of the yesNo extraData into
 *   distinct ranges (combines-forward vs. not)
 *   so that a range check can be used to find out if there is a compositions list.
 *   This is fully equivalent with formatVersion 1's MAPPING_PLUS_COMPOSITION_LIST flag.
 *   It is needed for the new (in ICU 49) composePair(), not for other normalization.
 * - Addition of the smallFCD[] bit set.
 *
 * Changes from format version 2 to format version 3 (ICU 60) ------------------
 *
 * - norm16 bit 0 indicates hasCompBoundaryAfter(),
 *   except that for contiguous composition (FCC) the tccc must be checked as well.
 *   Data indexes and ccc values are shifted left by one (OFFSET_SHIFT).
 *   Thresholds like minNoNo are tested before shifting.
 *
 * - Algorithmic mapping deltas are shifted left by two more bits (total DELTA_SHIFT),
 *   to make room for two bits (three values) indicating whether the tccc is 0, 1, or greater.
 *   See DELTA_TCCC_MASK etc.
 *   This helps with fetching tccc/FCD values and FCC hasCompBoundaryAfter().
 *   minMaybeYes is 8-aligned so that the DELTA_TCCC_MASK bits can be tested directly.
 *
 * - Algorithmic mappings are only used for mapping to "comp yes and ccc=0" characters,
 *   and ASCII characters are mapped algorithmically only to other ASCII characters.
 *   This helps with hasCompBoundaryBefore() and compose() fast paths.
 *   It is never necessary any more to loop for algorithmic mappings.
 *
 * - Addition of indexes[IX_MIN_NO_NO_COMP_BOUNDARY_BEFORE],
 *   indexes[IX_MIN_NO_NO_COMP_NO_MAYBE_CC], and indexes[IX_MIN_NO_NO_EMPTY],
 *   and separation of the noNo extraData into distinct ranges.
 *   With this, the noNo norm16 value indicates whether the mapping is
 *   compose-normalized, not normalized but hasCompBoundaryBefore(),
 *   not even that, or maps to an empty string.
 *   hasCompBoundaryBefore() can be determined solely from the norm16 value.
 *
 * - The norm16 value for Hangul LVT is now different from that for Hangul LV,
 *   so that hasCompBoundaryAfter() need not check for the syllable type.
 *   For Hangul LV, minYesNo continues to be used (no comp-boundary-after).
 *   For Hangul LVT, minYesNoMappingsOnly|HAS_COMP_BOUNDARY_AFTER is used.
 *   The extraData units at these indexes are set to firstUnit=2 and firstUnit=3, respectively,
 *   to simplify some code.
 *
 * - The extraData firstUnit bit 5 is no longer necessary
 *   (norm16 bit 0 used instead of firstUnit MAPPING_NO_COMP_BOUNDARY_AFTER),
 *   is reserved again, and always set to 0.
 *
 * - Addition of indexes[IX_MIN_LCCC_CP], the first code point where lccc!=0.
 *   This used to be hardcoded to U+0300, but in data like NFKC_Casefold it is lower:
 *   U+00AD Soft Hyphen maps to an empty string,
 *   which is artificially assigned "worst case" values lccc=1 and tccc=255.
 *
 * - A mapping to an empty string has explicit lccc=1 and tccc=255 values.
 *
 * Changes from format version 3 to format version 4 (ICU 63) ------------------
 *
 * Switched from UTrie2 to UCPTrie/CodePointTrie.
 *
 * The new trie no longer stores different values for surrogate code *units* vs.
 * surrogate code *points*.
 * Lead surrogates still have values for optimized UTF-16 string processing.
 * When looking up code point properties, the code now checks for lead surrogates and
 * treats them as inert.
 *
 * gennorm2 now has to reject mappings for surrogate code points.
 * UTS #46 maps unpaired surrogates to U+FFFD in code rather than via its
 * custom normalization data file.
 */

#endif  /* !UCONFIG_NO_NORMALIZATION */
#endif  /* __NORMALIZER2IMPL_H__ */