DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/**
 *******************************************************************************
 * Copyright (C) 2006-2016, International Business Machines Corporation
 * and others. All Rights Reserved.
 *******************************************************************************
 */

#include <utility>

#include "unicode/utypes.h"

#if !UCONFIG_NO_BREAK_ITERATION

#include "brkeng.h"
#include "dictbe.h"
#include "unicode/uniset.h"
#include "unicode/chariter.h"
#include "unicode/ubrk.h"
#include "uvectr32.h"
#include "uvector.h"
#include "uassert.h"
#include "unicode/normlzr.h"
#include "cmemory.h"
#include "dictionarydata.h"

U_NAMESPACE_BEGIN

/*
 ******************************************************************
 */

DictionaryBreakEngine::DictionaryBreakEngine() {
}

DictionaryBreakEngine::~DictionaryBreakEngine() {
}

UBool
DictionaryBreakEngine::handles(UChar32 c) const {
    return fSet.contains(c);
}

int32_t
DictionaryBreakEngine::findBreaks( UText *text,
                                 int32_t startPos,
                                 int32_t endPos,
                                 UVector32 &foundBreaks ) const {
    (void)startPos;            // TODO: remove this param?
    int32_t result = 0;

    // Find the span of characters included in the set.
    //   The span to break begins at the current position in the text, and
    //   extends towards the start or end of the text, depending on 'reverse'.

    int32_t start = (int32_t)utext_getNativeIndex(text);
    int32_t current;
    int32_t rangeStart;
    int32_t rangeEnd;
    UChar32 c = utext_current32(text);
    while((current = (int32_t)utext_getNativeIndex(text)) < endPos && fSet.contains(c)) {
        utext_next32(text);         // TODO:  recast loop for postincrement
        c = utext_current32(text);
    }
    rangeStart = start;
    rangeEnd = current;
    result = divideUpDictionaryRange(text, rangeStart, rangeEnd, foundBreaks);
    utext_setNativeIndex(text, current);
    
    return result;
}

void
DictionaryBreakEngine::setCharacters( const UnicodeSet &set ) {
    fSet = set;
    // Compact for caching
    fSet.compact();
}

/*
 ******************************************************************
 * PossibleWord
 */

// Helper class for improving readability of the Thai/Lao/Khmer word break
// algorithm. The implementation is completely inline.

// List size, limited by the maximum number of words in the dictionary
// that form a nested sequence.
static const int32_t POSSIBLE_WORD_LIST_MAX = 20;

class PossibleWord {
private:
    // list of word candidate lengths, in increasing length order
    // TODO: bytes would be sufficient for word lengths.
    int32_t   count;      // Count of candidates
    int32_t   prefix;     // The longest match with a dictionary word
    int32_t   offset;     // Offset in the text of these candidates
    int32_t   mark;       // The preferred candidate's offset
    int32_t   current;    // The candidate we're currently looking at
    int32_t   cuLengths[POSSIBLE_WORD_LIST_MAX];   // Word Lengths, in code units.
    int32_t   cpLengths[POSSIBLE_WORD_LIST_MAX];   // Word Lengths, in code points.

public:
    PossibleWord() : count(0), prefix(0), offset(-1), mark(0), current(0) {}
    ~PossibleWord() {}
  
    // Fill the list of candidates if needed, select the longest, and return the number found
    int32_t   candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd );
  
    // Select the currently marked candidate, point after it in the text, and invalidate self
    int32_t   acceptMarked( UText *text );
  
    // Back up from the current candidate to the next shorter one; return TRUE if that exists
    // and point the text after it
    UBool     backUp( UText *text );
  
    // Return the longest prefix this candidate location shares with a dictionary word
    // Return value is in code points.
    int32_t   longestPrefix() { return prefix; }
  
    // Mark the current candidate as the one we like
    void      markCurrent() { mark = current; }
    
    // Get length in code points of the marked word.
    int32_t   markedCPLength() { return cpLengths[mark]; }
};


int32_t PossibleWord::candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ) {
    // TODO: If getIndex is too slow, use offset < 0 and add discardAll()
    int32_t start = (int32_t)utext_getNativeIndex(text);
    if (start != offset) {
        offset = start;
        count = dict->matches(text, rangeEnd-start, UPRV_LENGTHOF(cuLengths), cuLengths, cpLengths, NULL, &prefix);
        // Dictionary leaves text after longest prefix, not longest word. Back up.
        if (count <= 0) {
            utext_setNativeIndex(text, start);
        }
    }
    if (count > 0) {
        utext_setNativeIndex(text, start+cuLengths[count-1]);
    }
    current = count-1;
    mark = current;
    return count;
}

int32_t
PossibleWord::acceptMarked( UText *text ) {
    utext_setNativeIndex(text, offset + cuLengths[mark]);
    return cuLengths[mark];
}


UBool
PossibleWord::backUp( UText *text ) {
    if (current > 0) {
        utext_setNativeIndex(text, offset + cuLengths[--current]);
        return TRUE;
    }
    return FALSE;
}

/*
 ******************************************************************
 * ThaiBreakEngine
 */

// How many words in a row are "good enough"?
static const int32_t THAI_LOOKAHEAD = 3;

// Will not combine a non-word with a preceding dictionary word longer than this
static const int32_t THAI_ROOT_COMBINE_THRESHOLD = 3;

// Will not combine a non-word that shares at least this much prefix with a
// dictionary word, with a preceding word
static const int32_t THAI_PREFIX_COMBINE_THRESHOLD = 3;

// Ellision character
static const int32_t THAI_PAIYANNOI = 0x0E2F;

// Repeat character
static const int32_t THAI_MAIYAMOK = 0x0E46;

// Minimum word size
static const int32_t THAI_MIN_WORD = 2;

// Minimum number of characters for two words
static const int32_t THAI_MIN_WORD_SPAN = THAI_MIN_WORD * 2;

ThaiBreakEngine::ThaiBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
    : DictionaryBreakEngine(),
      fDictionary(adoptDictionary)
{
    fThaiWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]]"), status);
    if (U_SUCCESS(status)) {
        setCharacters(fThaiWordSet);
    }
    fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]&[:M:]]"), status);
    fMarkSet.add(0x0020);
    fEndWordSet = fThaiWordSet;
    fEndWordSet.remove(0x0E31);             // MAI HAN-AKAT
    fEndWordSet.remove(0x0E40, 0x0E44);     // SARA E through SARA AI MAIMALAI
    fBeginWordSet.add(0x0E01, 0x0E2E);      // KO KAI through HO NOKHUK
    fBeginWordSet.add(0x0E40, 0x0E44);      // SARA E through SARA AI MAIMALAI
    fSuffixSet.add(THAI_PAIYANNOI);
    fSuffixSet.add(THAI_MAIYAMOK);

    // Compact for caching.
    fMarkSet.compact();
    fEndWordSet.compact();
    fBeginWordSet.compact();
    fSuffixSet.compact();
}

ThaiBreakEngine::~ThaiBreakEngine() {
    delete fDictionary;
}

int32_t
ThaiBreakEngine::divideUpDictionaryRange( UText *text,
                                                int32_t rangeStart,
                                                int32_t rangeEnd,
                                                UVector32 &foundBreaks ) const {
    utext_setNativeIndex(text, rangeStart);
    utext_moveIndex32(text, THAI_MIN_WORD_SPAN);
    if (utext_getNativeIndex(text) >= rangeEnd) {
        return 0;       // Not enough characters for two words
    }
    utext_setNativeIndex(text, rangeStart);


    uint32_t wordsFound = 0;
    int32_t cpWordLength = 0;    // Word Length in Code Points.
    int32_t cuWordLength = 0;    // Word length in code units (UText native indexing)
    int32_t current;
    UErrorCode status = U_ZERO_ERROR;
    PossibleWord words[THAI_LOOKAHEAD];
    
    utext_setNativeIndex(text, rangeStart);
    
    while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
        cpWordLength = 0;
        cuWordLength = 0;

        // Look for candidate words at the current position
        int32_t candidates = words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
        
        // If we found exactly one, use that
        if (candidates == 1) {
            cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text);
            cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength();
            wordsFound += 1;
        }
        // If there was more than one, see which one can take us forward the most words
        else if (candidates > 1) {
            // If we're already at the end of the range, we're done
            if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
                goto foundBest;
            }
            do {
                int32_t wordsMatched = 1;
                if (words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
                    if (wordsMatched < 2) {
                        // Followed by another dictionary word; mark first word as a good candidate
                        words[wordsFound%THAI_LOOKAHEAD].markCurrent();
                        wordsMatched = 2;
                    }
                    
                    // If we're already at the end of the range, we're done
                    if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
                        goto foundBest;
                    }
                    
                    // See if any of the possible second words is followed by a third word
                    do {
                        // If we find a third word, stop right away
                        if (words[(wordsFound + 2) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
                            words[wordsFound % THAI_LOOKAHEAD].markCurrent();
                            goto foundBest;
                        }
                    }
                    while (words[(wordsFound + 1) % THAI_LOOKAHEAD].backUp(text));
                }
            }
            while (words[wordsFound % THAI_LOOKAHEAD].backUp(text));
foundBest:
            // Set UText position to after the accepted word.
            cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text);
            cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength();
            wordsFound += 1;
        }
        
        // We come here after having either found a word or not. We look ahead to the
        // next word. If it's not a dictionary word, we will combine it with the word we
        // just found (if there is one), but only if the preceding word does not exceed
        // the threshold.
        // The text iterator should now be positioned at the end of the word we found.
        
        UChar32 uc = 0;
        if ((int32_t)utext_getNativeIndex(text) < rangeEnd &&  cpWordLength < THAI_ROOT_COMBINE_THRESHOLD) {
            // if it is a dictionary word, do nothing. If it isn't, then if there is
            // no preceding word, or the non-word shares less than the minimum threshold
            // of characters with a dictionary word, then scan to resynchronize
            if (words[wordsFound % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
                  && (cuWordLength == 0
                      || words[wordsFound%THAI_LOOKAHEAD].longestPrefix() < THAI_PREFIX_COMBINE_THRESHOLD)) {
                // Look for a plausible word boundary
                int32_t remaining = rangeEnd - (current+cuWordLength);
                UChar32 pc;
                int32_t chars = 0;
                for (;;) {
                    int32_t pcIndex = (int32_t)utext_getNativeIndex(text);
                    pc = utext_next32(text);
                    int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex;
                    chars += pcSize;
                    remaining -= pcSize;
                    if (remaining <= 0) {
                        break;
                    }
                    uc = utext_current32(text);
                    if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
                        // Maybe. See if it's in the dictionary.
                        // NOTE: In the original Apple code, checked that the next
                        // two characters after uc were not 0x0E4C THANTHAKHAT before
                        // checking the dictionary. That is just a performance filter,
                        // but it's not clear it's faster than checking the trie.
                        int32_t num_candidates = words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
                        utext_setNativeIndex(text, current + cuWordLength + chars);
                        if (num_candidates > 0) {
                            break;
                        }
                    }
                }
                
                // Bump the word count if there wasn't already one
                if (cuWordLength <= 0) {
                    wordsFound += 1;
                }
                
                // Update the length with the passed-over characters
                cuWordLength += chars;
            }
            else {
                // Back up to where we were for next iteration
                utext_setNativeIndex(text, current+cuWordLength);
            }
        }
        
        // Never stop before a combining mark.
        int32_t currPos;
        while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
            utext_next32(text);
            cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos;
        }
        
        // Look ahead for possible suffixes if a dictionary word does not follow.
        // We do this in code rather than using a rule so that the heuristic
        // resynch continues to function. For example, one of the suffix characters
        // could be a typo in the middle of a word.
        if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cuWordLength > 0) {
            if (words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
                && fSuffixSet.contains(uc = utext_current32(text))) {
                if (uc == THAI_PAIYANNOI) {
                    if (!fSuffixSet.contains(utext_previous32(text))) {
                        // Skip over previous end and PAIYANNOI
                        utext_next32(text);
                        int32_t paiyannoiIndex = (int32_t)utext_getNativeIndex(text);
                        utext_next32(text);
                        cuWordLength += (int32_t)utext_getNativeIndex(text) - paiyannoiIndex;    // Add PAIYANNOI to word
                        uc = utext_current32(text);     // Fetch next character
                    }
                    else {
                        // Restore prior position
                        utext_next32(text);
                    }
                }
                if (uc == THAI_MAIYAMOK) {
                    if (utext_previous32(text) != THAI_MAIYAMOK) {
                        // Skip over previous end and MAIYAMOK
                        utext_next32(text);
                        int32_t maiyamokIndex = (int32_t)utext_getNativeIndex(text);
                        utext_next32(text);
                        cuWordLength += (int32_t)utext_getNativeIndex(text) - maiyamokIndex;    // Add MAIYAMOK to word
                    }
                    else {
                        // Restore prior position
                        utext_next32(text);
                    }
                }
            }
            else {
                utext_setNativeIndex(text, current+cuWordLength);
            }
        }

        // Did we find a word on this iteration? If so, push it on the break stack
        if (cuWordLength > 0) {
            foundBreaks.push((current+cuWordLength), status);
        }
    }

    // Don't return a break for the end of the dictionary range if there is one there.
    if (foundBreaks.peeki() >= rangeEnd) {
        (void) foundBreaks.popi();
        wordsFound -= 1;
    }

    return wordsFound;
}

/*
 ******************************************************************
 * LaoBreakEngine
 */

// How many words in a row are "good enough"?
static const int32_t LAO_LOOKAHEAD = 3;

// Will not combine a non-word with a preceding dictionary word longer than this
static const int32_t LAO_ROOT_COMBINE_THRESHOLD = 3;

// Will not combine a non-word that shares at least this much prefix with a
// dictionary word, with a preceding word
static const int32_t LAO_PREFIX_COMBINE_THRESHOLD = 3;

// Minimum word size
static const int32_t LAO_MIN_WORD = 2;

// Minimum number of characters for two words
static const int32_t LAO_MIN_WORD_SPAN = LAO_MIN_WORD * 2;

LaoBreakEngine::LaoBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
    : DictionaryBreakEngine(),
      fDictionary(adoptDictionary)
{
    fLaoWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Laoo:]&[:LineBreak=SA:]]"), status);
    if (U_SUCCESS(status)) {
        setCharacters(fLaoWordSet);
    }
    fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Laoo:]&[:LineBreak=SA:]&[:M:]]"), status);
    fMarkSet.add(0x0020);
    fEndWordSet = fLaoWordSet;
    fEndWordSet.remove(0x0EC0, 0x0EC4);     // prefix vowels
    fBeginWordSet.add(0x0E81, 0x0EAE);      // basic consonants (including holes for corresponding Thai characters)
    fBeginWordSet.add(0x0EDC, 0x0EDD);      // digraph consonants (no Thai equivalent)
    fBeginWordSet.add(0x0EC0, 0x0EC4);      // prefix vowels

    // Compact for caching.
    fMarkSet.compact();
    fEndWordSet.compact();
    fBeginWordSet.compact();
}

LaoBreakEngine::~LaoBreakEngine() {
    delete fDictionary;
}

int32_t
LaoBreakEngine::divideUpDictionaryRange( UText *text,
                                                int32_t rangeStart,
                                                int32_t rangeEnd,
                                                UVector32 &foundBreaks ) const {
    if ((rangeEnd - rangeStart) < LAO_MIN_WORD_SPAN) {
        return 0;       // Not enough characters for two words
    }

    uint32_t wordsFound = 0;
    int32_t cpWordLength = 0;
    int32_t cuWordLength = 0;
    int32_t current;
    UErrorCode status = U_ZERO_ERROR;
    PossibleWord words[LAO_LOOKAHEAD];
    
    utext_setNativeIndex(text, rangeStart);
    
    while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
        cuWordLength = 0;
        cpWordLength = 0;

        // Look for candidate words at the current position
        int32_t candidates = words[wordsFound%LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
        
        // If we found exactly one, use that
        if (candidates == 1) {
            cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text);
            cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength();
            wordsFound += 1;
        }
        // If there was more than one, see which one can take us forward the most words
        else if (candidates > 1) {
            // If we're already at the end of the range, we're done
            if (utext_getNativeIndex(text) >= rangeEnd) {
                goto foundBest;
            }
            do {
                int32_t wordsMatched = 1;
                if (words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
                    if (wordsMatched < 2) {
                        // Followed by another dictionary word; mark first word as a good candidate
                        words[wordsFound%LAO_LOOKAHEAD].markCurrent();
                        wordsMatched = 2;
                    }
                    
                    // If we're already at the end of the range, we're done
                    if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
                        goto foundBest;
                    }
                    
                    // See if any of the possible second words is followed by a third word
                    do {
                        // If we find a third word, stop right away
                        if (words[(wordsFound + 2) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
                            words[wordsFound % LAO_LOOKAHEAD].markCurrent();
                            goto foundBest;
                        }
                    }
                    while (words[(wordsFound + 1) % LAO_LOOKAHEAD].backUp(text));
                }
            }
            while (words[wordsFound % LAO_LOOKAHEAD].backUp(text));
foundBest:
            cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text);
            cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength();
            wordsFound += 1;
        }
        
        // We come here after having either found a word or not. We look ahead to the
        // next word. If it's not a dictionary word, we will combine it withe the word we
        // just found (if there is one), but only if the preceding word does not exceed
        // the threshold.
        // The text iterator should now be positioned at the end of the word we found.
        if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < LAO_ROOT_COMBINE_THRESHOLD) {
            // if it is a dictionary word, do nothing. If it isn't, then if there is
            // no preceding word, or the non-word shares less than the minimum threshold
            // of characters with a dictionary word, then scan to resynchronize
            if (words[wordsFound % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
                  && (cuWordLength == 0
                      || words[wordsFound%LAO_LOOKAHEAD].longestPrefix() < LAO_PREFIX_COMBINE_THRESHOLD)) {
                // Look for a plausible word boundary
                int32_t remaining = rangeEnd - (current + cuWordLength);
                UChar32 pc;
                UChar32 uc;
                int32_t chars = 0;
                for (;;) {
                    int32_t pcIndex = (int32_t)utext_getNativeIndex(text);
                    pc = utext_next32(text);
                    int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex;
                    chars += pcSize;
                    remaining -= pcSize;
                    if (remaining <= 0) {
                        break;
                    }
                    uc = utext_current32(text);
                    if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
                        // Maybe. See if it's in the dictionary.
                        // TODO: this looks iffy; compare with old code.
                        int32_t num_candidates = words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
                        utext_setNativeIndex(text, current + cuWordLength + chars);
                        if (num_candidates > 0) {
                            break;
                        }
                    }
                }
                
                // Bump the word count if there wasn't already one
                if (cuWordLength <= 0) {
                    wordsFound += 1;
                }
                
                // Update the length with the passed-over characters
                cuWordLength += chars;
            }
            else {
                // Back up to where we were for next iteration
                utext_setNativeIndex(text, current + cuWordLength);
            }
        }
        
        // Never stop before a combining mark.
        int32_t currPos;
        while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
            utext_next32(text);
            cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos;
        }
        
        // Look ahead for possible suffixes if a dictionary word does not follow.
        // We do this in code rather than using a rule so that the heuristic
        // resynch continues to function. For example, one of the suffix characters
        // could be a typo in the middle of a word.
        // NOT CURRENTLY APPLICABLE TO LAO

        // Did we find a word on this iteration? If so, push it on the break stack
        if (cuWordLength > 0) {
            foundBreaks.push((current+cuWordLength), status);
        }
    }

    // Don't return a break for the end of the dictionary range if there is one there.
    if (foundBreaks.peeki() >= rangeEnd) {
        (void) foundBreaks.popi();
        wordsFound -= 1;
    }

    return wordsFound;
}

/*
 ******************************************************************
 * BurmeseBreakEngine
 */

// How many words in a row are "good enough"?
static const int32_t BURMESE_LOOKAHEAD = 3;

// Will not combine a non-word with a preceding dictionary word longer than this
static const int32_t BURMESE_ROOT_COMBINE_THRESHOLD = 3;

// Will not combine a non-word that shares at least this much prefix with a
// dictionary word, with a preceding word
static const int32_t BURMESE_PREFIX_COMBINE_THRESHOLD = 3;

// Minimum word size
static const int32_t BURMESE_MIN_WORD = 2;

// Minimum number of characters for two words
static const int32_t BURMESE_MIN_WORD_SPAN = BURMESE_MIN_WORD * 2;

BurmeseBreakEngine::BurmeseBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
    : DictionaryBreakEngine(),
      fDictionary(adoptDictionary)
{
    fBurmeseWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Mymr:]&[:LineBreak=SA:]]"), status);
    if (U_SUCCESS(status)) {
        setCharacters(fBurmeseWordSet);
    }
    fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Mymr:]&[:LineBreak=SA:]&[:M:]]"), status);
    fMarkSet.add(0x0020);
    fEndWordSet = fBurmeseWordSet;
    fBeginWordSet.add(0x1000, 0x102A);      // basic consonants and independent vowels

    // Compact for caching.
    fMarkSet.compact();
    fEndWordSet.compact();
    fBeginWordSet.compact();
}

BurmeseBreakEngine::~BurmeseBreakEngine() {
    delete fDictionary;
}

int32_t
BurmeseBreakEngine::divideUpDictionaryRange( UText *text,
                                                int32_t rangeStart,
                                                int32_t rangeEnd,
                                                UVector32 &foundBreaks ) const {
    if ((rangeEnd - rangeStart) < BURMESE_MIN_WORD_SPAN) {
        return 0;       // Not enough characters for two words
    }

    uint32_t wordsFound = 0;
    int32_t cpWordLength = 0;
    int32_t cuWordLength = 0;
    int32_t current;
    UErrorCode status = U_ZERO_ERROR;
    PossibleWord words[BURMESE_LOOKAHEAD];
    
    utext_setNativeIndex(text, rangeStart);
    
    while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
        cuWordLength = 0;
        cpWordLength = 0;

        // Look for candidate words at the current position
        int32_t candidates = words[wordsFound%BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
        
        // If we found exactly one, use that
        if (candidates == 1) {
            cuWordLength = words[wordsFound % BURMESE_LOOKAHEAD].acceptMarked(text);
            cpWordLength = words[wordsFound % BURMESE_LOOKAHEAD].markedCPLength();
            wordsFound += 1;
        }
        // If there was more than one, see which one can take us forward the most words
        else if (candidates > 1) {
            // If we're already at the end of the range, we're done
            if (utext_getNativeIndex(text) >= rangeEnd) {
                goto foundBest;
            }
            do {
                int32_t wordsMatched = 1;
                if (words[(wordsFound + 1) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
                    if (wordsMatched < 2) {
                        // Followed by another dictionary word; mark first word as a good candidate
                        words[wordsFound%BURMESE_LOOKAHEAD].markCurrent();
                        wordsMatched = 2;
                    }
                    
                    // If we're already at the end of the range, we're done
                    if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
                        goto foundBest;
                    }
                    
                    // See if any of the possible second words is followed by a third word
                    do {
                        // If we find a third word, stop right away
                        if (words[(wordsFound + 2) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
                            words[wordsFound % BURMESE_LOOKAHEAD].markCurrent();
                            goto foundBest;
                        }
                    }
                    while (words[(wordsFound + 1) % BURMESE_LOOKAHEAD].backUp(text));
                }
            }
            while (words[wordsFound % BURMESE_LOOKAHEAD].backUp(text));
foundBest:
            cuWordLength = words[wordsFound % BURMESE_LOOKAHEAD].acceptMarked(text);
            cpWordLength = words[wordsFound % BURMESE_LOOKAHEAD].markedCPLength();
            wordsFound += 1;
        }
        
        // We come here after having either found a word or not. We look ahead to the
        // next word. If it's not a dictionary word, we will combine it withe the word we
        // just found (if there is one), but only if the preceding word does not exceed
        // the threshold.
        // The text iterator should now be positioned at the end of the word we found.
        if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < BURMESE_ROOT_COMBINE_THRESHOLD) {
            // if it is a dictionary word, do nothing. If it isn't, then if there is
            // no preceding word, or the non-word shares less than the minimum threshold
            // of characters with a dictionary word, then scan to resynchronize
            if (words[wordsFound % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
                  && (cuWordLength == 0
                      || words[wordsFound%BURMESE_LOOKAHEAD].longestPrefix() < BURMESE_PREFIX_COMBINE_THRESHOLD)) {
                // Look for a plausible word boundary
                int32_t remaining = rangeEnd - (current + cuWordLength);
                UChar32 pc;
                UChar32 uc;
                int32_t chars = 0;
                for (;;) {
                    int32_t pcIndex = (int32_t)utext_getNativeIndex(text);
                    pc = utext_next32(text);
                    int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex;
                    chars += pcSize;
                    remaining -= pcSize;
                    if (remaining <= 0) {
                        break;
                    }
                    uc = utext_current32(text);
                    if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
                        // Maybe. See if it's in the dictionary.
                        // TODO: this looks iffy; compare with old code.
                        int32_t num_candidates = words[(wordsFound + 1) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
                        utext_setNativeIndex(text, current + cuWordLength + chars);
                        if (num_candidates > 0) {
                            break;
                        }
                    }
                }
                
                // Bump the word count if there wasn't already one
                if (cuWordLength <= 0) {
                    wordsFound += 1;
                }
                
                // Update the length with the passed-over characters
                cuWordLength += chars;
            }
            else {
                // Back up to where we were for next iteration
                utext_setNativeIndex(text, current + cuWordLength);
            }
        }
        
        // Never stop before a combining mark.
        int32_t currPos;
        while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
            utext_next32(text);
            cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos;
        }
        
        // Look ahead for possible suffixes if a dictionary word does not follow.
        // We do this in code rather than using a rule so that the heuristic
        // resynch continues to function. For example, one of the suffix characters
        // could be a typo in the middle of a word.
        // NOT CURRENTLY APPLICABLE TO BURMESE

        // Did we find a word on this iteration? If so, push it on the break stack
        if (cuWordLength > 0) {
            foundBreaks.push((current+cuWordLength), status);
        }
    }

    // Don't return a break for the end of the dictionary range if there is one there.
    if (foundBreaks.peeki() >= rangeEnd) {
        (void) foundBreaks.popi();
        wordsFound -= 1;
    }

    return wordsFound;
}

/*
 ******************************************************************
 * KhmerBreakEngine
 */

// How many words in a row are "good enough"?
static const int32_t KHMER_LOOKAHEAD = 3;

// Will not combine a non-word with a preceding dictionary word longer than this
static const int32_t KHMER_ROOT_COMBINE_THRESHOLD = 3;

// Will not combine a non-word that shares at least this much prefix with a
// dictionary word, with a preceding word
static const int32_t KHMER_PREFIX_COMBINE_THRESHOLD = 3;

// Minimum word size
static const int32_t KHMER_MIN_WORD = 2;

// Minimum number of characters for two words
static const int32_t KHMER_MIN_WORD_SPAN = KHMER_MIN_WORD * 2;

KhmerBreakEngine::KhmerBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
    : DictionaryBreakEngine(),
      fDictionary(adoptDictionary)
{
    fKhmerWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]]"), status);
    if (U_SUCCESS(status)) {
        setCharacters(fKhmerWordSet);
    }
    fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]&[:M:]]"), status);
    fMarkSet.add(0x0020);
    fEndWordSet = fKhmerWordSet;
    fBeginWordSet.add(0x1780, 0x17B3);
    //fBeginWordSet.add(0x17A3, 0x17A4);      // deprecated vowels
    //fEndWordSet.remove(0x17A5, 0x17A9);     // Khmer independent vowels that can't end a word
    //fEndWordSet.remove(0x17B2);             // Khmer independent vowel that can't end a word
    fEndWordSet.remove(0x17D2);             // KHMER SIGN COENG that combines some following characters
    //fEndWordSet.remove(0x17B6, 0x17C5);     // Remove dependent vowels
//    fEndWordSet.remove(0x0E31);             // MAI HAN-AKAT
//    fEndWordSet.remove(0x0E40, 0x0E44);     // SARA E through SARA AI MAIMALAI
//    fBeginWordSet.add(0x0E01, 0x0E2E);      // KO KAI through HO NOKHUK
//    fBeginWordSet.add(0x0E40, 0x0E44);      // SARA E through SARA AI MAIMALAI
//    fSuffixSet.add(THAI_PAIYANNOI);
//    fSuffixSet.add(THAI_MAIYAMOK);

    // Compact for caching.
    fMarkSet.compact();
    fEndWordSet.compact();
    fBeginWordSet.compact();
//    fSuffixSet.compact();
}

KhmerBreakEngine::~KhmerBreakEngine() {
    delete fDictionary;
}

int32_t
KhmerBreakEngine::divideUpDictionaryRange( UText *text,
                                                int32_t rangeStart,
                                                int32_t rangeEnd,
                                                UVector32 &foundBreaks ) const {
    if ((rangeEnd - rangeStart) < KHMER_MIN_WORD_SPAN) {
        return 0;       // Not enough characters for two words
    }

    uint32_t wordsFound = 0;
    int32_t cpWordLength = 0;
    int32_t cuWordLength = 0;
    int32_t current;
    UErrorCode status = U_ZERO_ERROR;
    PossibleWord words[KHMER_LOOKAHEAD];

    utext_setNativeIndex(text, rangeStart);

    while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
        cuWordLength = 0;
        cpWordLength = 0;

        // Look for candidate words at the current position
        int32_t candidates = words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);

        // If we found exactly one, use that
        if (candidates == 1) {
            cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text);
            cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength();
            wordsFound += 1;
        }

        // If there was more than one, see which one can take us forward the most words
        else if (candidates > 1) {
            // If we're already at the end of the range, we're done
            if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
                goto foundBest;
            }
            do {
                int32_t wordsMatched = 1;
                if (words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
                    if (wordsMatched < 2) {
                        // Followed by another dictionary word; mark first word as a good candidate
                        words[wordsFound % KHMER_LOOKAHEAD].markCurrent();
                        wordsMatched = 2;
                    }

                    // If we're already at the end of the range, we're done
                    if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
                        goto foundBest;
                    }

                    // See if any of the possible second words is followed by a third word
                    do {
                        // If we find a third word, stop right away
                        if (words[(wordsFound + 2) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
                            words[wordsFound % KHMER_LOOKAHEAD].markCurrent();
                            goto foundBest;
                        }
                    }
                    while (words[(wordsFound + 1) % KHMER_LOOKAHEAD].backUp(text));
                }
            }
            while (words[wordsFound % KHMER_LOOKAHEAD].backUp(text));
foundBest:
            cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text);
            cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength();
            wordsFound += 1;
        }

        // We come here after having either found a word or not. We look ahead to the
        // next word. If it's not a dictionary word, we will combine it with the word we
        // just found (if there is one), but only if the preceding word does not exceed
        // the threshold.
        // The text iterator should now be positioned at the end of the word we found.
        if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < KHMER_ROOT_COMBINE_THRESHOLD) {
            // if it is a dictionary word, do nothing. If it isn't, then if there is
            // no preceding word, or the non-word shares less than the minimum threshold
            // of characters with a dictionary word, then scan to resynchronize
            if (words[wordsFound % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
                  && (cuWordLength == 0
                      || words[wordsFound % KHMER_LOOKAHEAD].longestPrefix() < KHMER_PREFIX_COMBINE_THRESHOLD)) {
                // Look for a plausible word boundary
                int32_t remaining = rangeEnd - (current+cuWordLength);
                UChar32 pc;
                UChar32 uc;
                int32_t chars = 0;
                for (;;) {
                    int32_t pcIndex = (int32_t)utext_getNativeIndex(text);
                    pc = utext_next32(text);
                    int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex;
                    chars += pcSize;
                    remaining -= pcSize;
                    if (remaining <= 0) {
                        break;
                    }
                    uc = utext_current32(text);
                    if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
                        // Maybe. See if it's in the dictionary.
                        int32_t num_candidates = words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
                        utext_setNativeIndex(text, current+cuWordLength+chars);
                        if (num_candidates > 0) {
                            break;
                        }
                    }
                }

                // Bump the word count if there wasn't already one
                if (cuWordLength <= 0) {
                    wordsFound += 1;
                }

                // Update the length with the passed-over characters
                cuWordLength += chars;
            }
            else {
                // Back up to where we were for next iteration
                utext_setNativeIndex(text, current+cuWordLength);
            }
        }

        // Never stop before a combining mark.
        int32_t currPos;
        while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
            utext_next32(text);
            cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos;
        }

        // Look ahead for possible suffixes if a dictionary word does not follow.
        // We do this in code rather than using a rule so that the heuristic
        // resynch continues to function. For example, one of the suffix characters
        // could be a typo in the middle of a word.
//        if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength > 0) {
//            if (words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
//                && fSuffixSet.contains(uc = utext_current32(text))) {
//                if (uc == KHMER_PAIYANNOI) {
//                    if (!fSuffixSet.contains(utext_previous32(text))) {
//                        // Skip over previous end and PAIYANNOI
//                        utext_next32(text);
//                        utext_next32(text);
//                        wordLength += 1;            // Add PAIYANNOI to word
//                        uc = utext_current32(text);     // Fetch next character
//                    }
//                    else {
//                        // Restore prior position
//                        utext_next32(text);
//                    }
//                }
//                if (uc == KHMER_MAIYAMOK) {
//                    if (utext_previous32(text) != KHMER_MAIYAMOK) {
//                        // Skip over previous end and MAIYAMOK
//                        utext_next32(text);
//                        utext_next32(text);
//                        wordLength += 1;            // Add MAIYAMOK to word
//                    }
//                    else {
//                        // Restore prior position
//                        utext_next32(text);
//                    }
//                }
//            }
//            else {
//                utext_setNativeIndex(text, current+wordLength);
//            }
//        }

        // Did we find a word on this iteration? If so, push it on the break stack
        if (cuWordLength > 0) {
            foundBreaks.push((current+cuWordLength), status);
        }
    }
    
    // Don't return a break for the end of the dictionary range if there is one there.
    if (foundBreaks.peeki() >= rangeEnd) {
        (void) foundBreaks.popi();
        wordsFound -= 1;
    }

    return wordsFound;
}

#if !UCONFIG_NO_NORMALIZATION
/*
 ******************************************************************
 * CjkBreakEngine
 */
static const uint32_t kuint32max = 0xFFFFFFFF;
CjkBreakEngine::CjkBreakEngine(DictionaryMatcher *adoptDictionary, LanguageType type, UErrorCode &status)
: DictionaryBreakEngine(), fDictionary(adoptDictionary) {
    // Korean dictionary only includes Hangul syllables
    fHangulWordSet.applyPattern(UNICODE_STRING_SIMPLE("[\\uac00-\\ud7a3]"), status);
    fHanWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Han:]"), status);
    fKatakanaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Katakana:]\\uff9e\\uff9f]"), status);
    fHiraganaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Hiragana:]"), status);
    nfkcNorm2 = Normalizer2::getNFKCInstance(status);

    if (U_SUCCESS(status)) {
        // handle Korean and Japanese/Chinese using different dictionaries
        if (type == kKorean) {
            setCharacters(fHangulWordSet);
        } else { //Chinese and Japanese
            UnicodeSet cjSet;
            cjSet.addAll(fHanWordSet);
            cjSet.addAll(fKatakanaWordSet);
            cjSet.addAll(fHiraganaWordSet);
            cjSet.add(0xFF70); // HALFWIDTH KATAKANA-HIRAGANA PROLONGED SOUND MARK
            cjSet.add(0x30FC); // KATAKANA-HIRAGANA PROLONGED SOUND MARK
            setCharacters(cjSet);
        }
    }
}

CjkBreakEngine::~CjkBreakEngine(){
    delete fDictionary;
}

// The katakanaCost values below are based on the length frequencies of all
// katakana phrases in the dictionary
static const int32_t kMaxKatakanaLength = 8;
static const int32_t kMaxKatakanaGroupLength = 20;
static const uint32_t maxSnlp = 255;

static inline uint32_t getKatakanaCost(int32_t wordLength){
    //TODO: fill array with actual values from dictionary!
    static const uint32_t katakanaCost[kMaxKatakanaLength + 1]
                                       = {8192, 984, 408, 240, 204, 252, 300, 372, 480};
    return (wordLength > kMaxKatakanaLength) ? 8192 : katakanaCost[wordLength];
}

static inline bool isKatakana(UChar32 value) {
    return (value >= 0x30A1 && value <= 0x30FE && value != 0x30FB) ||
            (value >= 0xFF66 && value <= 0xFF9f);
}


// Function for accessing internal utext flags.
//   Replicates an internal UText function.

static inline int32_t utext_i32_flag(int32_t bitIndex) {
    return (int32_t)1 << bitIndex;
}

       
/*
 * @param text A UText representing the text
 * @param rangeStart The start of the range of dictionary characters
 * @param rangeEnd The end of the range of dictionary characters
 * @param foundBreaks vector<int32> to receive the break positions
 * @return The number of breaks found
 */
int32_t 
CjkBreakEngine::divideUpDictionaryRange( UText *inText,
        int32_t rangeStart,
        int32_t rangeEnd,
        UVector32 &foundBreaks ) const {
    if (rangeStart >= rangeEnd) {
        return 0;
    }

    // UnicodeString version of input UText, NFKC normalized if necessary.
    UnicodeString inString;

    // inputMap[inStringIndex] = corresponding native index from UText inText.
    // If NULL then mapping is 1:1
    LocalPointer<UVector32>     inputMap;

    UErrorCode     status      = U_ZERO_ERROR;


    // if UText has the input string as one contiguous UTF-16 chunk
    if ((inText->providerProperties & utext_i32_flag(UTEXT_PROVIDER_STABLE_CHUNKS)) &&
         inText->chunkNativeStart <= rangeStart &&
         inText->chunkNativeLimit >= rangeEnd   &&
         inText->nativeIndexingLimit >= rangeEnd - inText->chunkNativeStart) {

        // Input UText is in one contiguous UTF-16 chunk.
        // Use Read-only aliasing UnicodeString.
        inString.setTo(FALSE,
                       inText->chunkContents + rangeStart - inText->chunkNativeStart,
                       rangeEnd - rangeStart);
    } else {
        // Copy the text from the original inText (UText) to inString (UnicodeString).
        // Create a map from UnicodeString indices -> UText offsets.
        utext_setNativeIndex(inText, rangeStart);
        int32_t limit = rangeEnd;
        U_ASSERT(limit <= utext_nativeLength(inText));
        if (limit > utext_nativeLength(inText)) {
            limit = (int32_t)utext_nativeLength(inText);
        }
        inputMap.adoptInsteadAndCheckErrorCode(new UVector32(status), status);
        if (U_FAILURE(status)) {
            return 0;
        }
        while (utext_getNativeIndex(inText) < limit) {
            int32_t nativePosition = (int32_t)utext_getNativeIndex(inText);
            UChar32 c = utext_next32(inText);
            U_ASSERT(c != U_SENTINEL);
            inString.append(c);
            while (inputMap->size() < inString.length()) {
                inputMap->addElement(nativePosition, status);
            }
        }
        inputMap->addElement(limit, status);
    }


    if (!nfkcNorm2->isNormalized(inString, status)) {
        UnicodeString normalizedInput;
        //  normalizedMap[normalizedInput position] ==  original UText position.
        LocalPointer<UVector32> normalizedMap(new UVector32(status), status);
        if (U_FAILURE(status)) {
            return 0;
        }
        
        UnicodeString fragment;
        UnicodeString normalizedFragment;
        for (int32_t srcI = 0; srcI < inString.length();) {  // Once per normalization chunk
            fragment.remove();
            int32_t fragmentStartI = srcI;
            UChar32 c = inString.char32At(srcI);
            for (;;) {
                fragment.append(c);
                srcI = inString.moveIndex32(srcI, 1);
                if (srcI == inString.length()) {
                    break;
                }
                c = inString.char32At(srcI);
                if (nfkcNorm2->hasBoundaryBefore(c)) {
                    break;
                }
            }
            nfkcNorm2->normalize(fragment, normalizedFragment, status);
            normalizedInput.append(normalizedFragment);

            // Map every position in the normalized chunk to the start of the chunk
            //   in the original input.
            int32_t fragmentOriginalStart = inputMap.isValid() ?
                    inputMap->elementAti(fragmentStartI) : fragmentStartI+rangeStart;
            while (normalizedMap->size() < normalizedInput.length()) {
                normalizedMap->addElement(fragmentOriginalStart, status);
                if (U_FAILURE(status)) {
                    break;
                }
            }
        }
        U_ASSERT(normalizedMap->size() == normalizedInput.length());
        int32_t nativeEnd = inputMap.isValid() ?
                inputMap->elementAti(inString.length()) : inString.length()+rangeStart;
        normalizedMap->addElement(nativeEnd, status);

        inputMap = std::move(normalizedMap);
        inString = std::move(normalizedInput);
    }

    int32_t numCodePts = inString.countChar32();
    if (numCodePts != inString.length()) {
        // There are supplementary characters in the input.
        // The dictionary will produce boundary positions in terms of code point indexes,
        //   not in terms of code unit string indexes.
        // Use the inputMap mechanism to take care of this in addition to indexing differences
        //    from normalization and/or UTF-8 input.
        UBool hadExistingMap = inputMap.isValid();
        if (!hadExistingMap) {
            inputMap.adoptInsteadAndCheckErrorCode(new UVector32(status), status);
            if (U_FAILURE(status)) {
                return 0;
            }
        }
        int32_t cpIdx = 0;
        for (int32_t cuIdx = 0; ; cuIdx = inString.moveIndex32(cuIdx, 1)) {
            U_ASSERT(cuIdx >= cpIdx);
            if (hadExistingMap) {
                inputMap->setElementAt(inputMap->elementAti(cuIdx), cpIdx);
            } else {
                inputMap->addElement(cuIdx+rangeStart, status);
            }
            cpIdx++;
            if (cuIdx == inString.length()) {
               break;
            }
        }
    }
                
    // bestSnlp[i] is the snlp of the best segmentation of the first i
    // code points in the range to be matched.
    UVector32 bestSnlp(numCodePts + 1, status);
    bestSnlp.addElement(0, status);
    for(int32_t i = 1; i <= numCodePts; i++) {
        bestSnlp.addElement(kuint32max, status);
    }


    // prev[i] is the index of the last CJK code point in the previous word in 
    // the best segmentation of the first i characters.
    UVector32 prev(numCodePts + 1, status);
    for(int32_t i = 0; i <= numCodePts; i++){
        prev.addElement(-1, status);
    }

    const int32_t maxWordSize = 20;
    UVector32 values(numCodePts, status);
    values.setSize(numCodePts);
    UVector32 lengths(numCodePts, status);
    lengths.setSize(numCodePts);

    UText fu = UTEXT_INITIALIZER;
    utext_openUnicodeString(&fu, &inString, &status);

    // Dynamic programming to find the best segmentation.

    // In outer loop, i  is the code point index,
    //                ix is the corresponding string (code unit) index.
    //    They differ when the string contains supplementary characters.
    int32_t ix = 0;
    bool is_prev_katakana = false;
    for (int32_t i = 0;  i < numCodePts;  ++i, ix = inString.moveIndex32(ix, 1)) {
        if ((uint32_t)bestSnlp.elementAti(i) == kuint32max) {
            continue;
        }

        int32_t count;
        utext_setNativeIndex(&fu, ix);
        count = fDictionary->matches(&fu, maxWordSize, numCodePts,
                             NULL, lengths.getBuffer(), values.getBuffer(), NULL);
                             // Note: lengths is filled with code point lengths
                             //       The NULL parameter is the ignored code unit lengths.

        // if there are no single character matches found in the dictionary 
        // starting with this character, treat character as a 1-character word 
        // with the highest value possible, i.e. the least likely to occur.
        // Exclude Korean characters from this treatment, as they should be left
        // together by default.
        if ((count == 0 || lengths.elementAti(0) != 1) &&
                !fHangulWordSet.contains(inString.char32At(ix))) {
            values.setElementAt(maxSnlp, count);   // 255
            lengths.setElementAt(1, count++);
        }

        for (int32_t j = 0; j < count; j++) {
            uint32_t newSnlp = (uint32_t)bestSnlp.elementAti(i) + (uint32_t)values.elementAti(j);
            int32_t ln_j_i = lengths.elementAti(j) + i;
            if (newSnlp < (uint32_t)bestSnlp.elementAti(ln_j_i)) {
                bestSnlp.setElementAt(newSnlp, ln_j_i);
                prev.setElementAt(i, ln_j_i);
            }
        }

        // In Japanese,
        // Katakana word in single character is pretty rare. So we apply
        // the following heuristic to Katakana: any continuous run of Katakana
        // characters is considered a candidate word with a default cost
        // specified in the katakanaCost table according to its length.

        bool is_katakana = isKatakana(inString.char32At(ix));
        int32_t katakanaRunLength = 1;
        if (!is_prev_katakana && is_katakana) {
            int32_t j = inString.moveIndex32(ix, 1);
            // Find the end of the continuous run of Katakana characters
            while (j < inString.length() && katakanaRunLength < kMaxKatakanaGroupLength &&
                    isKatakana(inString.char32At(j))) {
                j = inString.moveIndex32(j, 1);
                katakanaRunLength++;
            }
            if (katakanaRunLength < kMaxKatakanaGroupLength) {
                uint32_t newSnlp = bestSnlp.elementAti(i) + getKatakanaCost(katakanaRunLength);
                if (newSnlp < (uint32_t)bestSnlp.elementAti(i+katakanaRunLength)) {
                    bestSnlp.setElementAt(newSnlp, i+katakanaRunLength);
                    prev.setElementAt(i, i+katakanaRunLength);  // prev[j] = i;
                }
            }
        }
        is_prev_katakana = is_katakana;
    }
    utext_close(&fu);

    // Start pushing the optimal offset index into t_boundary (t for tentative).
    // prev[numCodePts] is guaranteed to be meaningful.
    // We'll first push in the reverse order, i.e.,
    // t_boundary[0] = numCodePts, and afterwards do a swap.
    UVector32 t_boundary(numCodePts+1, status);

    int32_t numBreaks = 0;
    // No segmentation found, set boundary to end of range
    if ((uint32_t)bestSnlp.elementAti(numCodePts) == kuint32max) {
        t_boundary.addElement(numCodePts, status);
        numBreaks++;
    } else {
        for (int32_t i = numCodePts; i > 0; i = prev.elementAti(i)) {
            t_boundary.addElement(i, status);
            numBreaks++;
        }
        U_ASSERT(prev.elementAti(t_boundary.elementAti(numBreaks - 1)) == 0);
    }

    // Add a break for the start of the dictionary range if there is not one
    // there already.
    if (foundBreaks.size() == 0 || foundBreaks.peeki() < rangeStart) {
        t_boundary.addElement(0, status);
        numBreaks++;
    }

    // Now that we're done, convert positions in t_boundary[] (indices in 
    // the normalized input string) back to indices in the original input UText
    // while reversing t_boundary and pushing values to foundBreaks.
    int32_t prevCPPos = -1;
    int32_t prevUTextPos = -1;
    for (int32_t i = numBreaks-1; i >= 0; i--) {
        int32_t cpPos = t_boundary.elementAti(i);
        U_ASSERT(cpPos > prevCPPos);
        int32_t utextPos =  inputMap.isValid() ? inputMap->elementAti(cpPos) : cpPos + rangeStart;
        U_ASSERT(utextPos >= prevUTextPos);
        if (utextPos > prevUTextPos) {
            // Boundaries are added to foundBreaks output in ascending order.
            U_ASSERT(foundBreaks.size() == 0 || foundBreaks.peeki() < utextPos);
            foundBreaks.push(utextPos, status);
        } else {
            // Normalization expanded the input text, the dictionary found a boundary
            // within the expansion, giving two boundaries with the same index in the
            // original text. Ignore the second. See ticket #12918.
            --numBreaks;
        }
        prevCPPos = cpPos;
        prevUTextPos = utextPos;
    }
    (void)prevCPPos; // suppress compiler warnings about unused variable

    // inString goes out of scope
    // inputMap goes out of scope
    return numBreaks;
}
#endif

U_NAMESPACE_END

#endif /* #if !UCONFIG_NO_BREAK_ITERATION */