DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
/*
 * Copyright © 2013 Soren Sandmann Pedersen
 * Copyright © 2013 Red Hat, Inc.
 * Copyright © 2016 Mozilla Foundation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 *
 * Author: Soren Sandmann (soren.sandmann@gmail.com)
 *         Jeff Muizelaar (jmuizelaar@mozilla.com)
 */

/* This has been adapted from the ssse3 code from pixman. It's currently
 * a mess as I want to try it out in practice before finalizing the details.
 */

#include <stdlib.h>
#include <mmintrin.h>
#include <xmmintrin.h>
#include <emmintrin.h>
#include <tmmintrin.h>
#include <stdint.h>
#include <assert.h>
#include "ssse3-scaler.h"

typedef int32_t pixman_fixed_16_16_t;
typedef pixman_fixed_16_16_t pixman_fixed_t;
#define pixman_fixed_1 (pixman_int_to_fixed(1))
#define pixman_fixed_to_int(f) ((int)((f) >> 16))
#define pixman_int_to_fixed(i) ((pixman_fixed_t)((i) << 16))
#define pixman_double_to_fixed(d) ((pixman_fixed_t)((d)*65536.0))
#define PIXMAN_FIXED_INT_MAX 32767
#define PIXMAN_FIXED_INT_MIN -32768
typedef struct pixman_vector pixman_vector_t;

typedef int pixman_bool_t;
typedef int64_t pixman_fixed_32_32_t;
typedef pixman_fixed_32_32_t pixman_fixed_48_16_t;
typedef struct {
  pixman_fixed_48_16_t v[3];
} pixman_vector_48_16_t;

struct pixman_vector {
  pixman_fixed_t vector[3];
};
typedef struct pixman_transform pixman_transform_t;

struct pixman_transform {
  pixman_fixed_t matrix[3][3];
};

#ifdef _MSC_VER
#  define force_inline __forceinline
#else
#  define force_inline __inline__ __attribute__((always_inline))
#endif

#define BILINEAR_INTERPOLATION_BITS 6

static force_inline int pixman_fixed_to_bilinear_weight(pixman_fixed_t x) {
  return (x >> (16 - BILINEAR_INTERPOLATION_BITS)) &
         ((1 << BILINEAR_INTERPOLATION_BITS) - 1);
}

static void pixman_transform_point_31_16_3d(const pixman_transform_t* t,
                                            const pixman_vector_48_16_t* v,
                                            pixman_vector_48_16_t* result) {
  int i;
  int64_t tmp[3][2];

  /* input vector values must have no more than 31 bits (including sign)
   * in the integer part */
  assert(v->v[0] < ((pixman_fixed_48_16_t)1 << (30 + 16)));
  assert(v->v[0] >= -((pixman_fixed_48_16_t)1 << (30 + 16)));
  assert(v->v[1] < ((pixman_fixed_48_16_t)1 << (30 + 16)));
  assert(v->v[1] >= -((pixman_fixed_48_16_t)1 << (30 + 16)));
  assert(v->v[2] < ((pixman_fixed_48_16_t)1 << (30 + 16)));
  assert(v->v[2] >= -((pixman_fixed_48_16_t)1 << (30 + 16)));

  for (i = 0; i < 3; i++) {
    tmp[i][0] = (int64_t)t->matrix[i][0] * (v->v[0] >> 16);
    tmp[i][1] = (int64_t)t->matrix[i][0] * (v->v[0] & 0xFFFF);
    tmp[i][0] += (int64_t)t->matrix[i][1] * (v->v[1] >> 16);
    tmp[i][1] += (int64_t)t->matrix[i][1] * (v->v[1] & 0xFFFF);
    tmp[i][0] += (int64_t)t->matrix[i][2] * (v->v[2] >> 16);
    tmp[i][1] += (int64_t)t->matrix[i][2] * (v->v[2] & 0xFFFF);
  }

  result->v[0] = tmp[0][0] + ((tmp[0][1] + 0x8000) >> 16);
  result->v[1] = tmp[1][0] + ((tmp[1][1] + 0x8000) >> 16);
  result->v[2] = tmp[2][0] + ((tmp[2][1] + 0x8000) >> 16);
}

static pixman_bool_t pixman_transform_point_3d(
    const struct pixman_transform* transform, struct pixman_vector* vector) {
  pixman_vector_48_16_t tmp;
  tmp.v[0] = vector->vector[0];
  tmp.v[1] = vector->vector[1];
  tmp.v[2] = vector->vector[2];

  pixman_transform_point_31_16_3d(transform, &tmp, &tmp);

  vector->vector[0] = tmp.v[0];
  vector->vector[1] = tmp.v[1];
  vector->vector[2] = tmp.v[2];

  return vector->vector[0] == tmp.v[0] && vector->vector[1] == tmp.v[1] &&
         vector->vector[2] == tmp.v[2];
}

struct bits_image_t {
  uint32_t* bits;
  int rowstride;
  pixman_transform_t* transform;
};

typedef struct bits_image_t bits_image_t;
typedef struct {
  int unused;
} pixman_iter_info_t;

typedef struct pixman_iter_t pixman_iter_t;
typedef void (*pixman_iter_fini_t)(pixman_iter_t* iter);

struct pixman_iter_t {
  int x, y;
  pixman_iter_fini_t fini;
  bits_image_t* image;
  uint32_t* buffer;
  int width;
  int height;
  void* data;
};

typedef struct {
  int y;
  uint64_t* buffer;
} line_t;

typedef struct {
  line_t lines[2];
  pixman_fixed_t y;
  pixman_fixed_t x;
  uint64_t data[1];
} bilinear_info_t;

static void ssse3_fetch_horizontal(bits_image_t* image, line_t* line, int y,
                                   pixman_fixed_t x, pixman_fixed_t ux, int n) {
  uint32_t* bits = image->bits + y * image->rowstride;
  __m128i vx = _mm_set_epi16(-(x + 1), x, -(x + 1), x, -(x + ux + 1), x + ux,
                             -(x + ux + 1), x + ux);
  __m128i vux = _mm_set_epi16(-2 * ux, 2 * ux, -2 * ux, 2 * ux, -2 * ux, 2 * ux,
                              -2 * ux, 2 * ux);
  __m128i vaddc = _mm_set_epi16(1, 0, 1, 0, 1, 0, 1, 0);
  __m128i* b = (__m128i*)line->buffer;
  __m128i vrl0, vrl1;

  while ((n -= 2) >= 0) {
    __m128i vw, vr, s;
#ifdef HACKY_PADDING
    if (pixman_fixed_to_int(x + ux) >= image->rowstride) {
      vrl1 = _mm_setzero_si128();
      printf("overread 2loop\n");
    } else {
      if (pixman_fixed_to_int(x + ux) < 0) printf("underflow\n");
      vrl1 = _mm_loadl_epi64(
          (__m128i*)(bits + (pixman_fixed_to_int(x + ux) < 0
                                 ? 0
                                 : pixman_fixed_to_int(x + ux))));
    }
#else
    vrl1 = _mm_loadl_epi64((__m128i*)(bits + pixman_fixed_to_int(x + ux)));
#endif
    /* vrl1: R1, L1 */

  final_pixel:
#ifdef HACKY_PADDING
    vrl0 = _mm_loadl_epi64(
        (__m128i*)(bits +
                   (pixman_fixed_to_int(x) < 0 ? 0 : pixman_fixed_to_int(x))));
#else
    vrl0 = _mm_loadl_epi64((__m128i*)(bits + pixman_fixed_to_int(x)));
#endif
    /* vrl0: R0, L0 */

    /* The weights are based on vx which is a vector of
     *
     *    - (x + 1), x, - (x + 1), x,
     *          - (x + ux + 1), x + ux, - (x + ux + 1), x + ux
     *
     * so the 16 bit weights end up like this:
     *
     *    iw0, w0, iw0, w0, iw1, w1, iw1, w1
     *
     * and after shifting and packing, we get these bytes:
     *
     *    iw0, w0, iw0, w0, iw1, w1, iw1, w1,
     *        iw0, w0, iw0, w0, iw1, w1, iw1, w1,
     *
     * which means the first and the second input pixel
     * have to be interleaved like this:
     *
     *    la0, ra0, lr0, rr0, la1, ra1, lr1, rr1,
     *        lg0, rg0, lb0, rb0, lg1, rg1, lb1, rb1
     *
     * before maddubsw can be used.
     */

    vw = _mm_add_epi16(vaddc,
                       _mm_srli_epi16(vx, 16 - BILINEAR_INTERPOLATION_BITS));
    /* vw: iw0, w0, iw0, w0, iw1, w1, iw1, w1
     */

    vw = _mm_packus_epi16(vw, vw);
    /* vw: iw0, w0, iw0, w0, iw1, w1, iw1, w1,
     *         iw0, w0, iw0, w0, iw1, w1, iw1, w1
     */
    vx = _mm_add_epi16(vx, vux);

    x += 2 * ux;

    vr = _mm_unpacklo_epi16(vrl1, vrl0);
    /* vr: rar0, rar1, rgb0, rgb1, lar0, lar1, lgb0, lgb1 */

    s = _mm_shuffle_epi32(vr, _MM_SHUFFLE(1, 0, 3, 2));
    /* s:  lar0, lar1, lgb0, lgb1, rar0, rar1, rgb0, rgb1 */

    vr = _mm_unpackhi_epi8(vr, s);
    /* vr: la0, ra0, lr0, rr0, la1, ra1, lr1, rr1,
     *         lg0, rg0, lb0, rb0, lg1, rg1, lb1, rb1
     */

    vr = _mm_maddubs_epi16(vr, vw);

    /* When the weight is 0, the inverse weight is
     * 128 which can't be represented in a signed byte.
     * As a result maddubsw computes the following:
     *
     *     r = l * -128 + r * 0
     *
     * rather than the desired
     *
     *     r = l * 128 + r * 0
     *
     * We fix this by taking the absolute value of the
     * result.
     */
    // we can drop this if we use lower precision

    vr = _mm_shuffle_epi32(vr, _MM_SHUFFLE(2, 0, 3, 1));
    /* vr: A0, R0, A1, R1, G0, B0, G1, B1 */
    _mm_store_si128(b++, vr);
  }

  if (n == -1) {
    vrl1 = _mm_setzero_si128();
    goto final_pixel;
  }

  line->y = y;
}

// scale a line of destination pixels
static uint32_t* ssse3_fetch_bilinear_cover(pixman_iter_t* iter,
                                            const uint32_t* mask) {
  pixman_fixed_t fx, ux;
  bilinear_info_t* info = iter->data;
  line_t *line0, *line1;
  int y0, y1;
  int32_t dist_y;
  __m128i vw, uvw;
  int i;

  fx = info->x;
  ux = iter->image->transform->matrix[0][0];

  y0 = pixman_fixed_to_int(info->y);
  if (y0 < 0) *(volatile char*)0 = 9;
  y1 = y0 + 1;

  // clamping in y direction
  if (y1 >= iter->height) {
    y1 = iter->height - 1;
  }

  line0 = &info->lines[y0 & 0x01];
  line1 = &info->lines[y1 & 0x01];

  if (line0->y != y0) {
    ssse3_fetch_horizontal(iter->image, line0, y0, fx, ux, iter->width);
  }

  if (line1->y != y1) {
    ssse3_fetch_horizontal(iter->image, line1, y1, fx, ux, iter->width);
  }

#ifdef PIXMAN_STYLE_INTERPOLATION
  dist_y = pixman_fixed_to_bilinear_weight(info->y);
  dist_y <<= (16 - BILINEAR_INTERPOLATION_BITS);

  vw = _mm_set_epi16(dist_y, dist_y, dist_y, dist_y, dist_y, dist_y, dist_y,
                     dist_y);

#else
  // setup the weights for the top (vw) and bottom (uvw) lines
  dist_y = pixman_fixed_to_bilinear_weight(info->y);
  // we use 15 instead of 16 because we need an extra bit to handle when the
  // weights are 0 and 1
  dist_y <<= (15 - BILINEAR_INTERPOLATION_BITS);

  vw = _mm_set_epi16(dist_y, dist_y, dist_y, dist_y, dist_y, dist_y, dist_y,
                     dist_y);

  dist_y = (1 << BILINEAR_INTERPOLATION_BITS) -
           pixman_fixed_to_bilinear_weight(info->y);
  dist_y <<= (15 - BILINEAR_INTERPOLATION_BITS);
  uvw = _mm_set_epi16(dist_y, dist_y, dist_y, dist_y, dist_y, dist_y, dist_y,
                      dist_y);
#endif

  for (i = 0; i + 3 < iter->width; i += 4) {
    __m128i top0 = _mm_load_si128((__m128i*)(line0->buffer + i));
    __m128i bot0 = _mm_load_si128((__m128i*)(line1->buffer + i));
    __m128i top1 = _mm_load_si128((__m128i*)(line0->buffer + i + 2));
    __m128i bot1 = _mm_load_si128((__m128i*)(line1->buffer + i + 2));
#ifdef PIXMAN_STYLE_INTERPOLATION
    __m128i r0, r1, tmp, p;

    r0 = _mm_mulhi_epu16(_mm_sub_epi16(bot0, top0), vw);
    tmp = _mm_cmplt_epi16(bot0, top0);
    tmp = _mm_and_si128(tmp, vw);
    r0 = _mm_sub_epi16(r0, tmp);
    r0 = _mm_add_epi16(r0, top0);
    r0 = _mm_srli_epi16(r0, BILINEAR_INTERPOLATION_BITS);
    /* r0:  A0 R0 A1 R1 G0 B0 G1 B1 */
    // r0 = _mm_shuffle_epi32 (r0, _MM_SHUFFLE (2, 0, 3, 1));
    /* r0:  A1 R1 G1 B1 A0 R0 G0 B0 */

    // tmp = bot1 < top1 ? vw : 0;
    // r1 = (bot1 - top1)*vw + top1 - tmp
    // r1 = bot1*vw - vw*top1 + top1 - tmp
    // r1 = bot1*vw + top1 - vw*top1 - tmp
    // r1 = bot1*vw + top1*(1 - vw) - tmp
    r1 = _mm_mulhi_epu16(_mm_sub_epi16(bot1, top1), vw);
    tmp = _mm_cmplt_epi16(bot1, top1);
    tmp = _mm_and_si128(tmp, vw);
    r1 = _mm_sub_epi16(r1, tmp);
    r1 = _mm_add_epi16(r1, top1);
    r1 = _mm_srli_epi16(r1, BILINEAR_INTERPOLATION_BITS);
    // r1 = _mm_shuffle_epi32 (r1, _MM_SHUFFLE (2, 0, 3, 1));
    /* r1: A3 R3 G3 B3 A2 R2 G2 B2 */
#else
    __m128i r0, r1, p;
    top0 = _mm_mulhi_epu16(top0, uvw);
    bot0 = _mm_mulhi_epu16(bot0, vw);
    r0 = _mm_add_epi16(top0, bot0);
    r0 = _mm_srli_epi16(r0, BILINEAR_INTERPOLATION_BITS - 1);

    top1 = _mm_mulhi_epu16(top1, uvw);
    bot1 = _mm_mulhi_epu16(bot1, vw);
    r1 = _mm_add_epi16(top1, bot1);
    r1 = _mm_srli_epi16(r1, BILINEAR_INTERPOLATION_BITS - 1);
#endif

    p = _mm_packus_epi16(r0, r1);
    _mm_storeu_si128((__m128i*)(iter->buffer + i), p);
  }

  while (i < iter->width) {
    __m128i top0 = _mm_load_si128((__m128i*)(line0->buffer + i));
    __m128i bot0 = _mm_load_si128((__m128i*)(line1->buffer + i));

#ifdef PIXMAN_STYLE_INTERPOLATION
    __m128i r0, tmp, p;
    r0 = _mm_mulhi_epu16(_mm_sub_epi16(bot0, top0), vw);
    tmp = _mm_cmplt_epi16(bot0, top0);
    tmp = _mm_and_si128(tmp, vw);
    r0 = _mm_sub_epi16(r0, tmp);
    r0 = _mm_add_epi16(r0, top0);
    r0 = _mm_srli_epi16(r0, BILINEAR_INTERPOLATION_BITS);
    /* r0:  A0 R0 A1 R1 G0 B0 G1 B1 */
    r0 = _mm_shuffle_epi32(r0, _MM_SHUFFLE(2, 0, 3, 1));
    /* r0:  A1 R1 G1 B1 A0 R0 G0 B0 */
#else
    __m128i r0, p;
    top0 = _mm_mulhi_epu16(top0, uvw);
    bot0 = _mm_mulhi_epu16(bot0, vw);
    r0 = _mm_add_epi16(top0, bot0);
    r0 = _mm_srli_epi16(r0, BILINEAR_INTERPOLATION_BITS - 1);
#endif

    p = _mm_packus_epi16(r0, r0);

    if (iter->width - i == 1) {
      *(uint32_t*)(iter->buffer + i) = _mm_cvtsi128_si32(p);
      i++;
    } else {
      _mm_storel_epi64((__m128i*)(iter->buffer + i), p);
      i += 2;
    }
  }

  info->y += iter->image->transform->matrix[1][1];

  return iter->buffer;
}

static void ssse3_bilinear_cover_iter_fini(pixman_iter_t* iter) {
  free(iter->data);
}

static void ssse3_bilinear_cover_iter_init(pixman_iter_t* iter) {
  int width = iter->width;
  bilinear_info_t* info;
  pixman_vector_t v;

  if (iter->x > PIXMAN_FIXED_INT_MAX || iter->x < PIXMAN_FIXED_INT_MIN ||
      iter->y > PIXMAN_FIXED_INT_MAX || iter->y < PIXMAN_FIXED_INT_MIN)
    goto fail;

  /* Reference point is the center of the pixel */
  v.vector[0] = pixman_int_to_fixed(iter->x) + pixman_fixed_1 / 2;
  v.vector[1] = pixman_int_to_fixed(iter->y) + pixman_fixed_1 / 2;
  v.vector[2] = pixman_fixed_1;

  if (!pixman_transform_point_3d(iter->image->transform, &v)) goto fail;

  info = malloc(sizeof(*info) + (2 * width - 1) * sizeof(uint64_t) + 64);
  if (!info) goto fail;

  info->x = v.vector[0] - pixman_fixed_1 / 2;
  info->y = v.vector[1] - pixman_fixed_1 / 2;

#define ALIGN(addr) ((void*)((((uintptr_t)(addr)) + 15) & (~15)))

  /* It is safe to set the y coordinates to -1 initially
   * because COVER_CLIP_BILINEAR ensures that we will only
   * be asked to fetch lines in the [0, height) interval
   */
  info->lines[0].y = -1;
  info->lines[0].buffer = ALIGN(&(info->data[0]));
  info->lines[1].y = -1;
  info->lines[1].buffer = ALIGN(info->lines[0].buffer + width);

  iter->fini = ssse3_bilinear_cover_iter_fini;

  iter->data = info;
  return;

fail:
  /* Something went wrong, either a bad matrix or OOM; in such cases,
   * we don't guarantee any particular rendering.
   */
  iter->fini = NULL;
}

/* scale the src from src_width/height to dest_width/height drawn
 * into the rectangle x,y width,height
 * src_stride and dst_stride are 4 byte units */
bool ssse3_scale_data(uint32_t* src, int src_width, int src_height,
                      int src_stride, uint32_t* dest, int dest_width,
                      int dest_height, int dest_stride, int x, int y, int width,
                      int height) {
  // XXX: assert(src_width > 1)
  pixman_transform_t transform = {
      {{pixman_fixed_1, 0, 0}, {0, pixman_fixed_1, 0}, {0, 0, pixman_fixed_1}}};
  double width_scale = ((double)src_width) / dest_width;
  double height_scale = ((double)src_height) / dest_height;
#define AVOID_PADDING
#ifdef AVOID_PADDING
  // scale up by enough that we don't read outside of the bounds of the source
  // surface currently this is required to avoid reading out of bounds.
  if (width_scale < 1) {
    width_scale = (double)(src_width - 1) / dest_width;
    transform.matrix[0][2] = pixman_fixed_1 / 2;
  }
  if (height_scale < 1) {
    height_scale = (double)(src_height - 1) / dest_height;
    transform.matrix[1][2] = pixman_fixed_1 / 2;
  }
#endif
  transform.matrix[0][0] = pixman_double_to_fixed(width_scale);
  transform.matrix[1][1] = pixman_double_to_fixed(height_scale);
  transform.matrix[2][2] = pixman_fixed_1;

  bits_image_t image;
  image.bits = src;
  image.transform = &transform;
  image.rowstride = src_stride;

  pixman_iter_t iter;
  iter.image = &image;
  iter.x = x;
  iter.y = y;
  iter.width = width;
  iter.height = src_height;
  iter.buffer = dest;
  iter.data = NULL;

  ssse3_bilinear_cover_iter_init(&iter);

  if (!iter.fini) return false;

  if (iter.data) {
    for (int iy = 0; iy < height; iy++) {
      ssse3_fetch_bilinear_cover(&iter, NULL);
      iter.buffer += dest_stride;
    }
    ssse3_bilinear_cover_iter_fini(&iter);
  }
  return true;
}