DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "2D.h"
#include "Filters.h"
#include "SIMD.h"

namespace mozilla {
namespace gfx {

template <TurbulenceType Type, bool Stitch, typename f32x4_t, typename i32x4_t,
          typename u8x16_t>
class SVGTurbulenceRenderer {
 public:
  SVGTurbulenceRenderer(const Size& aBaseFrequency, int32_t aSeed,
                        int aNumOctaves, const Rect& aTileRect);

  already_AddRefed<DataSourceSurface> Render(const IntSize& aSize,
                                             const Point& aOffset) const;

 private:
  /* The turbulence calculation code is an adapted version of what
     appears in the SVG 1.1 specification:
         http://www.w3.org/TR/SVG11/filters.html#feTurbulence
  */

  struct StitchInfo {
    int32_t width;  // How much to subtract to wrap for stitching.
    int32_t height;
    int32_t wrapX;  // Minimum value to wrap.
    int32_t wrapY;
  };

  const static int sBSize = 0x100;
  const static int sBM = 0xff;
  void InitFromSeed(int32_t aSeed);
  void AdjustBaseFrequencyForStitch(const Rect& aTileRect);
  IntPoint AdjustForStitch(IntPoint aLatticePoint,
                           const StitchInfo& aStitchInfo) const;
  StitchInfo CreateStitchInfo(const Rect& aTileRect) const;
  f32x4_t Noise2(Point aVec, const StitchInfo& aStitchInfo) const;
  i32x4_t Turbulence(const Point& aPoint) const;
  Point EquivalentNonNegativeOffset(const Point& aOffset) const;

  Size mBaseFrequency;
  int32_t mNumOctaves;
  StitchInfo mStitchInfo;
  bool mStitchable;
  TurbulenceType mType;
  uint8_t mLatticeSelector[sBSize];
  f32x4_t mGradient[sBSize][2];
};

namespace {

struct RandomNumberSource {
  explicit RandomNumberSource(int32_t aSeed) : mLast(SetupSeed(aSeed)) {}
  int32_t Next() {
    mLast = Random(mLast);
    return mLast;
  }

 private:
  static const int32_t RAND_M = 2147483647; /* 2**31 - 1 */
  static const int32_t RAND_A = 16807;      /* 7**5; primitive root of m */
  static const int32_t RAND_Q = 127773;     /* m / a */
  static const int32_t RAND_R = 2836;       /* m % a */

  /* Produces results in the range [1, 2**31 - 2].
     Algorithm is: r = (a * r) mod m
     where a = 16807 and m = 2**31 - 1 = 2147483647
     See [Park & Miller], CACM vol. 31 no. 10 p. 1195, Oct. 1988
     To test: the algorithm should produce the result 1043618065
     as the 10,000th generated number if the original seed is 1.
  */

  static int32_t SetupSeed(int32_t aSeed) {
    if (aSeed <= 0) aSeed = -(aSeed % (RAND_M - 1)) + 1;
    if (aSeed > RAND_M - 1) aSeed = RAND_M - 1;
    return aSeed;
  }

  static int32_t Random(int32_t aSeed) {
    int32_t result = RAND_A * (aSeed % RAND_Q) - RAND_R * (aSeed / RAND_Q);
    if (result <= 0) result += RAND_M;
    return result;
  }

  int32_t mLast;
};

}  // unnamed namespace

template <TurbulenceType Type, bool Stitch, typename f32x4_t, typename i32x4_t,
          typename u8x16_t>
SVGTurbulenceRenderer<Type, Stitch, f32x4_t, i32x4_t, u8x16_t>::
    SVGTurbulenceRenderer(const Size& aBaseFrequency, int32_t aSeed,
                          int aNumOctaves, const Rect& aTileRect)
    : mBaseFrequency(aBaseFrequency),
      mNumOctaves(aNumOctaves),
      mStitchInfo(),
      mStitchable(false),
      mType(TURBULENCE_TYPE_TURBULENCE) {
  InitFromSeed(aSeed);
  if (Stitch) {
    AdjustBaseFrequencyForStitch(aTileRect);
    mStitchInfo = CreateStitchInfo(aTileRect);
  }
}

template <TurbulenceType Type, bool Stitch, typename f32x4_t, typename i32x4_t,
          typename u8x16_t>
void SVGTurbulenceRenderer<Type, Stitch, f32x4_t, i32x4_t,
                           u8x16_t>::InitFromSeed(int32_t aSeed) {
  RandomNumberSource rand(aSeed);

  float gradient[4][sBSize][2];
  for (int32_t k = 0; k < 4; k++) {
    for (int32_t i = 0; i < sBSize; i++) {
      float a, b;
      do {
        a = float((rand.Next() % (sBSize + sBSize)) - sBSize) / sBSize;
        b = float((rand.Next() % (sBSize + sBSize)) - sBSize) / sBSize;
      } while (a == 0 && b == 0);
      float s = sqrt(a * a + b * b);
      gradient[k][i][0] = a / s;
      gradient[k][i][1] = b / s;
    }
  }

  for (int32_t i = 0; i < sBSize; i++) {
    mLatticeSelector[i] = i;
  }
  for (int32_t i1 = sBSize - 1; i1 > 0; i1--) {
    int32_t i2 = rand.Next() % sBSize;
    Swap(mLatticeSelector[i1], mLatticeSelector[i2]);
  }

  for (int32_t i = 0; i < sBSize; i++) {
    // Contrary to the code in the spec, we build the first lattice selector
    // lookup into mGradient so that we don't need to do it again for every
    // pixel.
    // We also change the order of the gradient indexing so that we can process
    // all four color channels at the same time.
    uint8_t j = mLatticeSelector[i];
    mGradient[i][0] =
        simd::FromF32<f32x4_t>(gradient[2][j][0], gradient[1][j][0],
                               gradient[0][j][0], gradient[3][j][0]);
    mGradient[i][1] =
        simd::FromF32<f32x4_t>(gradient[2][j][1], gradient[1][j][1],
                               gradient[0][j][1], gradient[3][j][1]);
  }
}

// Adjust aFreq such that aLength * AdjustForLength(aFreq, aLength) is integer
// and as close to aLength * aFreq as possible.
static inline float AdjustForLength(float aFreq, float aLength) {
  float lowFreq = floor(aLength * aFreq) / aLength;
  float hiFreq = ceil(aLength * aFreq) / aLength;
  if (aFreq / lowFreq < hiFreq / aFreq) {
    return lowFreq;
  }
  return hiFreq;
}

template <TurbulenceType Type, bool Stitch, typename f32x4_t, typename i32x4_t,
          typename u8x16_t>
void SVGTurbulenceRenderer<Type, Stitch, f32x4_t, i32x4_t, u8x16_t>::
    AdjustBaseFrequencyForStitch(const Rect& aTileRect) {
  mBaseFrequency =
      Size(AdjustForLength(mBaseFrequency.width, aTileRect.Width()),
           AdjustForLength(mBaseFrequency.height, aTileRect.Height()));
}

template <TurbulenceType Type, bool Stitch, typename f32x4_t, typename i32x4_t,
          typename u8x16_t>
typename SVGTurbulenceRenderer<Type, Stitch, f32x4_t, i32x4_t,
                               u8x16_t>::StitchInfo
SVGTurbulenceRenderer<Type, Stitch, f32x4_t, i32x4_t,
                      u8x16_t>::CreateStitchInfo(const Rect& aTileRect) const {
  StitchInfo stitch;
  stitch.width =
      int32_t(floorf(aTileRect.Width() * mBaseFrequency.width + 0.5f));
  stitch.height =
      int32_t(floorf(aTileRect.Height() * mBaseFrequency.height + 0.5f));
  stitch.wrapX = int32_t(aTileRect.X() * mBaseFrequency.width) + stitch.width;
  stitch.wrapY = int32_t(aTileRect.Y() * mBaseFrequency.height) + stitch.height;
  return stitch;
}

static MOZ_ALWAYS_INLINE Float SCurve(Float t) { return t * t * (3 - 2 * t); }

static MOZ_ALWAYS_INLINE Point SCurve(Point t) {
  return Point(SCurve(t.x), SCurve(t.y));
}

template <typename f32x4_t>
static MOZ_ALWAYS_INLINE f32x4_t BiMix(const f32x4_t& aa, const f32x4_t& ab,
                                       const f32x4_t& ba, const f32x4_t& bb,
                                       Point s) {
  return simd::MixF32(simd::MixF32(aa, ab, s.x), simd::MixF32(ba, bb, s.x),
                      s.y);
}

template <TurbulenceType Type, bool Stitch, typename f32x4_t, typename i32x4_t,
          typename u8x16_t>
IntPoint
SVGTurbulenceRenderer<Type, Stitch, f32x4_t, i32x4_t, u8x16_t>::AdjustForStitch(
    IntPoint aLatticePoint, const StitchInfo& aStitchInfo) const {
  if (Stitch) {
    if (aLatticePoint.x >= aStitchInfo.wrapX) {
      aLatticePoint.x -= aStitchInfo.width;
    }
    if (aLatticePoint.y >= aStitchInfo.wrapY) {
      aLatticePoint.y -= aStitchInfo.height;
    }
  }
  return aLatticePoint;
}

template <TurbulenceType Type, bool Stitch, typename f32x4_t, typename i32x4_t,
          typename u8x16_t>
f32x4_t SVGTurbulenceRenderer<Type, Stitch, f32x4_t, i32x4_t, u8x16_t>::Noise2(
    Point aVec, const StitchInfo& aStitchInfo) const {
  // aVec is guaranteed to be non-negative, so casting to int32_t always
  // rounds towards negative infinity.
  IntPoint topLeftLatticePoint(int32_t(aVec.x), int32_t(aVec.y));
  Point r = aVec - topLeftLatticePoint;  // fractional offset

  IntPoint b0 = AdjustForStitch(topLeftLatticePoint, aStitchInfo);
  IntPoint b1 = AdjustForStitch(b0 + IntPoint(1, 1), aStitchInfo);

  uint8_t i = mLatticeSelector[b0.x & sBM];
  uint8_t j = mLatticeSelector[b1.x & sBM];

  const f32x4_t* qua = mGradient[(i + b0.y) & sBM];
  const f32x4_t* qub = mGradient[(i + b1.y) & sBM];
  const f32x4_t* qva = mGradient[(j + b0.y) & sBM];
  const f32x4_t* qvb = mGradient[(j + b1.y) & sBM];

  return BiMix(simd::WSumF32(qua[0], qua[1], r.x, r.y),
               simd::WSumF32(qva[0], qva[1], r.x - 1.f, r.y),
               simd::WSumF32(qub[0], qub[1], r.x, r.y - 1.f),
               simd::WSumF32(qvb[0], qvb[1], r.x - 1.f, r.y - 1.f), SCurve(r));
}

template <typename f32x4_t, typename i32x4_t, typename u8x16_t>
static inline i32x4_t ColorToBGRA(f32x4_t aUnscaledUnpreFloat) {
  // Color is an unpremultiplied float vector where 1.0f means white. We will
  // convert it into an integer vector where 255 means white.
  f32x4_t alpha = simd::SplatF32<3>(aUnscaledUnpreFloat);
  f32x4_t scaledUnpreFloat =
      simd::MulF32(aUnscaledUnpreFloat, simd::FromF32<f32x4_t>(255));
  i32x4_t scaledUnpreInt = simd::F32ToI32(scaledUnpreFloat);

  // Multiply all channels with alpha.
  i32x4_t scaledPreInt = simd::F32ToI32(simd::MulF32(scaledUnpreFloat, alpha));

  // Use the premultiplied color channels and the unpremultiplied alpha channel.
  i32x4_t alphaMask = simd::From32<i32x4_t>(0, 0, 0, -1);
  return simd::Pick(alphaMask, scaledPreInt, scaledUnpreInt);
}

template <TurbulenceType Type, bool Stitch, typename f32x4_t, typename i32x4_t,
          typename u8x16_t>
i32x4_t SVGTurbulenceRenderer<Type, Stitch, f32x4_t, i32x4_t,
                              u8x16_t>::Turbulence(const Point& aPoint) const {
  StitchInfo stitchInfo = mStitchInfo;
  f32x4_t sum = simd::FromF32<f32x4_t>(0);
  Point vec(aPoint.x * mBaseFrequency.width, aPoint.y * mBaseFrequency.height);
  f32x4_t ratio = simd::FromF32<f32x4_t>(1);

  for (int octave = 0; octave < mNumOctaves; octave++) {
    f32x4_t thisOctave = Noise2(vec, stitchInfo);
    if (Type == TURBULENCE_TYPE_TURBULENCE) {
      thisOctave = simd::AbsF32(thisOctave);
    }
    sum = simd::AddF32(sum, simd::DivF32(thisOctave, ratio));
    vec = vec * 2;
    ratio = simd::MulF32(ratio, simd::FromF32<f32x4_t>(2));

    if (Stitch) {
      stitchInfo.width *= 2;
      stitchInfo.wrapX *= 2;
      stitchInfo.height *= 2;
      stitchInfo.wrapY *= 2;
    }
  }

  if (Type == TURBULENCE_TYPE_FRACTAL_NOISE) {
    sum = simd::DivF32(simd::AddF32(sum, simd::FromF32<f32x4_t>(1)),
                       simd::FromF32<f32x4_t>(2));
  }
  return ColorToBGRA<f32x4_t, i32x4_t, u8x16_t>(sum);
}

static inline Float MakeNonNegative(Float aValue, Float aIncrementSize) {
  if (aIncrementSize == 0) {
    return 0;
  }
  if (aValue >= 0) {
    return aValue;
  }
  return aValue + ceilf(-aValue / aIncrementSize) * aIncrementSize;
}

static inline Float FiniteDivide(Float aValue, Float aDivisor) {
  if (aDivisor == 0) {
    return 0;
  }
  return aValue / aDivisor;
}

template <TurbulenceType Type, bool Stitch, typename f32x4_t, typename i32x4_t,
          typename u8x16_t>
Point SVGTurbulenceRenderer<Type, Stitch, f32x4_t, i32x4_t, u8x16_t>::
    EquivalentNonNegativeOffset(const Point& aOffset) const {
  Size basePeriod = Stitch ? Size(mStitchInfo.width, mStitchInfo.height)
                           : Size(sBSize, sBSize);
  Size repeatingSize(FiniteDivide(basePeriod.width, mBaseFrequency.width),
                     FiniteDivide(basePeriod.height, mBaseFrequency.height));
  return Point(MakeNonNegative(aOffset.x, repeatingSize.width),
               MakeNonNegative(aOffset.y, repeatingSize.height));
}

template <TurbulenceType Type, bool Stitch, typename f32x4_t, typename i32x4_t,
          typename u8x16_t>
already_AddRefed<DataSourceSurface>
SVGTurbulenceRenderer<Type, Stitch, f32x4_t, i32x4_t, u8x16_t>::Render(
    const IntSize& aSize, const Point& aOffset) const {
  RefPtr<DataSourceSurface> target =
      Factory::CreateDataSourceSurface(aSize, SurfaceFormat::B8G8R8A8);
  if (!target) {
    return nullptr;
  }

  DataSourceSurface::ScopedMap map(target, DataSourceSurface::READ_WRITE);
  uint8_t* targetData = map.GetData();
  uint32_t stride = map.GetStride();

  Point startOffset = EquivalentNonNegativeOffset(aOffset);

  for (int32_t y = 0; y < aSize.height; y++) {
    for (int32_t x = 0; x < aSize.width; x += 4) {
      int32_t targIndex = y * stride + x * 4;
      i32x4_t a = Turbulence(startOffset + Point(x, y));
      i32x4_t b = Turbulence(startOffset + Point(x + 1, y));
      i32x4_t c = Turbulence(startOffset + Point(x + 2, y));
      i32x4_t d = Turbulence(startOffset + Point(x + 3, y));
      u8x16_t result1234 = simd::PackAndSaturate32To8(a, b, c, d);
      simd::Store8(&targetData[targIndex], result1234);
    }
  }

  return target.forget();
}

}  // namespace gfx
}  // namespace mozilla