DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef MOZILLA_GFX_QUATERNION_H_
#define MOZILLA_GFX_QUATERNION_H_

#include "Types.h"
#include <math.h>
#include <ostream>
#include "mozilla/Attributes.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/gfx/MatrixFwd.h"
#include "mozilla/gfx/Point.h"

namespace mozilla {
namespace gfx {

template <class T>
class BaseQuaternion {
 public:
  BaseQuaternion() : x(0.0f), y(0.0f), z(0.0f), w(1.0f) {}

  BaseQuaternion(T aX, T aY, T aZ, T aW) : x(aX), y(aY), z(aZ), w(aW) {}

  BaseQuaternion(const BaseQuaternion& aOther) {
    x = aOther.x;
    y = aOther.y;
    z = aOther.y;
    w = aOther.w;
  }

  T x, y, z, w;

  template <class U>
  friend std::ostream& operator<<(std::ostream& aStream,
                                  const BaseQuaternion<U>& aQuat);

  void Set(T aX, T aY, T aZ, T aW) {
    x = aX;
    y = aY;
    z = aZ;
    w = aW;
  }

  // Assumes upper 3x3 of aMatrix is a pure rotation matrix (no scaling)
  void SetFromRotationMatrix(
      const Matrix4x4Typed<UnknownUnits, UnknownUnits, T>& m) {
    // see
    // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
    const T trace = m._11 + m._22 + m._33;
    if (trace > 0.0) {
      const T s = 0.5f / sqrt(trace + 1.0f);
      w = 0.25f / s;
      x = (m._32 - m._23) * s;
      y = (m._13 - m._31) * s;
      z = (m._21 - m._12) * s;
    } else if (m._11 > m._22 && m._11 > m._33) {
      const T s = 2.0f * sqrt(1.0f + m._11 - m._22 - m._33);
      w = (m._32 - m._23) / s;
      x = 0.25f * s;
      y = (m._12 + m._21) / s;
      z = (m._13 + m._31) / s;
    } else if (m._22 > m._33) {
      const T s = 2.0 * sqrt(1.0f + m._22 - m._11 - m._33);
      w = (m._13 - m._31) / s;
      x = (m._12 + m._21) / s;
      y = 0.25f * s;
      z = (m._23 + m._32) / s;
    } else {
      const T s = 2.0 * sqrt(1.0f + m._33 - m._11 - m._22);
      w = (m._21 - m._12) / s;
      x = (m._13 + m._31) / s;
      y = (m._23 + m._32) / s;
      z = 0.25f * s;
    }
  }

  // result = this * aQuat
  BaseQuaternion operator*(const BaseQuaternion& aQuat) const {
    BaseQuaternion o;
    const T bx = aQuat.x, by = aQuat.y, bz = aQuat.z, bw = aQuat.w;

    o.x = x * bw + w * bx + y * bz - z * by;
    o.y = y * bw + w * by + z * bx - x * bz;
    o.z = z * bw + w * bz + x * by - y * bx;
    o.w = w * bw - x * bx - y * by - z * bz;
    return o;
  }

  BaseQuaternion& operator*=(const BaseQuaternion& aQuat) {
    *this = *this * aQuat;
    return *this;
  }

  T Length() const { return sqrt(x * x + y * y + z * z + w * w); }

  BaseQuaternion& Conjugate() {
    x *= -1.f;
    y *= -1.f;
    z *= -1.f;
    return *this;
  }

  BaseQuaternion& Normalize() {
    T l = Length();
    if (l) {
      l = 1.0f / l;
      x *= l;
      y *= l;
      z *= l;
      w *= l;
    } else {
      x = y = z = 0.f;
      w = 1.f;
    }
    return *this;
  }

  BaseQuaternion& Invert() { return Conjugate().Normalize(); }

  Point3DTyped<UnknownUnits, T> RotatePoint(
      const Point3DTyped<UnknownUnits, T>& aPoint) {
    T uvx = T(2.0) * (y * aPoint.z - z * aPoint.y);
    T uvy = T(2.0) * (z * aPoint.x - x * aPoint.z);
    T uvz = T(2.0) * (x * aPoint.y - y * aPoint.x);

    return Point3DTyped<UnknownUnits, T>(
        aPoint.x + w * uvx + y * uvz - z * uvy,
        aPoint.y + w * uvy + z * uvx - x * uvz,
        aPoint.z + w * uvz + x * uvy - y * uvx);
  }
};

typedef BaseQuaternion<Float> Quaternion;
typedef BaseQuaternion<Double> QuaternionDouble;

}  // namespace gfx
}  // namespace mozilla

#endif