DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "PathHelpers.h"

namespace mozilla {
namespace gfx {

UserDataKey sDisablePixelSnapping;

void AppendRectToPath(PathBuilder* aPathBuilder, const Rect& aRect,
                      bool aDrawClockwise) {
  if (aDrawClockwise) {
    aPathBuilder->MoveTo(aRect.TopLeft());
    aPathBuilder->LineTo(aRect.TopRight());
    aPathBuilder->LineTo(aRect.BottomRight());
    aPathBuilder->LineTo(aRect.BottomLeft());
  } else {
    aPathBuilder->MoveTo(aRect.TopRight());
    aPathBuilder->LineTo(aRect.TopLeft());
    aPathBuilder->LineTo(aRect.BottomLeft());
    aPathBuilder->LineTo(aRect.BottomRight());
  }
  aPathBuilder->Close();
}

void AppendRoundedRectToPath(PathBuilder* aPathBuilder, const Rect& aRect,
                             const RectCornerRadii& aRadii,
                             bool aDrawClockwise) {
  // For CW drawing, this looks like:
  //
  //  ...******0**      1    C
  //              ****
  //                  ***    2
  //                     **
  //                       *
  //                        *
  //                         3
  //                         *
  //                         *
  //
  // Where 0, 1, 2, 3 are the control points of the Bezier curve for
  // the corner, and C is the actual corner point.
  //
  // At the start of the loop, the current point is assumed to be
  // the point adjacent to the top left corner on the top
  // horizontal.  Note that corner indices start at the top left and
  // continue clockwise, whereas in our loop i = 0 refers to the top
  // right corner.
  //
  // When going CCW, the control points are swapped, and the first
  // corner that's drawn is the top left (along with the top segment).
  //
  // There is considerable latitude in how one chooses the four
  // control points for a Bezier curve approximation to an ellipse.
  // For the overall path to be continuous and show no corner at the
  // endpoints of the arc, points 0 and 3 must be at the ends of the
  // straight segments of the rectangle; points 0, 1, and C must be
  // collinear; and points 3, 2, and C must also be collinear.  This
  // leaves only two free parameters: the ratio of the line segments
  // 01 and 0C, and the ratio of the line segments 32 and 3C.  See
  // the following papers for extensive discussion of how to choose
  // these ratios:
  //
  //   Dokken, Tor, et al. "Good approximation of circles by
  //      curvature-continuous Bezier curves."  Computer-Aided
  //      Geometric Design 7(1990) 33--41.
  //   Goldapp, Michael. "Approximation of circular arcs by cubic
  //      polynomials." Computer-Aided Geometric Design 8(1991) 227--238.
  //   Maisonobe, Luc. "Drawing an elliptical arc using polylines,
  //      quadratic, or cubic Bezier curves."
  //      http://www.spaceroots.org/documents/ellipse/elliptical-arc.pdf
  //
  // We follow the approach in section 2 of Goldapp (least-error,
  // Hermite-type approximation) and make both ratios equal to
  //
  //          2   2 + n - sqrt(2n + 28)
  //  alpha = - * ---------------------
  //          3           n - 4
  //
  // where n = 3( cbrt(sqrt(2)+1) - cbrt(sqrt(2)-1) ).
  //
  // This is the result of Goldapp's equation (10b) when the angle
  // swept out by the arc is pi/2, and the parameter "a-bar" is the
  // expression given immediately below equation (21).
  //
  // Using this value, the maximum radial error for a circle, as a
  // fraction of the radius, is on the order of 0.2 x 10^-3.
  // Neither Dokken nor Goldapp discusses error for a general
  // ellipse; Maisonobe does, but his choice of control points
  // follows different constraints, and Goldapp's expression for
  // 'alpha' gives much smaller radial error, even for very flat
  // ellipses, than Maisonobe's equivalent.
  //
  // For the various corners and for each axis, the sign of this
  // constant changes, or it might be 0 -- it's multiplied by the
  // appropriate multiplier from the list before using.

  const Float alpha = Float(0.55191497064665766025);

  typedef struct {
    Float a, b;
  } twoFloats;

  twoFloats cwCornerMults[4] = {{-1, 0},  // cc == clockwise
                                {0, -1},
                                {+1, 0},
                                {0, +1}};
  twoFloats ccwCornerMults[4] = {{+1, 0},  // ccw == counter-clockwise
                                 {0, -1},
                                 {-1, 0},
                                 {0, +1}};

  twoFloats* cornerMults = aDrawClockwise ? cwCornerMults : ccwCornerMults;

  Point cornerCoords[] = {aRect.TopLeft(), aRect.TopRight(),
                          aRect.BottomRight(), aRect.BottomLeft()};

  Point pc, p0, p1, p2, p3;

  if (aDrawClockwise) {
    aPathBuilder->MoveTo(
        Point(aRect.X() + aRadii[eCornerTopLeft].width, aRect.Y()));
  } else {
    aPathBuilder->MoveTo(Point(
        aRect.X() + aRect.Width() - aRadii[eCornerTopRight].width, aRect.Y()));
  }

  for (int i = 0; i < 4; ++i) {
    // the corner index -- either 1 2 3 0 (cw) or 0 3 2 1 (ccw)
    int c = aDrawClockwise ? ((i + 1) % 4) : ((4 - i) % 4);

    // i+2 and i+3 respectively.  These are used to index into the corner
    // multiplier table, and were deduced by calculating out the long form
    // of each corner and finding a pattern in the signs and values.
    int i2 = (i + 2) % 4;
    int i3 = (i + 3) % 4;

    pc = cornerCoords[c];

    if (aRadii[c].width > 0.0 && aRadii[c].height > 0.0) {
      p0.x = pc.x + cornerMults[i].a * aRadii[c].width;
      p0.y = pc.y + cornerMults[i].b * aRadii[c].height;

      p3.x = pc.x + cornerMults[i3].a * aRadii[c].width;
      p3.y = pc.y + cornerMults[i3].b * aRadii[c].height;

      p1.x = p0.x + alpha * cornerMults[i2].a * aRadii[c].width;
      p1.y = p0.y + alpha * cornerMults[i2].b * aRadii[c].height;

      p2.x = p3.x - alpha * cornerMults[i3].a * aRadii[c].width;
      p2.y = p3.y - alpha * cornerMults[i3].b * aRadii[c].height;

      aPathBuilder->LineTo(p0);
      aPathBuilder->BezierTo(p1, p2, p3);
    } else {
      aPathBuilder->LineTo(pc);
    }
  }

  aPathBuilder->Close();
}

void AppendEllipseToPath(PathBuilder* aPathBuilder, const Point& aCenter,
                         const Size& aDimensions) {
  Size halfDim = aDimensions / 2.f;
  Rect rect(aCenter - Point(halfDim.width, halfDim.height), aDimensions);
  RectCornerRadii radii(halfDim.width, halfDim.height);

  AppendRoundedRectToPath(aPathBuilder, rect, radii);
}

bool SnapLineToDevicePixelsForStroking(Point& aP1, Point& aP2,
                                       const DrawTarget& aDrawTarget,
                                       Float aLineWidth) {
  Matrix mat = aDrawTarget.GetTransform();
  if (mat.HasNonTranslation()) {
    return false;
  }
  if (aP1.x != aP2.x && aP1.y != aP2.y) {
    return false;  // not a horizontal or vertical line
  }
  Point p1 = aP1 + mat.GetTranslation();  // into device space
  Point p2 = aP2 + mat.GetTranslation();
  p1.Round();
  p2.Round();
  p1 -= mat.GetTranslation();  // back into user space
  p2 -= mat.GetTranslation();

  aP1 = p1;
  aP2 = p2;

  bool lineWidthIsOdd = (int(aLineWidth) % 2) == 1;
  if (lineWidthIsOdd) {
    if (aP1.x == aP2.x) {
      // snap vertical line, adding 0.5 to align it to be mid-pixel:
      aP1 += Point(0.5, 0);
      aP2 += Point(0.5, 0);
    } else {
      // snap horizontal line, adding 0.5 to align it to be mid-pixel:
      aP1 += Point(0, 0.5);
      aP2 += Point(0, 0.5);
    }
  }
  return true;
}

void StrokeSnappedEdgesOfRect(const Rect& aRect, DrawTarget& aDrawTarget,
                              const ColorPattern& aColor,
                              const StrokeOptions& aStrokeOptions) {
  if (aRect.IsEmpty()) {
    return;
  }

  Point p1 = aRect.TopLeft();
  Point p2 = aRect.BottomLeft();
  SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget,
                                    aStrokeOptions.mLineWidth);
  aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions);

  p1 = aRect.BottomLeft();
  p2 = aRect.BottomRight();
  SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget,
                                    aStrokeOptions.mLineWidth);
  aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions);

  p1 = aRect.TopLeft();
  p2 = aRect.TopRight();
  SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget,
                                    aStrokeOptions.mLineWidth);
  aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions);

  p1 = aRect.TopRight();
  p2 = aRect.BottomRight();
  SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget,
                                    aStrokeOptions.mLineWidth);
  aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions);
}

// The logic for this comes from _cairo_stroke_style_max_distance_from_path
Margin MaxStrokeExtents(const StrokeOptions& aStrokeOptions,
                        const Matrix& aTransform) {
  double styleExpansionFactor = 0.5f;

  if (aStrokeOptions.mLineCap == CapStyle::SQUARE) {
    styleExpansionFactor = M_SQRT1_2;
  }

  if (aStrokeOptions.mLineJoin == JoinStyle::MITER &&
      styleExpansionFactor < M_SQRT2 * aStrokeOptions.mMiterLimit) {
    styleExpansionFactor = M_SQRT2 * aStrokeOptions.mMiterLimit;
  }

  styleExpansionFactor *= aStrokeOptions.mLineWidth;

  double dx = styleExpansionFactor * hypot(aTransform._11, aTransform._21);
  double dy = styleExpansionFactor * hypot(aTransform._22, aTransform._12);

  // Even if the stroke only partially covers a pixel, it must still render to
  // full pixels. Round up to compensate for this.
  dx = ceil(dx);
  dy = ceil(dy);

  return Margin(dy, dx, dy, dx);
}

}  // namespace gfx
}  // namespace mozilla