DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (b6d82b1a6b02)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "nsAlgorithm.h"
#include "WebMBufferedParser.h"
#include "nsThreadUtils.h"
#include <algorithm>

extern mozilla::LazyLogModule gMediaDemuxerLog;
#define WEBM_DEBUG(arg, ...)                          \
  MOZ_LOG(gMediaDemuxerLog, mozilla::LogLevel::Debug, \
          ("WebMBufferedParser(%p)::%s: " arg, this, __func__, ##__VA_ARGS__))

namespace mozilla {

static uint32_t VIntLength(unsigned char aFirstByte, uint32_t* aMask) {
  uint32_t count = 1;
  uint32_t mask = 1 << 7;
  while (count < 8) {
    if ((aFirstByte & mask) != 0) {
      break;
    }
    mask >>= 1;
    count += 1;
  }
  if (aMask) {
    *aMask = mask;
  }
  NS_ASSERTION(count >= 1 && count <= 8, "Insane VInt length.");
  return count;
}

bool WebMBufferedParser::Append(const unsigned char* aBuffer, uint32_t aLength,
                                nsTArray<WebMTimeDataOffset>& aMapping,
                                ReentrantMonitor& aReentrantMonitor) {
  static const uint32_t EBML_ID = 0x1a45dfa3;
  static const uint32_t SEGMENT_ID = 0x18538067;
  static const uint32_t SEGINFO_ID = 0x1549a966;
  static const uint32_t TRACKS_ID = 0x1654AE6B;
  static const uint32_t CLUSTER_ID = 0x1f43b675;
  static const uint32_t TIMECODESCALE_ID = 0x2ad7b1;
  static const unsigned char TIMECODE_ID = 0xe7;
  static const unsigned char BLOCKGROUP_ID = 0xa0;
  static const unsigned char BLOCK_ID = 0xa1;
  static const unsigned char SIMPLEBLOCK_ID = 0xa3;
  static const uint32_t BLOCK_TIMECODE_LENGTH = 2;

  static const unsigned char CLUSTER_SYNC_ID[] = {0x1f, 0x43, 0xb6, 0x75};

  const unsigned char* p = aBuffer;

  // Parse each byte in aBuffer one-by-one, producing timecodes and updating
  // aMapping as we go.  Parser pauses at end of stream (which may be at any
  // point within the parse) and resumes parsing the next time Append is
  // called with new data.
  while (p < aBuffer + aLength) {
    switch (mState) {
      case READ_ELEMENT_ID:
        mVIntRaw = true;
        mState = READ_VINT;
        mNextState = READ_ELEMENT_SIZE;
        break;
      case READ_ELEMENT_SIZE:
        mVIntRaw = false;
        mElement.mID = mVInt;
        mState = READ_VINT;
        mNextState = PARSE_ELEMENT;
        break;
      case FIND_CLUSTER_SYNC:
        if (*p++ == CLUSTER_SYNC_ID[mClusterSyncPos]) {
          mClusterSyncPos += 1;
        } else {
          mClusterSyncPos = 0;
        }
        if (mClusterSyncPos == sizeof(CLUSTER_SYNC_ID)) {
          mVInt.mValue = CLUSTER_ID;
          mVInt.mLength = sizeof(CLUSTER_SYNC_ID);
          mState = READ_ELEMENT_SIZE;
        }
        break;
      case PARSE_ELEMENT:
        mElement.mSize = mVInt;
        switch (mElement.mID.mValue) {
          case SEGMENT_ID:
            mState = READ_ELEMENT_ID;
            break;
          case SEGINFO_ID:
            mGotTimecodeScale = true;
            mState = READ_ELEMENT_ID;
            break;
          case TIMECODE_ID:
            mVInt = VInt();
            mVIntLeft = mElement.mSize.mValue;
            mState = READ_VINT_REST;
            mNextState = READ_CLUSTER_TIMECODE;
            break;
          case TIMECODESCALE_ID:
            mVInt = VInt();
            mVIntLeft = mElement.mSize.mValue;
            mState = READ_VINT_REST;
            mNextState = READ_TIMECODESCALE;
            break;
          case CLUSTER_ID:
            mClusterOffset = mCurrentOffset + (p - aBuffer) -
                             (mElement.mID.mLength + mElement.mSize.mLength);
            // Handle "unknown" length;
            if (mElement.mSize.mValue + 1 !=
                uint64_t(1) << (mElement.mSize.mLength * 7)) {
              mClusterEndOffset = mClusterOffset + mElement.mID.mLength +
                                  mElement.mSize.mLength +
                                  mElement.mSize.mValue;
            } else {
              mClusterEndOffset = -1;
            }
            mGotClusterTimecode = false;
            mState = READ_ELEMENT_ID;
            break;
          case BLOCKGROUP_ID:
            mState = READ_ELEMENT_ID;
            break;
          case SIMPLEBLOCK_ID:
            /* FALLTHROUGH */
          case BLOCK_ID:
            if (!mGotClusterTimecode) {
              WEBM_DEBUG(
                  "The Timecode element must appear before any Block or "
                  "SimpleBlock elements in a Cluster");
              return false;
            }
            mBlockSize = mElement.mSize.mValue;
            mBlockTimecode = 0;
            mBlockTimecodeLength = BLOCK_TIMECODE_LENGTH;
            mBlockOffset = mCurrentOffset + (p - aBuffer) -
                           (mElement.mID.mLength + mElement.mSize.mLength);
            mState = READ_VINT;
            mNextState = READ_BLOCK_TIMECODE;
            break;
          case TRACKS_ID:
            mSkipBytes = mElement.mSize.mValue;
            mState = CHECK_INIT_FOUND;
            break;
          case EBML_ID:
            mLastInitStartOffset =
                mCurrentOffset + (p - aBuffer) -
                (mElement.mID.mLength + mElement.mSize.mLength);
            MOZ_FALLTHROUGH;
          default:
            mSkipBytes = mElement.mSize.mValue;
            mState = SKIP_DATA;
            mNextState = READ_ELEMENT_ID;
            break;
        }
        break;
      case READ_VINT: {
        unsigned char c = *p++;
        uint32_t mask;
        mVInt.mLength = VIntLength(c, &mask);
        mVIntLeft = mVInt.mLength - 1;
        mVInt.mValue = mVIntRaw ? c : c & ~mask;
        mState = READ_VINT_REST;
        break;
      }
      case READ_VINT_REST:
        if (mVIntLeft) {
          mVInt.mValue <<= 8;
          mVInt.mValue |= *p++;
          mVIntLeft -= 1;
        } else {
          mState = mNextState;
        }
        break;
      case READ_TIMECODESCALE:
        if (!mGotTimecodeScale) {
          WEBM_DEBUG("Should get the SegmentInfo first");
          return false;
        }
        mTimecodeScale = mVInt.mValue;
        mState = READ_ELEMENT_ID;
        break;
      case READ_CLUSTER_TIMECODE:
        mClusterTimecode = mVInt.mValue;
        mGotClusterTimecode = true;
        mState = READ_ELEMENT_ID;
        break;
      case READ_BLOCK_TIMECODE:
        if (mBlockTimecodeLength) {
          mBlockTimecode <<= 8;
          mBlockTimecode |= *p++;
          mBlockTimecodeLength -= 1;
        } else {
          // It's possible we've parsed this data before, so avoid inserting
          // duplicate WebMTimeDataOffset entries.
          {
            ReentrantMonitorAutoEnter mon(aReentrantMonitor);
            int64_t endOffset = mBlockOffset + mBlockSize +
                                mElement.mID.mLength + mElement.mSize.mLength;
            uint32_t idx = aMapping.IndexOfFirstElementGt(endOffset);
            if (idx == 0 || aMapping[idx - 1] != endOffset) {
              // Don't insert invalid negative timecodes.
              if (mBlockTimecode >= 0 ||
                  mClusterTimecode >= uint16_t(abs(mBlockTimecode))) {
                if (!mGotTimecodeScale) {
                  WEBM_DEBUG("Should get the TimecodeScale first");
                  return false;
                }
                uint64_t absTimecode = mClusterTimecode + mBlockTimecode;
                absTimecode *= mTimecodeScale;
                // Avoid creating an entry if the timecode is out of order
                // (invalid according to the WebM specification) so that
                // ordering invariants of aMapping are not violated.
                if (idx == 0 || aMapping[idx - 1].mTimecode <= absTimecode ||
                    (idx + 1 < aMapping.Length() &&
                     aMapping[idx + 1].mTimecode >= absTimecode)) {
                  WebMTimeDataOffset entry(endOffset, absTimecode,
                                           mLastInitStartOffset, mClusterOffset,
                                           mClusterEndOffset);
                  aMapping.InsertElementAt(idx, entry);
                } else {
                  WEBM_DEBUG("Out of order timecode %" PRIu64
                             " in Cluster at %" PRId64 " ignored",
                             absTimecode, mClusterOffset);
                }
              }
            }
          }

          // Skip rest of block header and the block's payload.
          mBlockSize -= mVInt.mLength;
          mBlockSize -= BLOCK_TIMECODE_LENGTH;
          mSkipBytes = uint32_t(mBlockSize);
          mState = SKIP_DATA;
          mNextState = READ_ELEMENT_ID;
        }
        break;
      case SKIP_DATA:
        if (mSkipBytes) {
          uint32_t left = aLength - (p - aBuffer);
          left = std::min(left, mSkipBytes);
          p += left;
          mSkipBytes -= left;
        }
        if (!mSkipBytes) {
          mBlockEndOffset = mCurrentOffset + (p - aBuffer);
          mState = mNextState;
        }
        break;
      case CHECK_INIT_FOUND:
        if (mSkipBytes) {
          uint32_t left = aLength - (p - aBuffer);
          left = std::min(left, mSkipBytes);
          p += left;
          mSkipBytes -= left;
        }
        if (!mSkipBytes) {
          if (mInitEndOffset < 0) {
            mInitEndOffset = mCurrentOffset + (p - aBuffer);
            mBlockEndOffset = mCurrentOffset + (p - aBuffer);
          }
          mState = READ_ELEMENT_ID;
        }
        break;
    }
  }

  NS_ASSERTION(p == aBuffer + aLength, "Must have parsed to end of data.");
  mCurrentOffset += aLength;

  return true;
}

int64_t WebMBufferedParser::EndSegmentOffset(int64_t aOffset) {
  if (mLastInitStartOffset > aOffset || mClusterOffset > aOffset) {
    return std::min(
        mLastInitStartOffset >= 0 ? mLastInitStartOffset : INT64_MAX,
        mClusterOffset >= 0 ? mClusterOffset : INT64_MAX);
  }
  return mBlockEndOffset;
}

int64_t WebMBufferedParser::GetClusterOffset() const { return mClusterOffset; }

// SyncOffsetComparator and TimeComparator are slightly confusing, in that
// the nsTArray they're used with (mTimeMapping) is sorted by mEndOffset and
// these comparators are used on the other fields of WebMTimeDataOffset.
// This is only valid because timecodes are required to be monotonically
// increasing within a file (thus establishing an ordering relationship with
// mTimecode), and mEndOffset is derived from mSyncOffset.
struct SyncOffsetComparator {
  bool Equals(const WebMTimeDataOffset& a, const int64_t& b) const {
    return a.mSyncOffset == b;
  }

  bool LessThan(const WebMTimeDataOffset& a, const int64_t& b) const {
    return a.mSyncOffset < b;
  }
};

struct TimeComparator {
  bool Equals(const WebMTimeDataOffset& a, const uint64_t& b) const {
    return a.mTimecode == b;
  }

  bool LessThan(const WebMTimeDataOffset& a, const uint64_t& b) const {
    return a.mTimecode < b;
  }
};

bool WebMBufferedState::CalculateBufferedForRange(int64_t aStartOffset,
                                                  int64_t aEndOffset,
                                                  uint64_t* aStartTime,
                                                  uint64_t* aEndTime) {
  ReentrantMonitorAutoEnter mon(mReentrantMonitor);

  // Find the first WebMTimeDataOffset at or after aStartOffset.
  uint32_t start = mTimeMapping.IndexOfFirstElementGt(aStartOffset - 1,
                                                      SyncOffsetComparator());
  if (start == mTimeMapping.Length()) {
    return false;
  }

  // Find the first WebMTimeDataOffset at or before aEndOffset.
  uint32_t end = mTimeMapping.IndexOfFirstElementGt(aEndOffset);
  if (end > 0) {
    end -= 1;
  }

  // Range is empty.
  if (end <= start) {
    return false;
  }

  NS_ASSERTION(mTimeMapping[start].mSyncOffset >= aStartOffset &&
                   mTimeMapping[end].mEndOffset <= aEndOffset,
               "Computed time range must lie within data range.");
  if (start > 0) {
    NS_ASSERTION(mTimeMapping[start - 1].mSyncOffset < aStartOffset,
                 "Must have found least WebMTimeDataOffset for start");
  }
  if (end < mTimeMapping.Length() - 1) {
    NS_ASSERTION(mTimeMapping[end + 1].mEndOffset > aEndOffset,
                 "Must have found greatest WebMTimeDataOffset for end");
  }

  MOZ_ASSERT(mTimeMapping[end].mTimecode >= mTimeMapping[end - 1].mTimecode);
  uint64_t frameDuration =
      mTimeMapping[end].mTimecode - mTimeMapping[end - 1].mTimecode;
  *aStartTime = mTimeMapping[start].mTimecode;
  *aEndTime = mTimeMapping[end].mTimecode + frameDuration;
  return true;
}

bool WebMBufferedState::GetOffsetForTime(uint64_t aTime, int64_t* aOffset) {
  ReentrantMonitorAutoEnter mon(mReentrantMonitor);

  if (mTimeMapping.IsEmpty()) {
    return false;
  }

  uint64_t time = aTime;
  if (time > 0) {
    time = time - 1;
  }
  uint32_t idx = mTimeMapping.IndexOfFirstElementGt(time, TimeComparator());
  if (idx == mTimeMapping.Length()) {
    // Clamp to end
    *aOffset = mTimeMapping[mTimeMapping.Length() - 1].mSyncOffset;
  } else {
    // Idx is within array or has been clamped to start
    *aOffset = mTimeMapping[idx].mSyncOffset;
  }
  return true;
}

void WebMBufferedState::NotifyDataArrived(const unsigned char* aBuffer,
                                          uint32_t aLength, int64_t aOffset) {
  uint32_t idx = mRangeParsers.IndexOfFirstElementGt(aOffset - 1);
  if (idx == 0 || !(mRangeParsers[idx - 1] == aOffset)) {
    // If the incoming data overlaps an already parsed range, adjust the
    // buffer so that we only reparse the new data.  It's also possible to
    // have an overlap where the end of the incoming data is within an
    // already parsed range, but we don't bother handling that other than by
    // avoiding storing duplicate timecodes when the parser runs.
    if (idx != mRangeParsers.Length() &&
        mRangeParsers[idx].mStartOffset <= aOffset) {
      // Complete overlap, skip parsing.
      if (aOffset + aLength <= mRangeParsers[idx].mCurrentOffset) {
        return;
      }

      // Partial overlap, adjust the buffer to parse only the new data.
      int64_t adjust = mRangeParsers[idx].mCurrentOffset - aOffset;
      NS_ASSERTION(adjust >= 0, "Overlap detection bug.");
      aBuffer += adjust;
      aLength -= uint32_t(adjust);
    } else {
      mRangeParsers.InsertElementAt(idx, WebMBufferedParser(aOffset));
      if (idx != 0) {
        mRangeParsers[idx].SetTimecodeScale(
            mRangeParsers[0].GetTimecodeScale());
      }
    }
  }

  mRangeParsers[idx].Append(aBuffer, aLength, mTimeMapping, mReentrantMonitor);

  // Merge parsers with overlapping regions and clean up the remnants.
  uint32_t i = 0;
  while (i + 1 < mRangeParsers.Length()) {
    if (mRangeParsers[i].mCurrentOffset >= mRangeParsers[i + 1].mStartOffset) {
      mRangeParsers[i + 1].mStartOffset = mRangeParsers[i].mStartOffset;
      mRangeParsers[i + 1].mInitEndOffset = mRangeParsers[i].mInitEndOffset;
      mRangeParsers.RemoveElementAt(i);
    } else {
      i += 1;
    }
  }

  if (mRangeParsers.IsEmpty()) {
    return;
  }

  ReentrantMonitorAutoEnter mon(mReentrantMonitor);
  mLastBlockOffset = mRangeParsers.LastElement().mBlockEndOffset;
}

void WebMBufferedState::Reset() {
  mRangeParsers.Clear();
  mTimeMapping.Clear();
}

void WebMBufferedState::UpdateIndex(const MediaByteRangeSet& aRanges,
                                    MediaResource* aResource) {
  for (uint32_t index = 0; index < aRanges.Length(); index++) {
    const MediaByteRange& range = aRanges[index];
    int64_t offset = range.mStart;
    uint32_t length = range.mEnd - range.mStart;

    uint32_t idx = mRangeParsers.IndexOfFirstElementGt(offset - 1);
    if (!idx || !(mRangeParsers[idx - 1] == offset)) {
      // If the incoming data overlaps an already parsed range, adjust the
      // buffer so that we only reparse the new data.  It's also possible to
      // have an overlap where the end of the incoming data is within an
      // already parsed range, but we don't bother handling that other than by
      // avoiding storing duplicate timecodes when the parser runs.
      if (idx != mRangeParsers.Length() &&
          mRangeParsers[idx].mStartOffset <= offset) {
        // Complete overlap, skip parsing.
        if (offset + length <= mRangeParsers[idx].mCurrentOffset) {
          continue;
        }

        // Partial overlap, adjust the buffer to parse only the new data.
        int64_t adjust = mRangeParsers[idx].mCurrentOffset - offset;
        NS_ASSERTION(adjust >= 0, "Overlap detection bug.");
        offset += adjust;
        length -= uint32_t(adjust);
      } else {
        mRangeParsers.InsertElementAt(idx, WebMBufferedParser(offset));
        if (idx) {
          mRangeParsers[idx].SetTimecodeScale(
              mRangeParsers[0].GetTimecodeScale());
        }
      }
    }

    MediaResourceIndex res(aResource);
    while (length > 0) {
      static const uint32_t BLOCK_SIZE = 1048576;
      uint32_t block = std::min(length, BLOCK_SIZE);
      RefPtr<MediaByteBuffer> bytes = res.CachedMediaReadAt(offset, block);
      if (!bytes) {
        break;
      }
      NotifyDataArrived(bytes->Elements(), bytes->Length(), offset);
      length -= bytes->Length();
      offset += bytes->Length();
    }
  }
}

int64_t WebMBufferedState::GetInitEndOffset() {
  if (mRangeParsers.IsEmpty()) {
    return -1;
  }
  return mRangeParsers[0].mInitEndOffset;
}

int64_t WebMBufferedState::GetLastBlockOffset() {
  ReentrantMonitorAutoEnter mon(mReentrantMonitor);

  return mLastBlockOffset;
}

bool WebMBufferedState::GetStartTime(uint64_t* aTime) {
  ReentrantMonitorAutoEnter mon(mReentrantMonitor);

  if (mTimeMapping.IsEmpty()) {
    return false;
  }

  uint32_t idx = mTimeMapping.IndexOfFirstElementGt(0, SyncOffsetComparator());
  if (idx == mTimeMapping.Length()) {
    return false;
  }

  *aTime = mTimeMapping[idx].mTimecode;
  return true;
}

bool WebMBufferedState::GetNextKeyframeTime(uint64_t aTime,
                                            uint64_t* aKeyframeTime) {
  ReentrantMonitorAutoEnter mon(mReentrantMonitor);
  int64_t offset = 0;
  bool rv = GetOffsetForTime(aTime, &offset);
  if (!rv) {
    return false;
  }
  uint32_t idx =
      mTimeMapping.IndexOfFirstElementGt(offset, SyncOffsetComparator());
  if (idx == mTimeMapping.Length()) {
    return false;
  }
  *aKeyframeTime = mTimeMapping[idx].mTimecode;
  return true;
}
}  // namespace mozilla

#undef WEBM_DEBUG