DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef jit_MacroAssembler_inl_h
#define jit_MacroAssembler_inl_h

#include "jit/MacroAssembler.h"

#include "mozilla/FloatingPoint.h"
#include "mozilla/MathAlgorithms.h"

#include "gc/Zone.h"

#if defined(JS_CODEGEN_X86)
#  include "jit/x86/MacroAssembler-x86-inl.h"
#elif defined(JS_CODEGEN_X64)
#  include "jit/x64/MacroAssembler-x64-inl.h"
#elif defined(JS_CODEGEN_ARM)
#  include "jit/arm/MacroAssembler-arm-inl.h"
#elif defined(JS_CODEGEN_ARM64)
#  include "jit/arm64/MacroAssembler-arm64-inl.h"
#elif defined(JS_CODEGEN_MIPS32)
#  include "jit/mips32/MacroAssembler-mips32-inl.h"
#elif defined(JS_CODEGEN_MIPS64)
#  include "jit/mips64/MacroAssembler-mips64-inl.h"
#elif !defined(JS_CODEGEN_NONE)
#  error "Unknown architecture!"
#endif

#include "wasm/WasmBuiltins.h"

namespace js {
namespace jit {

//{{{ check_macroassembler_style
// ===============================================================
// Stack manipulation functions.

CodeOffset MacroAssembler::PushWithPatch(ImmWord word) {
  framePushed_ += sizeof(word.value);
  return pushWithPatch(word);
}

CodeOffset MacroAssembler::PushWithPatch(ImmPtr imm) {
  return PushWithPatch(ImmWord(uintptr_t(imm.value)));
}

// ===============================================================
// Simple call functions.

void MacroAssembler::call(TrampolinePtr code) { call(ImmPtr(code.value)); }

CodeOffset MacroAssembler::call(const wasm::CallSiteDesc& desc,
                                const Register reg) {
  CodeOffset l = call(reg);
  append(desc, l);
  return l;
}

CodeOffset MacroAssembler::call(const wasm::CallSiteDesc& desc,
                                uint32_t funcIndex) {
  CodeOffset l = callWithPatch();
  append(desc, l, funcIndex);
  return l;
}

void MacroAssembler::call(const wasm::CallSiteDesc& desc, wasm::Trap trap) {
  CodeOffset l = callWithPatch();
  append(desc, l, trap);
}

CodeOffset MacroAssembler::call(const wasm::CallSiteDesc& desc,
                                wasm::SymbolicAddress imm) {
  MOZ_ASSERT(wasm::NeedsBuiltinThunk(imm),
             "only for functions which may appear in profiler");
  CodeOffset raOffset = call(imm);
  append(desc, raOffset);
  return raOffset;
}

// ===============================================================
// ABI function calls.

void MacroAssembler::passABIArg(Register reg) {
  passABIArg(MoveOperand(reg), MoveOp::GENERAL);
}

void MacroAssembler::passABIArg(FloatRegister reg, MoveOp::Type type) {
  passABIArg(MoveOperand(reg), type);
}

void MacroAssembler::callWithABI(void* fun, MoveOp::Type result,
                                 CheckUnsafeCallWithABI check) {
  AutoProfilerCallInstrumentation profiler(*this);
  callWithABINoProfiler(fun, result, check);
}

void MacroAssembler::callWithABI(Register fun, MoveOp::Type result) {
  AutoProfilerCallInstrumentation profiler(*this);
  callWithABINoProfiler(fun, result);
}

void MacroAssembler::callWithABI(const Address& fun, MoveOp::Type result) {
  AutoProfilerCallInstrumentation profiler(*this);
  callWithABINoProfiler(fun, result);
}

void MacroAssembler::appendSignatureType(MoveOp::Type type) {
#ifdef JS_SIMULATOR
  signature_ <<= ArgType_Shift;
  switch (type) {
    case MoveOp::GENERAL:
      signature_ |= ArgType_General;
      break;
    case MoveOp::DOUBLE:
      signature_ |= ArgType_Double;
      break;
    case MoveOp::FLOAT32:
      signature_ |= ArgType_Float32;
      break;
    default:
      MOZ_CRASH("Invalid argument type");
  }
#endif
}

ABIFunctionType MacroAssembler::signature() const {
#ifdef JS_SIMULATOR
#  ifdef DEBUG
  switch (signature_) {
    case Args_General0:
    case Args_General1:
    case Args_General2:
    case Args_General3:
    case Args_General4:
    case Args_General5:
    case Args_General6:
    case Args_General7:
    case Args_General8:
    case Args_Double_None:
    case Args_Int_Double:
    case Args_Float32_Float32:
    case Args_Double_Double:
    case Args_Double_Int:
    case Args_Double_DoubleInt:
    case Args_Double_DoubleDouble:
    case Args_Double_IntDouble:
    case Args_Int_IntDouble:
    case Args_Int_DoubleIntInt:
    case Args_Int_IntDoubleIntInt:
    case Args_Double_DoubleDoubleDouble:
    case Args_Double_DoubleDoubleDoubleDouble:
      break;
    default:
      MOZ_CRASH("Unexpected type");
  }
#  endif  // DEBUG

  return ABIFunctionType(signature_);
#else
  // No simulator enabled.
  MOZ_CRASH("Only available for making calls within a simulator.");
#endif
}

// ===============================================================
// Jit Frames.

uint32_t MacroAssembler::callJitNoProfiler(Register callee) {
#ifdef JS_USE_LINK_REGISTER
  // The return address is pushed by the callee.
  call(callee);
#else
  callAndPushReturnAddress(callee);
#endif
  return currentOffset();
}

uint32_t MacroAssembler::callJit(Register callee) {
  AutoProfilerCallInstrumentation profiler(*this);
  uint32_t ret = callJitNoProfiler(callee);
  return ret;
}

uint32_t MacroAssembler::callJit(JitCode* callee) {
  AutoProfilerCallInstrumentation profiler(*this);
  call(callee);
  return currentOffset();
}

uint32_t MacroAssembler::callJit(TrampolinePtr code) {
  AutoProfilerCallInstrumentation profiler(*this);
  call(code);
  return currentOffset();
}

uint32_t MacroAssembler::callJit(ImmPtr callee) {
  AutoProfilerCallInstrumentation profiler(*this);
  call(callee);
  return currentOffset();
}

void MacroAssembler::makeFrameDescriptor(Register frameSizeReg, FrameType type,
                                         uint32_t headerSize) {
  // See JitFrames.h for a description of the frame descriptor format.
  // The saved-frame bit is zero for new frames. See js::SavedStacks.

  lshiftPtr(Imm32(FRAMESIZE_SHIFT), frameSizeReg);

  headerSize = EncodeFrameHeaderSize(headerSize);
  orPtr(Imm32((headerSize << FRAME_HEADER_SIZE_SHIFT) | uint32_t(type)),
        frameSizeReg);
}

void MacroAssembler::pushStaticFrameDescriptor(FrameType type,
                                               uint32_t headerSize) {
  uint32_t descriptor = MakeFrameDescriptor(framePushed(), type, headerSize);
  Push(Imm32(descriptor));
}

void MacroAssembler::PushCalleeToken(Register callee, bool constructing) {
  if (constructing) {
    orPtr(Imm32(CalleeToken_FunctionConstructing), callee);
    Push(callee);
    andPtr(Imm32(uint32_t(CalleeTokenMask)), callee);
  } else {
    static_assert(CalleeToken_Function == 0,
                  "Non-constructing call requires no tagging");
    Push(callee);
  }
}

void MacroAssembler::loadFunctionFromCalleeToken(Address token, Register dest) {
#ifdef DEBUG
  Label ok;
  loadPtr(token, dest);
  andPtr(Imm32(uint32_t(~CalleeTokenMask)), dest);
  branchPtr(Assembler::Equal, dest, Imm32(CalleeToken_Function), &ok);
  branchPtr(Assembler::Equal, dest, Imm32(CalleeToken_FunctionConstructing),
            &ok);
  assumeUnreachable("Unexpected CalleeToken tag");
  bind(&ok);
#endif
  loadPtr(token, dest);
  andPtr(Imm32(uint32_t(CalleeTokenMask)), dest);
}

uint32_t MacroAssembler::buildFakeExitFrame(Register scratch) {
  mozilla::DebugOnly<uint32_t> initialDepth = framePushed();

  pushStaticFrameDescriptor(FrameType::IonJS, ExitFrameLayout::Size());
  uint32_t retAddr = pushFakeReturnAddress(scratch);

  MOZ_ASSERT(framePushed() == initialDepth + ExitFrameLayout::Size());
  return retAddr;
}

// ===============================================================
// Exit frame footer.

void MacroAssembler::enterExitFrame(Register cxreg, Register scratch,
                                    const VMFunctionData* f) {
  MOZ_ASSERT(f);
  linkExitFrame(cxreg, scratch);
  // Push VMFunction pointer, to mark arguments.
  Push(ImmPtr(f));
}

void MacroAssembler::enterFakeExitFrame(Register cxreg, Register scratch,
                                        ExitFrameType type) {
  linkExitFrame(cxreg, scratch);
  Push(Imm32(int32_t(type)));
}

void MacroAssembler::enterFakeExitFrameForNative(Register cxreg,
                                                 Register scratch,
                                                 bool isConstructing) {
  enterFakeExitFrame(cxreg, scratch,
                     isConstructing ? ExitFrameType::ConstructNative
                                    : ExitFrameType::CallNative);
}

void MacroAssembler::leaveExitFrame(size_t extraFrame) {
  freeStack(ExitFooterFrame::Size() + extraFrame);
}

// ===============================================================
// Move instructions

void MacroAssembler::moveValue(const ConstantOrRegister& src,
                               const ValueOperand& dest) {
  if (src.constant()) {
    moveValue(src.value(), dest);
    return;
  }

  moveValue(src.reg(), dest);
}

// ===============================================================
// Arithmetic functions

void MacroAssembler::addPtr(ImmPtr imm, Register dest) {
  addPtr(ImmWord(uintptr_t(imm.value)), dest);
}

// ===============================================================
// Branch functions

template <class L>
void MacroAssembler::branchIfFalseBool(Register reg, L label) {
  // Note that C++ bool is only 1 byte, so ignore the higher-order bits.
  branchTest32(Assembler::Zero, reg, Imm32(0xFF), label);
}

void MacroAssembler::branchIfTrueBool(Register reg, Label* label) {
  // Note that C++ bool is only 1 byte, so ignore the higher-order bits.
  branchTest32(Assembler::NonZero, reg, Imm32(0xFF), label);
}

void MacroAssembler::branchIfRope(Register str, Label* label) {
  Address flags(str, JSString::offsetOfFlags());
  branchTest32(Assembler::Zero, flags, Imm32(JSString::LINEAR_BIT), label);
}

void MacroAssembler::branchIfRopeOrExternal(Register str, Register temp,
                                            Label* label) {
  Address flags(str, JSString::offsetOfFlags());
  move32(Imm32(JSString::TYPE_FLAGS_MASK), temp);
  and32(flags, temp);

  branchTest32(Assembler::Zero, temp, Imm32(JSString::LINEAR_BIT), label);
  branch32(Assembler::Equal, temp, Imm32(JSString::EXTERNAL_FLAGS), label);
}

void MacroAssembler::branchIfNotRope(Register str, Label* label) {
  Address flags(str, JSString::offsetOfFlags());
  branchTest32(Assembler::NonZero, flags, Imm32(JSString::LINEAR_BIT), label);
}

void MacroAssembler::branchLatin1String(Register string, Label* label) {
  branchTest32(Assembler::NonZero, Address(string, JSString::offsetOfFlags()),
               Imm32(JSString::LATIN1_CHARS_BIT), label);
}

void MacroAssembler::branchTwoByteString(Register string, Label* label) {
  branchTest32(Assembler::Zero, Address(string, JSString::offsetOfFlags()),
               Imm32(JSString::LATIN1_CHARS_BIT), label);
}

void MacroAssembler::branchTestFunctionFlags(Register fun, uint32_t flags,
                                             Condition cond, Label* label) {
  // 16-bit loads are slow and unaligned 32-bit loads may be too so
  // perform an aligned 32-bit load and adjust the bitmask accordingly.

  static_assert(JSFunction::offsetOfNargs() % sizeof(uint32_t) == 0,
                "The code in this function and the ones below must change");
  static_assert(JSFunction::offsetOfFlags() == JSFunction::offsetOfNargs() + 2,
                "The code in this function and the ones below must change");

  int32_t bit = IMM32_16ADJ(flags);
  Address address(fun, JSFunction::offsetOfNargs());
  branchTest32(cond, address, Imm32(bit), label);
}

void MacroAssembler::branchIfFunctionHasNoJitEntry(Register fun,
                                                   bool isConstructing,
                                                   Label* label) {
  int32_t flags = FunctionFlags::INTERPRETED | FunctionFlags::INTERPRETED_LAZY;
  if (!isConstructing) {
    flags |= FunctionFlags::WASM_JIT_ENTRY;
  }
  branchTestFunctionFlags(fun, flags, Assembler::Zero, label);
}

void MacroAssembler::branchIfFunctionHasNoScript(Register fun, Label* label) {
  int32_t flags = FunctionFlags::INTERPRETED;
  branchTestFunctionFlags(fun, flags, Assembler::Zero, label);
}

void MacroAssembler::branchIfInterpreted(Register fun, bool isConstructing,
                                         Label* label) {
  int32_t flags = FunctionFlags::INTERPRETED | FunctionFlags::INTERPRETED_LAZY;
  if (!isConstructing) {
    flags |= FunctionFlags::WASM_JIT_ENTRY;
  }
  branchTestFunctionFlags(fun, flags, Assembler::NonZero, label);
}

void MacroAssembler::branchIfObjectEmulatesUndefined(Register objReg,
                                                     Register scratch,
                                                     Label* slowCheck,
                                                     Label* label) {
  // The branches to out-of-line code here implement a conservative version
  // of the JSObject::isWrapper test performed in EmulatesUndefined.
  loadObjClassUnsafe(objReg, scratch);

  branchTestClassIsProxy(true, scratch, slowCheck);

  Address flags(scratch, JSClass::offsetOfFlags());
  branchTest32(Assembler::NonZero, flags, Imm32(JSCLASS_EMULATES_UNDEFINED),
               label);
}

void MacroAssembler::branchFunctionKind(Condition cond,
                                        FunctionFlags::FunctionKind kind,
                                        Register fun, Register scratch,
                                        Label* label) {
  // 16-bit loads are slow and unaligned 32-bit loads may be too so
  // perform an aligned 32-bit load and adjust the bitmask accordingly.
  MOZ_ASSERT(JSFunction::offsetOfNargs() % sizeof(uint32_t) == 0);
  MOZ_ASSERT(JSFunction::offsetOfFlags() == JSFunction::offsetOfNargs() + 2);
  Address address(fun, JSFunction::offsetOfNargs());
  int32_t mask = IMM32_16ADJ(FunctionFlags::FUNCTION_KIND_MASK);
  int32_t bit = IMM32_16ADJ(kind << FunctionFlags::FUNCTION_KIND_SHIFT);
  load32(address, scratch);
  and32(Imm32(mask), scratch);
  branch32(cond, scratch, Imm32(bit), label);
}

void MacroAssembler::branchTestObjClass(Condition cond, Register obj,
                                        const JSClass* clasp, Register scratch,
                                        Register spectreRegToZero,
                                        Label* label) {
  MOZ_ASSERT(obj != scratch);
  MOZ_ASSERT(scratch != spectreRegToZero);

  loadPtr(Address(obj, JSObject::offsetOfGroup()), scratch);
  branchPtr(cond, Address(scratch, ObjectGroup::offsetOfClasp()), ImmPtr(clasp),
            label);

  if (JitOptions.spectreObjectMitigationsMisc) {
    spectreZeroRegister(cond, scratch, spectreRegToZero);
  }
}

void MacroAssembler::branchTestObjClassNoSpectreMitigations(
    Condition cond, Register obj, const JSClass* clasp, Register scratch,
    Label* label) {
  loadPtr(Address(obj, JSObject::offsetOfGroup()), scratch);
  branchPtr(cond, Address(scratch, ObjectGroup::offsetOfClasp()), ImmPtr(clasp),
            label);
}

void MacroAssembler::branchTestObjClass(Condition cond, Register obj,
                                        const Address& clasp, Register scratch,
                                        Register spectreRegToZero,
                                        Label* label) {
  MOZ_ASSERT(obj != scratch);
  MOZ_ASSERT(scratch != spectreRegToZero);

  loadPtr(Address(obj, JSObject::offsetOfGroup()), scratch);
  loadPtr(Address(scratch, ObjectGroup::offsetOfClasp()), scratch);
  branchPtr(cond, clasp, scratch, label);

  if (JitOptions.spectreObjectMitigationsMisc) {
    spectreZeroRegister(cond, scratch, spectreRegToZero);
  }
}

void MacroAssembler::branchTestObjClassNoSpectreMitigations(
    Condition cond, Register obj, const Address& clasp, Register scratch,
    Label* label) {
  MOZ_ASSERT(obj != scratch);
  loadPtr(Address(obj, JSObject::offsetOfGroup()), scratch);
  loadPtr(Address(scratch, ObjectGroup::offsetOfClasp()), scratch);
  branchPtr(cond, clasp, scratch, label);
}

void MacroAssembler::branchTestObjShape(Condition cond, Register obj,
                                        const Shape* shape, Register scratch,
                                        Register spectreRegToZero,
                                        Label* label) {
  MOZ_ASSERT(obj != scratch);
  MOZ_ASSERT(spectreRegToZero != scratch);

  if (JitOptions.spectreObjectMitigationsMisc) {
    move32(Imm32(0), scratch);
  }

  branchPtr(cond, Address(obj, JSObject::offsetOfShape()), ImmGCPtr(shape),
            label);

  if (JitOptions.spectreObjectMitigationsMisc) {
    spectreMovePtr(cond, scratch, spectreRegToZero);
  }
}

void MacroAssembler::branchTestObjShapeNoSpectreMitigations(Condition cond,
                                                            Register obj,
                                                            const Shape* shape,
                                                            Label* label) {
  branchPtr(cond, Address(obj, JSObject::offsetOfShape()), ImmGCPtr(shape),
            label);
}

void MacroAssembler::branchTestObjShape(Condition cond, Register obj,
                                        Register shape, Register scratch,
                                        Register spectreRegToZero,
                                        Label* label) {
  MOZ_ASSERT(obj != scratch);
  MOZ_ASSERT(obj != shape);
  MOZ_ASSERT(spectreRegToZero != scratch);

  if (JitOptions.spectreObjectMitigationsMisc) {
    move32(Imm32(0), scratch);
  }

  branchPtr(cond, Address(obj, JSObject::offsetOfShape()), shape, label);

  if (JitOptions.spectreObjectMitigationsMisc) {
    spectreMovePtr(cond, scratch, spectreRegToZero);
  }
}

void MacroAssembler::branchTestObjShapeNoSpectreMitigations(Condition cond,
                                                            Register obj,
                                                            Register shape,
                                                            Label* label) {
  branchPtr(cond, Address(obj, JSObject::offsetOfShape()), shape, label);
}

void MacroAssembler::branchTestObjShapeUnsafe(Condition cond, Register obj,
                                              Register shape, Label* label) {
  branchTestObjShapeNoSpectreMitigations(cond, obj, shape, label);
}

void MacroAssembler::branchTestObjGroup(Condition cond, Register obj,
                                        const ObjectGroup* group,
                                        Register scratch,
                                        Register spectreRegToZero,
                                        Label* label) {
  MOZ_ASSERT(obj != scratch);
  MOZ_ASSERT(spectreRegToZero != scratch);

  if (JitOptions.spectreObjectMitigationsMisc) {
    move32(Imm32(0), scratch);
  }

  branchPtr(cond, Address(obj, JSObject::offsetOfGroup()), ImmGCPtr(group),
            label);

  if (JitOptions.spectreObjectMitigationsMisc) {
    spectreMovePtr(cond, scratch, spectreRegToZero);
  }
}

void MacroAssembler::branchTestObjGroupNoSpectreMitigations(
    Condition cond, Register obj, const ObjectGroup* group, Label* label) {
  branchPtr(cond, Address(obj, JSObject::offsetOfGroup()), ImmGCPtr(group),
            label);
}

void MacroAssembler::branchTestObjGroupUnsafe(Condition cond, Register obj,
                                              const ObjectGroup* group,
                                              Label* label) {
  branchTestObjGroupNoSpectreMitigations(cond, obj, group, label);
}

void MacroAssembler::branchTestObjGroup(Condition cond, Register obj,
                                        Register group, Register scratch,
                                        Register spectreRegToZero,
                                        Label* label) {
  MOZ_ASSERT(obj != scratch);
  MOZ_ASSERT(obj != group);
  MOZ_ASSERT(spectreRegToZero != scratch);

  if (JitOptions.spectreObjectMitigationsMisc) {
    move32(Imm32(0), scratch);
  }

  branchPtr(cond, Address(obj, JSObject::offsetOfGroup()), group, label);

  if (JitOptions.spectreObjectMitigationsMisc) {
    spectreMovePtr(cond, scratch, spectreRegToZero);
  }
}

void MacroAssembler::branchTestObjGroupNoSpectreMitigations(Condition cond,
                                                            Register obj,
                                                            Register group,
                                                            Label* label) {
  MOZ_ASSERT(obj != group);
  branchPtr(cond, Address(obj, JSObject::offsetOfGroup()), group, label);
}

void MacroAssembler::branchTestClassIsProxy(bool proxy, Register clasp,
                                            Label* label) {
  branchTest32(proxy ? Assembler::NonZero : Assembler::Zero,
               Address(clasp, JSClass::offsetOfFlags()),
               Imm32(JSCLASS_IS_PROXY), label);
}

void MacroAssembler::branchTestObjectIsProxy(bool proxy, Register object,
                                             Register scratch, Label* label) {
  loadObjClassUnsafe(object, scratch);
  branchTestClassIsProxy(proxy, scratch, label);
}

void MacroAssembler::branchTestProxyHandlerFamily(Condition cond,
                                                  Register proxy,
                                                  Register scratch,
                                                  const void* handlerp,
                                                  Label* label) {
  Address handlerAddr(proxy, ProxyObject::offsetOfHandler());
  loadPtr(handlerAddr, scratch);
  Address familyAddr(scratch, BaseProxyHandler::offsetOfFamily());
  branchPtr(cond, familyAddr, ImmPtr(handlerp), label);
}

void MacroAssembler::branchTestNeedsIncrementalBarrier(Condition cond,
                                                       Label* label) {
  MOZ_ASSERT(cond == Zero || cond == NonZero);
  CompileZone* zone = GetJitContext()->realm()->zone();
  const uint32_t* needsBarrierAddr = zone->addressOfNeedsIncrementalBarrier();
  branchTest32(cond, AbsoluteAddress(needsBarrierAddr), Imm32(0x1), label);
}

void MacroAssembler::branchTestNeedsIncrementalBarrierAnyZone(
    Condition cond, Label* label, Register scratch) {
  MOZ_ASSERT(cond == Zero || cond == NonZero);
  if (GetJitContext()->maybeRealm()) {
    branchTestNeedsIncrementalBarrier(cond, label);
  } else {
    // We are compiling the interpreter or another runtime-wide trampoline, so
    // we have to load cx->zone.
    loadPtr(AbsoluteAddress(GetJitContext()->runtime->addressOfZone()),
            scratch);
    Address needsBarrierAddr(scratch, Zone::offsetOfNeedsIncrementalBarrier());
    branchTest32(cond, needsBarrierAddr, Imm32(0x1), label);
  }
}

void MacroAssembler::branchTestMagicValue(Condition cond,
                                          const ValueOperand& val,
                                          JSWhyMagic why, Label* label) {
  MOZ_ASSERT(cond == Equal || cond == NotEqual);
  branchTestValue(cond, val, MagicValue(why), label);
}

void MacroAssembler::branchDoubleNotInInt64Range(Address src, Register temp,
                                                 Label* fail) {
  using mozilla::FloatingPoint;

  // Tests if double is in [INT64_MIN; INT64_MAX] range
  uint32_t EXPONENT_MASK = 0x7ff00000;
  uint32_t EXPONENT_SHIFT = FloatingPoint<double>::kExponentShift - 32;
  uint32_t TOO_BIG_EXPONENT = (FloatingPoint<double>::kExponentBias + 63)
                              << EXPONENT_SHIFT;

  load32(Address(src.base, src.offset + sizeof(int32_t)), temp);
  and32(Imm32(EXPONENT_MASK), temp);
  branch32(Assembler::GreaterThanOrEqual, temp, Imm32(TOO_BIG_EXPONENT), fail);
}

void MacroAssembler::branchDoubleNotInUInt64Range(Address src, Register temp,
                                                  Label* fail) {
  using mozilla::FloatingPoint;

  // Note: returns failure on -0.0
  // Tests if double is in [0; UINT64_MAX] range
  // Take the sign also in the equation. That way we can compare in one test?
  uint32_t EXPONENT_MASK = 0xfff00000;
  uint32_t EXPONENT_SHIFT = FloatingPoint<double>::kExponentShift - 32;
  uint32_t TOO_BIG_EXPONENT = (FloatingPoint<double>::kExponentBias + 64)
                              << EXPONENT_SHIFT;

  load32(Address(src.base, src.offset + sizeof(int32_t)), temp);
  and32(Imm32(EXPONENT_MASK), temp);
  branch32(Assembler::AboveOrEqual, temp, Imm32(TOO_BIG_EXPONENT), fail);
}

void MacroAssembler::branchFloat32NotInInt64Range(Address src, Register temp,
                                                  Label* fail) {
  using mozilla::FloatingPoint;

  // Tests if float is in [INT64_MIN; INT64_MAX] range
  uint32_t EXPONENT_MASK = 0x7f800000;
  uint32_t EXPONENT_SHIFT = FloatingPoint<float>::kExponentShift;
  uint32_t TOO_BIG_EXPONENT = (FloatingPoint<float>::kExponentBias + 63)
                              << EXPONENT_SHIFT;

  load32(src, temp);
  and32(Imm32(EXPONENT_MASK), temp);
  branch32(Assembler::GreaterThanOrEqual, temp, Imm32(TOO_BIG_EXPONENT), fail);
}

void MacroAssembler::branchFloat32NotInUInt64Range(Address src, Register temp,
                                                   Label* fail) {
  using mozilla::FloatingPoint;

  // Note: returns failure on -0.0
  // Tests if float is in [0; UINT64_MAX] range
  // Take the sign also in the equation. That way we can compare in one test?
  uint32_t EXPONENT_MASK = 0xff800000;
  uint32_t EXPONENT_SHIFT = FloatingPoint<float>::kExponentShift;
  uint32_t TOO_BIG_EXPONENT = (FloatingPoint<float>::kExponentBias + 64)
                              << EXPONENT_SHIFT;

  load32(src, temp);
  and32(Imm32(EXPONENT_MASK), temp);
  branch32(Assembler::AboveOrEqual, temp, Imm32(TOO_BIG_EXPONENT), fail);
}

// ========================================================================
// Canonicalization primitives.
void MacroAssembler::canonicalizeFloat(FloatRegister reg) {
  Label notNaN;
  branchFloat(DoubleOrdered, reg, reg, &notNaN);
  loadConstantFloat32(float(JS::GenericNaN()), reg);
  bind(&notNaN);
}

void MacroAssembler::canonicalizeFloatIfDeterministic(FloatRegister reg) {
#ifdef JS_MORE_DETERMINISTIC
  // See the comment in TypedArrayObjectTemplate::getElement.
  canonicalizeFloat(reg);
#endif  // JS_MORE_DETERMINISTIC
}

void MacroAssembler::canonicalizeDouble(FloatRegister reg) {
  Label notNaN;
  branchDouble(DoubleOrdered, reg, reg, &notNaN);
  loadConstantDouble(JS::GenericNaN(), reg);
  bind(&notNaN);
}

void MacroAssembler::canonicalizeDoubleIfDeterministic(FloatRegister reg) {
#ifdef JS_MORE_DETERMINISTIC
  // See the comment in TypedArrayObjectTemplate::getElement.
  canonicalizeDouble(reg);
#endif  // JS_MORE_DETERMINISTIC
}

// ========================================================================
// Memory access primitives.
template <class T>
void MacroAssembler::storeDouble(FloatRegister src, const T& dest) {
  canonicalizeDoubleIfDeterministic(src);
  storeUncanonicalizedDouble(src, dest);
}

template void MacroAssembler::storeDouble(FloatRegister src,
                                          const Address& dest);
template void MacroAssembler::storeDouble(FloatRegister src,
                                          const BaseIndex& dest);

template <class T>
void MacroAssembler::boxDouble(FloatRegister src, const T& dest) {
  storeDouble(src, dest);
}

template <class T>
void MacroAssembler::storeFloat32(FloatRegister src, const T& dest) {
  canonicalizeFloatIfDeterministic(src);
  storeUncanonicalizedFloat32(src, dest);
}

template void MacroAssembler::storeFloat32(FloatRegister src,
                                           const Address& dest);
template void MacroAssembler::storeFloat32(FloatRegister src,
                                           const BaseIndex& dest);

//}}} check_macroassembler_style
// ===============================================================

#ifndef JS_CODEGEN_ARM64

template <typename T>
void MacroAssembler::branchTestStackPtr(Condition cond, T t, Label* label) {
  branchTestPtr(cond, getStackPointer(), t, label);
}

template <typename T>
void MacroAssembler::branchStackPtr(Condition cond, T rhs, Label* label) {
  branchPtr(cond, getStackPointer(), rhs, label);
}

template <typename T>
void MacroAssembler::branchStackPtrRhs(Condition cond, T lhs, Label* label) {
  branchPtr(cond, lhs, getStackPointer(), label);
}

template <typename T>
void MacroAssembler::addToStackPtr(T t) {
  addPtr(t, getStackPointer());
}

template <typename T>
void MacroAssembler::addStackPtrTo(T t) {
  addPtr(getStackPointer(), t);
}

void MacroAssembler::reserveStack(uint32_t amount) {
  subFromStackPtr(Imm32(amount));
  adjustFrame(amount);
}
#endif  // !JS_CODEGEN_ARM64

template <typename EmitPreBarrier>
void MacroAssembler::storeObjGroup(Register group, Register obj,
                                   EmitPreBarrier emitPreBarrier) {
  MOZ_ASSERT(group != obj);
  Address groupAddr(obj, JSObject::offsetOfGroup());
  emitPreBarrier(*this, groupAddr);
  storePtr(group, groupAddr);
}

template <typename EmitPreBarrier>
void MacroAssembler::storeObjGroup(ObjectGroup* group, Register obj,
                                   EmitPreBarrier emitPreBarrier) {
  Address groupAddr(obj, JSObject::offsetOfGroup());
  emitPreBarrier(*this, groupAddr);
  storePtr(ImmGCPtr(group), groupAddr);
}

template <typename EmitPreBarrier>
void MacroAssembler::storeObjShape(Register shape, Register obj,
                                   EmitPreBarrier emitPreBarrier) {
  MOZ_ASSERT(shape != obj);
  Address shapeAddr(obj, JSObject::offsetOfShape());
  emitPreBarrier(*this, shapeAddr);
  storePtr(shape, shapeAddr);
}

template <typename EmitPreBarrier>
void MacroAssembler::storeObjShape(Shape* shape, Register obj,
                                   EmitPreBarrier emitPreBarrier) {
  Address shapeAddr(obj, JSObject::offsetOfShape());
  emitPreBarrier(*this, shapeAddr);
  storePtr(ImmGCPtr(shape), shapeAddr);
}

template <typename T>
void MacroAssembler::storeObjectOrNull(Register src, const T& dest) {
  Label notNull, done;
  branchTestPtr(Assembler::NonZero, src, src, &notNull);
  storeValue(NullValue(), dest);
  jump(&done);
  bind(&notNull);
  storeValue(JSVAL_TYPE_OBJECT, src, dest);
  bind(&done);
}

void MacroAssembler::assertStackAlignment(uint32_t alignment,
                                          int32_t offset /* = 0 */) {
#ifdef DEBUG
  Label ok, bad;
  MOZ_ASSERT(mozilla::IsPowerOfTwo(alignment));

  // Wrap around the offset to be a non-negative number.
  offset %= alignment;
  if (offset < 0) {
    offset += alignment;
  }

  // Test if each bit from offset is set.
  uint32_t off = offset;
  while (off) {
    uint32_t lowestBit = 1 << mozilla::CountTrailingZeroes32(off);
    branchTestStackPtr(Assembler::Zero, Imm32(lowestBit), &bad);
    off ^= lowestBit;
  }

  // Check that all remaining bits are zero.
  branchTestStackPtr(Assembler::Zero, Imm32((alignment - 1) ^ offset), &ok);

  bind(&bad);
  breakpoint();
  bind(&ok);
#endif
}

void MacroAssembler::storeCallBoolResult(Register reg) {
  if (reg != ReturnReg) {
    mov(ReturnReg, reg);
  }
  // C++ compilers like to only use the bottom byte for bools, but we
  // need to maintain the entire register.
  and32(Imm32(0xFF), reg);
}

void MacroAssembler::storeCallInt32Result(Register reg) {
#if JS_BITS_PER_WORD == 32
  storeCallPointerResult(reg);
#else
  // Ensure the upper 32 bits are cleared.
  move32(ReturnReg, reg);
#endif
}

void MacroAssembler::storeCallResultValue(AnyRegister dest, JSValueType type) {
  unboxValue(JSReturnOperand, dest, type);
}

void MacroAssembler::storeCallResultValue(TypedOrValueRegister dest) {
  if (dest.hasValue()) {
    storeCallResultValue(dest.valueReg());
  } else {
    storeCallResultValue(dest.typedReg(), ValueTypeFromMIRType(dest.type()));
  }
}

}  // namespace jit
}  // namespace js

#endif /* jit_MacroAssembler_inl_h */