DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "SVGPathSegUtils.h"

#include "mozilla/ArrayUtils.h"  // MOZ_ARRAY_LENGTH
#include "gfx2DGlue.h"
#include "SVGPathDataParser.h"
#include "nsTextFormatter.h"

using namespace mozilla;
using namespace mozilla::dom::SVGPathSeg_Binding;
using namespace mozilla::gfx;

static const float PATH_SEG_LENGTH_TOLERANCE = 0.0000001f;
static const uint32_t MAX_RECURSION = 10;

/* static */
void SVGPathSegUtils::GetValueAsString(const float* aSeg, nsAString& aValue) {
  // Adding new seg type? Is the formatting below acceptable for the new types?
  static_assert(
      NS_SVG_PATH_SEG_LAST_VALID_TYPE == PATHSEG_CURVETO_QUADRATIC_SMOOTH_REL,
      "Update GetValueAsString for the new value.");
  static_assert(NS_SVG_PATH_SEG_MAX_ARGS == 7,
                "Add another case to the switch below.");

  uint32_t type = DecodeType(aSeg[0]);
  char16_t typeAsChar = GetPathSegTypeAsLetter(type);

  // Special case arcs:
  if (IsArcType(type)) {
    bool largeArcFlag = aSeg[4] != 0.0f;
    bool sweepFlag = aSeg[5] != 0.0f;
    nsTextFormatter::ssprintf(aValue, u"%c%g,%g %g %d,%d %g,%g", typeAsChar,
                              aSeg[1], aSeg[2], aSeg[3], largeArcFlag,
                              sweepFlag, aSeg[6], aSeg[7]);
  } else {
    switch (ArgCountForType(type)) {
      case 0:
        aValue = typeAsChar;
        break;

      case 1:
        nsTextFormatter::ssprintf(aValue, u"%c%g", typeAsChar, aSeg[1]);
        break;

      case 2:
        nsTextFormatter::ssprintf(aValue, u"%c%g,%g", typeAsChar, aSeg[1],
                                  aSeg[2]);
        break;

      case 4:
        nsTextFormatter::ssprintf(aValue, u"%c%g,%g %g,%g", typeAsChar, aSeg[1],
                                  aSeg[2], aSeg[3], aSeg[4]);
        break;

      case 6:
        nsTextFormatter::ssprintf(aValue, u"%c%g,%g %g,%g %g,%g", typeAsChar,
                                  aSeg[1], aSeg[2], aSeg[3], aSeg[4], aSeg[5],
                                  aSeg[6]);
        break;

      default:
        MOZ_ASSERT(false, "Unknown segment type");
        aValue = u"<unknown-segment-type>";
        return;
    }
  }
}

static float CalcDistanceBetweenPoints(const Point& aP1, const Point& aP2) {
  return NS_hypot(aP2.x - aP1.x, aP2.y - aP1.y);
}

static void SplitQuadraticBezier(const Point* aCurve, Point* aLeft,
                                 Point* aRight) {
  aLeft[0].x = aCurve[0].x;
  aLeft[0].y = aCurve[0].y;
  aRight[2].x = aCurve[2].x;
  aRight[2].y = aCurve[2].y;
  aLeft[1].x = (aCurve[0].x + aCurve[1].x) / 2;
  aLeft[1].y = (aCurve[0].y + aCurve[1].y) / 2;
  aRight[1].x = (aCurve[1].x + aCurve[2].x) / 2;
  aRight[1].y = (aCurve[1].y + aCurve[2].y) / 2;
  aLeft[2].x = aRight[0].x = (aLeft[1].x + aRight[1].x) / 2;
  aLeft[2].y = aRight[0].y = (aLeft[1].y + aRight[1].y) / 2;
}

static void SplitCubicBezier(const Point* aCurve, Point* aLeft, Point* aRight) {
  Point tmp;
  tmp.x = (aCurve[1].x + aCurve[2].x) / 4;
  tmp.y = (aCurve[1].y + aCurve[2].y) / 4;
  aLeft[0].x = aCurve[0].x;
  aLeft[0].y = aCurve[0].y;
  aRight[3].x = aCurve[3].x;
  aRight[3].y = aCurve[3].y;
  aLeft[1].x = (aCurve[0].x + aCurve[1].x) / 2;
  aLeft[1].y = (aCurve[0].y + aCurve[1].y) / 2;
  aRight[2].x = (aCurve[2].x + aCurve[3].x) / 2;
  aRight[2].y = (aCurve[2].y + aCurve[3].y) / 2;
  aLeft[2].x = aLeft[1].x / 2 + tmp.x;
  aLeft[2].y = aLeft[1].y / 2 + tmp.y;
  aRight[1].x = aRight[2].x / 2 + tmp.x;
  aRight[1].y = aRight[2].y / 2 + tmp.y;
  aLeft[3].x = aRight[0].x = (aLeft[2].x + aRight[1].x) / 2;
  aLeft[3].y = aRight[0].y = (aLeft[2].y + aRight[1].y) / 2;
}

static float CalcBezLengthHelper(const Point* aCurve, uint32_t aNumPts,
                                 uint32_t aRecursionCount,
                                 void (*aSplit)(const Point*, Point*, Point*)) {
  Point left[4];
  Point right[4];
  float length = 0, dist;
  for (uint32_t i = 0; i < aNumPts - 1; i++) {
    length += CalcDistanceBetweenPoints(aCurve[i], aCurve[i + 1]);
  }
  dist = CalcDistanceBetweenPoints(aCurve[0], aCurve[aNumPts - 1]);
  if (length - dist > PATH_SEG_LENGTH_TOLERANCE &&
      aRecursionCount < MAX_RECURSION) {
    aSplit(aCurve, left, right);
    ++aRecursionCount;
    return CalcBezLengthHelper(left, aNumPts, aRecursionCount, aSplit) +
           CalcBezLengthHelper(right, aNumPts, aRecursionCount, aSplit);
  }
  return length;
}

static inline float CalcLengthOfCubicBezier(const Point& aPos,
                                            const Point& aCP1,
                                            const Point& aCP2,
                                            const Point& aTo) {
  Point curve[4] = {aPos, aCP1, aCP2, aTo};
  return CalcBezLengthHelper(curve, 4, 0, SplitCubicBezier);
}

static inline float CalcLengthOfQuadraticBezier(const Point& aPos,
                                                const Point& aCP,
                                                const Point& aTo) {
  Point curve[3] = {aPos, aCP, aTo};
  return CalcBezLengthHelper(curve, 3, 0, SplitQuadraticBezier);
}

static void TraverseClosePath(const float* aArgs,
                              SVGPathTraversalState& aState) {
  if (aState.ShouldUpdateLengthAndControlPoints()) {
    aState.length += CalcDistanceBetweenPoints(aState.pos, aState.start);
    aState.cp1 = aState.cp2 = aState.start;
  }
  aState.pos = aState.start;
}

static void TraverseMovetoAbs(const float* aArgs,
                              SVGPathTraversalState& aState) {
  aState.start = aState.pos = Point(aArgs[0], aArgs[1]);
  if (aState.ShouldUpdateLengthAndControlPoints()) {
    // aState.length is unchanged, since move commands don't affect path length.
    aState.cp1 = aState.cp2 = aState.start;
  }
}

static void TraverseMovetoRel(const float* aArgs,
                              SVGPathTraversalState& aState) {
  aState.start = aState.pos += Point(aArgs[0], aArgs[1]);
  if (aState.ShouldUpdateLengthAndControlPoints()) {
    // aState.length is unchanged, since move commands don't affect path length.
    aState.cp1 = aState.cp2 = aState.start;
  }
}

static void TraverseLinetoAbs(const float* aArgs,
                              SVGPathTraversalState& aState) {
  Point to(aArgs[0], aArgs[1]);
  if (aState.ShouldUpdateLengthAndControlPoints()) {
    aState.length += CalcDistanceBetweenPoints(aState.pos, to);
    aState.cp1 = aState.cp2 = to;
  }
  aState.pos = to;
}

static void TraverseLinetoRel(const float* aArgs,
                              SVGPathTraversalState& aState) {
  Point to = aState.pos + Point(aArgs[0], aArgs[1]);
  if (aState.ShouldUpdateLengthAndControlPoints()) {
    aState.length += CalcDistanceBetweenPoints(aState.pos, to);
    aState.cp1 = aState.cp2 = to;
  }
  aState.pos = to;
}

static void TraverseLinetoHorizontalAbs(const float* aArgs,
                                        SVGPathTraversalState& aState) {
  Point to(aArgs[0], aState.pos.y);
  if (aState.ShouldUpdateLengthAndControlPoints()) {
    aState.length += std::fabs(to.x - aState.pos.x);
    aState.cp1 = aState.cp2 = to;
  }
  aState.pos = to;
}

static void TraverseLinetoHorizontalRel(const float* aArgs,
                                        SVGPathTraversalState& aState) {
  aState.pos.x += aArgs[0];
  if (aState.ShouldUpdateLengthAndControlPoints()) {
    aState.length += std::fabs(aArgs[0]);
    aState.cp1 = aState.cp2 = aState.pos;
  }
}

static void TraverseLinetoVerticalAbs(const float* aArgs,
                                      SVGPathTraversalState& aState) {
  Point to(aState.pos.x, aArgs[0]);
  if (aState.ShouldUpdateLengthAndControlPoints()) {
    aState.length += std::fabs(to.y - aState.pos.y);
    aState.cp1 = aState.cp2 = to;
  }
  aState.pos = to;
}

static void TraverseLinetoVerticalRel(const float* aArgs,
                                      SVGPathTraversalState& aState) {
  aState.pos.y += aArgs[0];
  if (aState.ShouldUpdateLengthAndControlPoints()) {
    aState.length += std::fabs(aArgs[0]);
    aState.cp1 = aState.cp2 = aState.pos;
  }
}

static void TraverseCurvetoCubicAbs(const float* aArgs,
                                    SVGPathTraversalState& aState) {
  Point to(aArgs[4], aArgs[5]);
  if (aState.ShouldUpdateLengthAndControlPoints()) {
    Point cp1(aArgs[0], aArgs[1]);
    Point cp2(aArgs[2], aArgs[3]);
    aState.length += (float)CalcLengthOfCubicBezier(aState.pos, cp1, cp2, to);
    aState.cp2 = cp2;
    aState.cp1 = to;
  }
  aState.pos = to;
}

static void TraverseCurvetoCubicSmoothAbs(const float* aArgs,
                                          SVGPathTraversalState& aState) {
  Point to(aArgs[2], aArgs[3]);
  if (aState.ShouldUpdateLengthAndControlPoints()) {
    Point cp1 = aState.pos - (aState.cp2 - aState.pos);
    Point cp2(aArgs[0], aArgs[1]);
    aState.length += (float)CalcLengthOfCubicBezier(aState.pos, cp1, cp2, to);
    aState.cp2 = cp2;
    aState.cp1 = to;
  }
  aState.pos = to;
}

static void TraverseCurvetoCubicRel(const float* aArgs,
                                    SVGPathTraversalState& aState) {
  Point to = aState.pos + Point(aArgs[4], aArgs[5]);
  if (aState.ShouldUpdateLengthAndControlPoints()) {
    Point cp1 = aState.pos + Point(aArgs[0], aArgs[1]);
    Point cp2 = aState.pos + Point(aArgs[2], aArgs[3]);
    aState.length += (float)CalcLengthOfCubicBezier(aState.pos, cp1, cp2, to);
    aState.cp2 = cp2;
    aState.cp1 = to;
  }
  aState.pos = to;
}

static void TraverseCurvetoCubicSmoothRel(const float* aArgs,
                                          SVGPathTraversalState& aState) {
  Point to = aState.pos + Point(aArgs[2], aArgs[3]);
  if (aState.ShouldUpdateLengthAndControlPoints()) {
    Point cp1 = aState.pos - (aState.cp2 - aState.pos);
    Point cp2 = aState.pos + Point(aArgs[0], aArgs[1]);
    aState.length += (float)CalcLengthOfCubicBezier(aState.pos, cp1, cp2, to);
    aState.cp2 = cp2;
    aState.cp1 = to;
  }
  aState.pos = to;
}

static void TraverseCurvetoQuadraticAbs(const float* aArgs,
                                        SVGPathTraversalState& aState) {
  Point to(aArgs[2], aArgs[3]);
  if (aState.ShouldUpdateLengthAndControlPoints()) {
    Point cp(aArgs[0], aArgs[1]);
    aState.length += (float)CalcLengthOfQuadraticBezier(aState.pos, cp, to);
    aState.cp1 = cp;
    aState.cp2 = to;
  }
  aState.pos = to;
}

static void TraverseCurvetoQuadraticSmoothAbs(const float* aArgs,
                                              SVGPathTraversalState& aState) {
  Point to(aArgs[0], aArgs[1]);
  if (aState.ShouldUpdateLengthAndControlPoints()) {
    Point cp = aState.pos - (aState.cp1 - aState.pos);
    aState.length += (float)CalcLengthOfQuadraticBezier(aState.pos, cp, to);
    aState.cp1 = cp;
    aState.cp2 = to;
  }
  aState.pos = to;
}

static void TraverseCurvetoQuadraticRel(const float* aArgs,
                                        SVGPathTraversalState& aState) {
  Point to = aState.pos + Point(aArgs[2], aArgs[3]);
  if (aState.ShouldUpdateLengthAndControlPoints()) {
    Point cp = aState.pos + Point(aArgs[0], aArgs[1]);
    aState.length += (float)CalcLengthOfQuadraticBezier(aState.pos, cp, to);
    aState.cp1 = cp;
    aState.cp2 = to;
  }
  aState.pos = to;
}

static void TraverseCurvetoQuadraticSmoothRel(const float* aArgs,
                                              SVGPathTraversalState& aState) {
  Point to = aState.pos + Point(aArgs[0], aArgs[1]);
  if (aState.ShouldUpdateLengthAndControlPoints()) {
    Point cp = aState.pos - (aState.cp1 - aState.pos);
    aState.length += (float)CalcLengthOfQuadraticBezier(aState.pos, cp, to);
    aState.cp1 = cp;
    aState.cp2 = to;
  }
  aState.pos = to;
}

static void TraverseArcAbs(const float* aArgs, SVGPathTraversalState& aState) {
  Point to(aArgs[5], aArgs[6]);
  if (aState.ShouldUpdateLengthAndControlPoints()) {
    float dist = 0;
    Point radii(aArgs[0], aArgs[1]);
    if (radii.x == 0.0f || radii.y == 0.0f) {
      dist = CalcDistanceBetweenPoints(aState.pos, to);
    } else {
      Point bez[4] = {aState.pos, Point(0, 0), Point(0, 0), Point(0, 0)};
      SVGArcConverter converter(aState.pos, to, radii, aArgs[2], aArgs[3] != 0,
                                aArgs[4] != 0);
      while (converter.GetNextSegment(&bez[1], &bez[2], &bez[3])) {
        dist += CalcBezLengthHelper(bez, 4, 0, SplitCubicBezier);
        bez[0] = bez[3];
      }
    }
    aState.length += dist;
    aState.cp1 = aState.cp2 = to;
  }
  aState.pos = to;
}

static void TraverseArcRel(const float* aArgs, SVGPathTraversalState& aState) {
  Point to = aState.pos + Point(aArgs[5], aArgs[6]);
  if (aState.ShouldUpdateLengthAndControlPoints()) {
    float dist = 0;
    Point radii(aArgs[0], aArgs[1]);
    if (radii.x == 0.0f || radii.y == 0.0f) {
      dist = CalcDistanceBetweenPoints(aState.pos, to);
    } else {
      Point bez[4] = {aState.pos, Point(0, 0), Point(0, 0), Point(0, 0)};
      SVGArcConverter converter(aState.pos, to, radii, aArgs[2], aArgs[3] != 0,
                                aArgs[4] != 0);
      while (converter.GetNextSegment(&bez[1], &bez[2], &bez[3])) {
        dist += CalcBezLengthHelper(bez, 4, 0, SplitCubicBezier);
        bez[0] = bez[3];
      }
    }
    aState.length += dist;
    aState.cp1 = aState.cp2 = to;
  }
  aState.pos = to;
}

typedef void (*TraverseFunc)(const float*, SVGPathTraversalState&);

static TraverseFunc gTraverseFuncTable[NS_SVG_PATH_SEG_TYPE_COUNT] = {
    nullptr,  //  0 == PATHSEG_UNKNOWN
    TraverseClosePath,
    TraverseMovetoAbs,
    TraverseMovetoRel,
    TraverseLinetoAbs,
    TraverseLinetoRel,
    TraverseCurvetoCubicAbs,
    TraverseCurvetoCubicRel,
    TraverseCurvetoQuadraticAbs,
    TraverseCurvetoQuadraticRel,
    TraverseArcAbs,
    TraverseArcRel,
    TraverseLinetoHorizontalAbs,
    TraverseLinetoHorizontalRel,
    TraverseLinetoVerticalAbs,
    TraverseLinetoVerticalRel,
    TraverseCurvetoCubicSmoothAbs,
    TraverseCurvetoCubicSmoothRel,
    TraverseCurvetoQuadraticSmoothAbs,
    TraverseCurvetoQuadraticSmoothRel};

/* static */
void SVGPathSegUtils::TraversePathSegment(const float* aData,
                                          SVGPathTraversalState& aState) {
  static_assert(
      MOZ_ARRAY_LENGTH(gTraverseFuncTable) == NS_SVG_PATH_SEG_TYPE_COUNT,
      "gTraverseFuncTable is out of date");
  uint32_t type = DecodeType(aData[0]);
  gTraverseFuncTable[type](aData + 1, aState);
}