DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (fddffdeab170)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "ecp.h"
#include "ecl-priv.h"
#include "mplogic.h"
#include <stdlib.h>

#define MAX_SCRATCH 6

/* Computes R = 2P.  Elliptic curve points P and R can be identical.  Uses 
 * Modified Jacobian coordinates.
 *
 * Assumes input is already field-encoded using field_enc, and returns 
 * output that is still field-encoded.
 *
 */
static mp_err
ec_GFp_pt_dbl_jm(const mp_int *px, const mp_int *py, const mp_int *pz,
				 const mp_int *paz4, mp_int *rx, mp_int *ry, mp_int *rz,
				 mp_int *raz4, mp_int scratch[], const ECGroup *group)
{
	mp_err res = MP_OKAY;
	mp_int *t0, *t1, *M, *S;

	t0 = &scratch[0];
	t1 = &scratch[1];
	M = &scratch[2];
	S = &scratch[3];

#if MAX_SCRATCH < 4
#error "Scratch array defined too small "
#endif

	/* Check for point at infinity */
	if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
		/* Set r = pt at infinity by setting rz = 0 */

		MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
		goto CLEANUP;
	}

	/* M = 3 (px^2) + a*(pz^4) */
	MP_CHECKOK(group->meth->field_sqr(px, t0, group->meth));
	MP_CHECKOK(group->meth->field_add(t0, t0, M, group->meth));
	MP_CHECKOK(group->meth->field_add(t0, M, t0, group->meth));
	MP_CHECKOK(group->meth->field_add(t0, paz4, M, group->meth));

	/* rz = 2 * py * pz */
	MP_CHECKOK(group->meth->field_mul(py, pz, S, group->meth));
	MP_CHECKOK(group->meth->field_add(S, S, rz, group->meth));

	/* t0 = 2y^2 , t1 = 8y^4 */
	MP_CHECKOK(group->meth->field_sqr(py, t0, group->meth));
	MP_CHECKOK(group->meth->field_add(t0, t0, t0, group->meth));
	MP_CHECKOK(group->meth->field_sqr(t0, t1, group->meth));
	MP_CHECKOK(group->meth->field_add(t1, t1, t1, group->meth));

	/* S = 4 * px * py^2 = 2 * px * t0 */
	MP_CHECKOK(group->meth->field_mul(px, t0, S, group->meth));
	MP_CHECKOK(group->meth->field_add(S, S, S, group->meth));


	/* rx = M^2 - 2S */
	MP_CHECKOK(group->meth->field_sqr(M, rx, group->meth));
	MP_CHECKOK(group->meth->field_sub(rx, S, rx, group->meth));
	MP_CHECKOK(group->meth->field_sub(rx, S, rx, group->meth));

	/* ry = M * (S - rx) - t1 */
	MP_CHECKOK(group->meth->field_sub(S, rx, S, group->meth));
	MP_CHECKOK(group->meth->field_mul(S, M, ry, group->meth));
	MP_CHECKOK(group->meth->field_sub(ry, t1, ry, group->meth));

	/* ra*z^4 = 2*t1*(apz4) */
	MP_CHECKOK(group->meth->field_mul(paz4, t1, raz4, group->meth));
	MP_CHECKOK(group->meth->field_add(raz4, raz4, raz4, group->meth));


  CLEANUP:
	return res;
}

/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
 * (qx, qy, 1).  Elliptic curve points P, Q, and R can all be identical.
 * Uses mixed Modified_Jacobian-affine coordinates. Assumes input is
 * already field-encoded using field_enc, and returns output that is still
 * field-encoded. */
static mp_err
ec_GFp_pt_add_jm_aff(const mp_int *px, const mp_int *py, const mp_int *pz,
					 const mp_int *paz4, const mp_int *qx,
					 const mp_int *qy, mp_int *rx, mp_int *ry, mp_int *rz,
					 mp_int *raz4, mp_int scratch[], const ECGroup *group)
{
	mp_err res = MP_OKAY;
	mp_int *A, *B, *C, *D, *C2, *C3;

	A = &scratch[0];
	B = &scratch[1];
	C = &scratch[2];
	D = &scratch[3];
	C2 = &scratch[4];
	C3 = &scratch[5];

#if MAX_SCRATCH < 6
#error "Scratch array defined too small "
#endif

	/* If either P or Q is the point at infinity, then return the other
	 * point */
	if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
		MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group));
		MP_CHECKOK(group->meth->field_sqr(rz, raz4, group->meth));
		MP_CHECKOK(group->meth->field_sqr(raz4, raz4, group->meth));
		MP_CHECKOK(group->meth->
				   field_mul(raz4, &group->curvea, raz4, group->meth));
		goto CLEANUP;
	}
	if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) {
		MP_CHECKOK(mp_copy(px, rx));
		MP_CHECKOK(mp_copy(py, ry));
		MP_CHECKOK(mp_copy(pz, rz));
		MP_CHECKOK(mp_copy(paz4, raz4));
		goto CLEANUP;
	}

	/* A = qx * pz^2, B = qy * pz^3 */
	MP_CHECKOK(group->meth->field_sqr(pz, A, group->meth));
	MP_CHECKOK(group->meth->field_mul(A, pz, B, group->meth));
	MP_CHECKOK(group->meth->field_mul(A, qx, A, group->meth));
	MP_CHECKOK(group->meth->field_mul(B, qy, B, group->meth));

	/* C = A - px, D = B - py */
	MP_CHECKOK(group->meth->field_sub(A, px, C, group->meth));
	MP_CHECKOK(group->meth->field_sub(B, py, D, group->meth));

	/* C2 = C^2, C3 = C^3 */
	MP_CHECKOK(group->meth->field_sqr(C, C2, group->meth));
	MP_CHECKOK(group->meth->field_mul(C, C2, C3, group->meth));

	/* rz = pz * C */
	MP_CHECKOK(group->meth->field_mul(pz, C, rz, group->meth));

	/* C = px * C^2 */
	MP_CHECKOK(group->meth->field_mul(px, C2, C, group->meth));
	/* A = D^2 */
	MP_CHECKOK(group->meth->field_sqr(D, A, group->meth));

	/* rx = D^2 - (C^3 + 2 * (px * C^2)) */
	MP_CHECKOK(group->meth->field_add(C, C, rx, group->meth));
	MP_CHECKOK(group->meth->field_add(C3, rx, rx, group->meth));
	MP_CHECKOK(group->meth->field_sub(A, rx, rx, group->meth));

	/* C3 = py * C^3 */
	MP_CHECKOK(group->meth->field_mul(py, C3, C3, group->meth));

	/* ry = D * (px * C^2 - rx) - py * C^3 */
	MP_CHECKOK(group->meth->field_sub(C, rx, ry, group->meth));
	MP_CHECKOK(group->meth->field_mul(D, ry, ry, group->meth));
	MP_CHECKOK(group->meth->field_sub(ry, C3, ry, group->meth));

	/* raz4 = a * rz^4 */
	MP_CHECKOK(group->meth->field_sqr(rz, raz4, group->meth));
	MP_CHECKOK(group->meth->field_sqr(raz4, raz4, group->meth));
	MP_CHECKOK(group->meth->
			   field_mul(raz4, &group->curvea, raz4, group->meth));
CLEANUP:
	return res;
}

/* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic
 * curve points P and R can be identical. Uses mixed Modified-Jacobian
 * co-ordinates for doubling and Chudnovsky Jacobian coordinates for
 * additions. Assumes input is already field-encoded using field_enc, and
 * returns output that is still field-encoded. Uses 5-bit window NAF
 * method (algorithm 11) for scalar-point multiplication from Brown,
 * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic 
 * Curves Over Prime Fields. */
mp_err
ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py,
					  mp_int *rx, mp_int *ry, const ECGroup *group)
{
	mp_err res = MP_OKAY;
	mp_int precomp[16][2], rz, tpx, tpy;
	mp_int raz4;
	mp_int scratch[MAX_SCRATCH];
	signed char *naf = NULL;
	int i, orderBitSize;

	MP_DIGITS(&rz) = 0;
	MP_DIGITS(&raz4) = 0;
	MP_DIGITS(&tpx) = 0;
	MP_DIGITS(&tpy) = 0;
	for (i = 0; i < 16; i++) {
		MP_DIGITS(&precomp[i][0]) = 0;
		MP_DIGITS(&precomp[i][1]) = 0;
	}
	for (i = 0; i < MAX_SCRATCH; i++) {
		MP_DIGITS(&scratch[i]) = 0;
	}

	ARGCHK(group != NULL, MP_BADARG);
	ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG);

	/* initialize precomputation table */
	MP_CHECKOK(mp_init(&tpx));
	MP_CHECKOK(mp_init(&tpy));;
	MP_CHECKOK(mp_init(&rz));
	MP_CHECKOK(mp_init(&raz4));

	for (i = 0; i < 16; i++) {
		MP_CHECKOK(mp_init(&precomp[i][0]));
		MP_CHECKOK(mp_init(&precomp[i][1]));
	}
	for (i = 0; i < MAX_SCRATCH; i++) {
		MP_CHECKOK(mp_init(&scratch[i]));
	}

	/* Set out[8] = P */
	MP_CHECKOK(mp_copy(px, &precomp[8][0]));
	MP_CHECKOK(mp_copy(py, &precomp[8][1]));

	/* Set (tpx, tpy) = 2P */
	MP_CHECKOK(group->
			   point_dbl(&precomp[8][0], &precomp[8][1], &tpx, &tpy,
						 group));

	/* Set 3P, 5P, ..., 15P */
	for (i = 8; i < 15; i++) {
		MP_CHECKOK(group->
				   point_add(&precomp[i][0], &precomp[i][1], &tpx, &tpy,
							 &precomp[i + 1][0], &precomp[i + 1][1],
							 group));
	}

	/* Set -15P, -13P, ..., -P */
	for (i = 0; i < 8; i++) {
		MP_CHECKOK(mp_copy(&precomp[15 - i][0], &precomp[i][0]));
		MP_CHECKOK(group->meth->
				   field_neg(&precomp[15 - i][1], &precomp[i][1],
							 group->meth));
	}

	/* R = inf */
	MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));

	orderBitSize = mpl_significant_bits(&group->order);

	/* Allocate memory for NAF */
	naf = (signed char *) malloc(sizeof(signed char) * (orderBitSize + 1));
	if (naf == NULL) {
		res = MP_MEM;
		goto CLEANUP;
	}

	/* Compute 5NAF */
	ec_compute_wNAF(naf, orderBitSize, n, 5);

	/* wNAF method */
	for (i = orderBitSize; i >= 0; i--) {
		/* R = 2R */
		ec_GFp_pt_dbl_jm(rx, ry, &rz, &raz4, rx, ry, &rz, 
					     &raz4, scratch, group);
		if (naf[i] != 0) {
			ec_GFp_pt_add_jm_aff(rx, ry, &rz, &raz4,
								 &precomp[(naf[i] + 15) / 2][0],
								 &precomp[(naf[i] + 15) / 2][1], rx, ry,
								 &rz, &raz4, scratch, group);
		}
	}

	/* convert result S to affine coordinates */
	MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));

  CLEANUP:
	for (i = 0; i < MAX_SCRATCH; i++) {
		mp_clear(&scratch[i]);
	}
	for (i = 0; i < 16; i++) {
		mp_clear(&precomp[i][0]);
		mp_clear(&precomp[i][1]);
	}
	mp_clear(&tpx);
	mp_clear(&tpy);
	mp_clear(&rz);
	mp_clear(&raz4);
	free(naf);
	return res;
}