DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (fddffdeab170)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "ecp_fp.h"
#include <stdlib.h>

#define ECFP_BSIZE 160
#define ECFP_NUMDOUBLES 7

#include "ecp_fpinc.c"

/* Performs a single step of reduction, just on the uppermost float
 * (assumes already tidied), and then retidies. Note, this does not
 * guarantee that the result will be less than p, but truncates the number 
 * of bits. */
void
ecfp160_singleReduce(double *d, const EC_group_fp * group)
{
	double q;

	ECFP_ASSERT(group->doubleBitSize == 24);
	ECFP_ASSERT(group->primeBitSize == 160);
	ECFP_ASSERT(ECFP_NUMDOUBLES == 7);

	q = d[ECFP_NUMDOUBLES - 1] - ecfp_beta_160;
	q += group->bitSize_alpha;
	q -= group->bitSize_alpha;

	d[ECFP_NUMDOUBLES - 1] -= q;
	d[0] += q * ecfp_twom160;
	d[1] += q * ecfp_twom129;
	ecfp_positiveTidy(d, group);

	/* Assertions for the highest order term */
	ECFP_ASSERT(d[ECFP_NUMDOUBLES - 1] / ecfp_exp[ECFP_NUMDOUBLES - 1] ==
				(unsigned long long) (d[ECFP_NUMDOUBLES - 1] /
									  ecfp_exp[ECFP_NUMDOUBLES - 1]));
	ECFP_ASSERT(d[ECFP_NUMDOUBLES - 1] >= 0);
}

/* Performs imperfect reduction.  This might leave some negative terms,
 * and one more reduction might be required for the result to be between 0 
 * and p-1. x should not already be reduced, i.e. should have
 * 2*ECFP_NUMDOUBLES significant terms. x and r can be the same, but then
 * the upper parts of r are not zeroed */
void
ecfp160_reduce(double *r, double *x, const EC_group_fp * group)
{

	double x7, x8, q;

	ECFP_ASSERT(group->doubleBitSize == 24);
	ECFP_ASSERT(group->primeBitSize == 160);
	ECFP_ASSERT(ECFP_NUMDOUBLES == 7);

	/* Tidy just the upper bits, the lower bits can wait. */
	ecfp_tidyUpper(x, group);

	/* Assume that this is already tidied so that we have enough extra
	 * bits */
	x7 = x[7] + x[13] * ecfp_twom129;	/* adds bits 15-39 */

	/* Tidy x7, or we won't have enough bits later to add it in */
	q = x7 + group->alpha[8];
	q -= group->alpha[8];
	x7 -= q;					/* holds bits 0-24 */
	x8 = x[8] + q;				/* holds bits 0-25 */

	r[6] = x[6] + x[13] * ecfp_twom160 + x[12] * ecfp_twom129;	/* adds
																 * bits
																 * 8-39 */
	r[5] = x[5] + x[12] * ecfp_twom160 + x[11] * ecfp_twom129;
	r[4] = x[4] + x[11] * ecfp_twom160 + x[10] * ecfp_twom129;
	r[3] = x[3] + x[10] * ecfp_twom160 + x[9] * ecfp_twom129;
	r[2] = x[2] + x[9] * ecfp_twom160 + x8 * ecfp_twom129;	/* adds bits
															 * 8-40 */
	r[1] = x[1] + x8 * ecfp_twom160 + x7 * ecfp_twom129;	/* adds bits
															 * 8-39 */
	r[0] = x[0] + x7 * ecfp_twom160;

	/* Tidy up just r[ECFP_NUMDOUBLES-2] so that the number of reductions
	 * is accurate plus or minus one.  (Rather than tidy all to make it
	 * totally accurate, which is more costly.) */
	q = r[ECFP_NUMDOUBLES - 2] + group->alpha[ECFP_NUMDOUBLES - 1];
	q -= group->alpha[ECFP_NUMDOUBLES - 1];
	r[ECFP_NUMDOUBLES - 2] -= q;
	r[ECFP_NUMDOUBLES - 1] += q;

	/* Tidy up the excess bits on r[ECFP_NUMDOUBLES-1] using reduction */
	/* Use ecfp_beta so we get a positive result */
	q = r[ECFP_NUMDOUBLES - 1] - ecfp_beta_160;
	q += group->bitSize_alpha;
	q -= group->bitSize_alpha;

	r[ECFP_NUMDOUBLES - 1] -= q;
	r[0] += q * ecfp_twom160;
	r[1] += q * ecfp_twom129;

	/* Tidy the result */
	ecfp_tidyShort(r, group);
}

/* Sets group to use optimized calculations in this file */
mp_err
ec_group_set_secp160r1_fp(ECGroup *group)
{

	EC_group_fp *fpg = NULL;

	/* Allocate memory for floating point group data */
	fpg = (EC_group_fp *) malloc(sizeof(EC_group_fp));
	if (fpg == NULL) {
		return MP_MEM;
	}

	fpg->numDoubles = ECFP_NUMDOUBLES;
	fpg->primeBitSize = ECFP_BSIZE;
	fpg->orderBitSize = 161;
	fpg->doubleBitSize = 24;
	fpg->numInts = (ECFP_BSIZE + ECL_BITS - 1) / ECL_BITS;
	fpg->aIsM3 = 1;
	fpg->ecfp_singleReduce = &ecfp160_singleReduce;
	fpg->ecfp_reduce = &ecfp160_reduce;
	fpg->ecfp_tidy = &ecfp_tidy;

	fpg->pt_add_jac_aff = &ecfp160_pt_add_jac_aff;
	fpg->pt_add_jac = &ecfp160_pt_add_jac;
	fpg->pt_add_jm_chud = &ecfp160_pt_add_jm_chud;
	fpg->pt_add_chud = &ecfp160_pt_add_chud;
	fpg->pt_dbl_jac = &ecfp160_pt_dbl_jac;
	fpg->pt_dbl_jm = &ecfp160_pt_dbl_jm;
	fpg->pt_dbl_aff2chud = &ecfp160_pt_dbl_aff2chud;
	fpg->precompute_chud = &ecfp160_precompute_chud;
	fpg->precompute_jac = &ecfp160_precompute_jac;

	group->point_mul = &ec_GFp_point_mul_wNAF_fp;
	group->points_mul = &ec_pts_mul_basic;
	group->extra1 = fpg;
	group->extra_free = &ec_GFp_extra_free_fp;

	ec_set_fp_precision(fpg);
	fpg->bitSize_alpha = ECFP_TWO160 * fpg->alpha[0];
	return MP_OKAY;
}