DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (fddffdeab170)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "ecp_fp.h"
#include "ecl-priv.h"
#include <stdlib.h>

/* Performs tidying on a short multi-precision floating point integer (the 
 * lower group->numDoubles floats). */
void
ecfp_tidyShort(double *t, const EC_group_fp * group)
{
	group->ecfp_tidy(t, group->alpha, group);
}

/* Performs tidying on only the upper float digits of a multi-precision
 * floating point integer, i.e. the digits beyond the regular length which 
 * are removed in the reduction step. */
void
ecfp_tidyUpper(double *t, const EC_group_fp * group)
{
	group->ecfp_tidy(t + group->numDoubles,
					 group->alpha + group->numDoubles, group);
}

/* Performs a "tidy" operation, which performs carrying, moving excess
 * bits from one double to the next double, so that the precision of the
 * doubles is reduced to the regular precision group->doubleBitSize. This
 * might result in some float digits being negative. Alternative C version 
 * for portability. */
void
ecfp_tidy(double *t, const double *alpha, const EC_group_fp * group)
{
	double q;
	int i;

	/* Do carrying */
	for (i = 0; i < group->numDoubles - 1; i++) {
		q = t[i] + alpha[i + 1];
		q -= alpha[i + 1];
		t[i] -= q;
		t[i + 1] += q;

		/* If we don't assume that truncation rounding is used, then q
		 * might be 2^n bigger than expected (if it rounds up), then t[0]
		 * could be negative and t[1] 2^n larger than expected. */
	}
}

/* Performs a more mathematically precise "tidying" so that each term is
 * positive.  This is slower than the regular tidying, and is used for
 * conversion from floating point to integer. */
void
ecfp_positiveTidy(double *t, const EC_group_fp * group)
{
	double q;
	int i;

	/* Do carrying */
	for (i = 0; i < group->numDoubles - 1; i++) {
		/* Subtract beta to force rounding down */
		q = t[i] - ecfp_beta[i + 1];
		q += group->alpha[i + 1];
		q -= group->alpha[i + 1];
		t[i] -= q;
		t[i + 1] += q;

		/* Due to subtracting ecfp_beta, we should have each term a
		 * non-negative int */
		ECFP_ASSERT(t[i] / ecfp_exp[i] ==
					(unsigned long long) (t[i] / ecfp_exp[i]));
		ECFP_ASSERT(t[i] >= 0);
	}
}

/* Converts from a floating point representation into an mp_int. Expects
 * that d is already reduced. */
void
ecfp_fp2i(mp_int *mpout, double *d, const ECGroup *ecgroup)
{
	EC_group_fp *group = (EC_group_fp *) ecgroup->extra1;
	unsigned short i16[(group->primeBitSize + 15) / 16];
	double q = 1;

#ifdef ECL_THIRTY_TWO_BIT
	/* TEST uint32_t z = 0; */
	unsigned int z = 0;
#else
	uint64_t z = 0;
#endif
	int zBits = 0;
	int copiedBits = 0;
	int i = 0;
	int j = 0;

	mp_digit *out;

	/* Result should always be >= 0, so set sign accordingly */
	MP_SIGN(mpout) = MP_ZPOS;

	/* Tidy up so we're just dealing with positive numbers */
	ecfp_positiveTidy(d, group);

	/* We might need to do this reduction step more than once if the
	 * reduction adds smaller terms which carry-over to cause another
	 * reduction. However, this should happen very rarely, if ever,
	 * depending on the elliptic curve. */
	do {
		/* Init loop data */
		z = 0;
		zBits = 0;
		q = 1;
		i = 0;
		j = 0;
		copiedBits = 0;

		/* Might have to do a bit more reduction */
		group->ecfp_singleReduce(d, group);

		/* Grow the size of the mpint if it's too small */
		s_mp_grow(mpout, group->numInts);
		MP_USED(mpout) = group->numInts;
		out = MP_DIGITS(mpout);

		/* Convert double to 16 bit integers */
		while (copiedBits < group->primeBitSize) {
			if (zBits < 16) {
				z += d[i] * q;
				i++;
				ECFP_ASSERT(i < (group->primeBitSize + 15) / 16);
				zBits += group->doubleBitSize;
			}
			i16[j] = z;
			j++;
			z >>= 16;
			zBits -= 16;
			q *= ecfp_twom16;
			copiedBits += 16;
		}
	} while (z != 0);

	/* Convert 16 bit integers to mp_digit */
#ifdef ECL_THIRTY_TWO_BIT
	for (i = 0; i < (group->primeBitSize + 15) / 16; i += 2) {
		*out = 0;
		if (i + 1 < (group->primeBitSize + 15) / 16) {
			*out = i16[i + 1];
			*out <<= 16;
		}
		*out++ += i16[i];
	}
#else							/* 64 bit */
	for (i = 0; i < (group->primeBitSize + 15) / 16; i += 4) {
		*out = 0;
		if (i + 3 < (group->primeBitSize + 15) / 16) {
			*out = i16[i + 3];
			*out <<= 16;
		}
		if (i + 2 < (group->primeBitSize + 15) / 16) {
			*out += i16[i + 2];
			*out <<= 16;
		}
		if (i + 1 < (group->primeBitSize + 15) / 16) {
			*out += i16[i + 1];
			*out <<= 16;
		}
		*out++ += i16[i];
	}
#endif

	/* Perform final reduction.  mpout should already be the same number
	 * of bits as p, but might not be less than p.  Make it so. Since
	 * mpout has the same number of bits as p, and 2p has a larger bit
	 * size, then mpout < 2p, so a single subtraction of p will suffice. */
	if (mp_cmp(mpout, &ecgroup->meth->irr) >= 0) {
		mp_sub(mpout, &ecgroup->meth->irr, mpout);
	}

	/* Shrink the size of the mp_int to the actual used size (required for 
	 * mp_cmp_z == 0) */
	out = MP_DIGITS(mpout);
	for (i = group->numInts - 1; i > 0; i--) {
		if (out[i] != 0)
			break;
	}
	MP_USED(mpout) = i + 1;

	/* Should be between 0 and p-1 */
	ECFP_ASSERT(mp_cmp(mpout, &ecgroup->meth->irr) < 0);
	ECFP_ASSERT(mp_cmp_z(mpout) >= 0);
}

/* Converts from an mpint into a floating point representation. */
void
ecfp_i2fp(double *out, const mp_int *x, const ECGroup *ecgroup)
{
	int i;
	int j = 0;
	int size;
	double shift = 1;
	mp_digit *in;
	EC_group_fp *group = (EC_group_fp *) ecgroup->extra1;

#ifdef ECL_DEBUG
	/* if debug mode, convert result back using ecfp_fp2i into cmp, then
	 * compare to x. */
	mp_int cmp;

	MP_DIGITS(&cmp) = NULL;
	mp_init(&cmp);
#endif

	ECFP_ASSERT(group != NULL);

	/* init output to 0 (since we skip over some terms) */
	for (i = 0; i < group->numDoubles; i++)
		out[i] = 0;
	i = 0;

	size = MP_USED(x);
	in = MP_DIGITS(x);

	/* Copy from int into doubles */
#ifdef ECL_THIRTY_TWO_BIT
	while (j < size) {
		while (group->doubleBitSize * (i + 1) <= 32 * j) {
			i++;
		}
		ECFP_ASSERT(group->doubleBitSize * i <= 32 * j);
		out[i] = in[j];
		out[i] *= shift;
		shift *= ecfp_two32;
		j++;
	}
#else
	while (j < size) {
		while (group->doubleBitSize * (i + 1) <= 64 * j) {
			i++;
		}
		ECFP_ASSERT(group->doubleBitSize * i <= 64 * j);
		out[i] = (in[j] & 0x00000000FFFFFFFF) * shift;

		while (group->doubleBitSize * (i + 1) <= 64 * j + 32) {
			i++;
		}
		ECFP_ASSERT(24 * i <= 64 * j + 32);
		out[i] = (in[j] & 0xFFFFFFFF00000000) * shift;

		shift *= ecfp_two64;
		j++;
	}
#endif
	/* Realign bits to match double boundaries */
	ecfp_tidyShort(out, group);

#ifdef ECL_DEBUG
	/* Convert result back to mp_int, compare to original */
	ecfp_fp2i(&cmp, out, ecgroup);
	ECFP_ASSERT(mp_cmp(&cmp, x) == 0);
	mp_clear(&cmp);
#endif
}

/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
 * a, b and p are the elliptic curve coefficients and the prime that
 * determines the field GFp.  Elliptic curve points P and R can be
 * identical.  Uses Jacobian coordinates. Uses 4-bit window method. */
mp_err
ec_GFp_point_mul_jac_4w_fp(const mp_int *n, const mp_int *px,
						   const mp_int *py, mp_int *rx, mp_int *ry,
						   const ECGroup *ecgroup)
{
	mp_err res = MP_OKAY;
	ecfp_jac_pt precomp[16], r;
	ecfp_aff_pt p;
	EC_group_fp *group;

	mp_int rz;
	int i, ni, d;

	ARGCHK(ecgroup != NULL, MP_BADARG);
	ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG);

	group = (EC_group_fp *) ecgroup->extra1;
	MP_DIGITS(&rz) = 0;
	MP_CHECKOK(mp_init(&rz));

	/* init p, da */
	ecfp_i2fp(p.x, px, ecgroup);
	ecfp_i2fp(p.y, py, ecgroup);
	ecfp_i2fp(group->curvea, &ecgroup->curvea, ecgroup);

	/* Do precomputation */
	group->precompute_jac(precomp, &p, group);

	/* Do main body of calculations */
	d = (mpl_significant_bits(n) + 3) / 4;

	/* R = inf */
	for (i = 0; i < group->numDoubles; i++) {
		r.z[i] = 0;
	}

	for (i = d - 1; i >= 0; i--) {
		/* compute window ni */
		ni = MP_GET_BIT(n, 4 * i + 3);
		ni <<= 1;
		ni |= MP_GET_BIT(n, 4 * i + 2);
		ni <<= 1;
		ni |= MP_GET_BIT(n, 4 * i + 1);
		ni <<= 1;
		ni |= MP_GET_BIT(n, 4 * i);

		/* R = 2^4 * R */
		group->pt_dbl_jac(&r, &r, group);
		group->pt_dbl_jac(&r, &r, group);
		group->pt_dbl_jac(&r, &r, group);
		group->pt_dbl_jac(&r, &r, group);

		/* R = R + (ni * P) */
		group->pt_add_jac(&r, &precomp[ni], &r, group);
	}

	/* Convert back to integer */
	ecfp_fp2i(rx, r.x, ecgroup);
	ecfp_fp2i(ry, r.y, ecgroup);
	ecfp_fp2i(&rz, r.z, ecgroup);

	/* convert result S to affine coordinates */
	MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, ecgroup));

  CLEANUP:
	mp_clear(&rz);
	return res;
}

/* Uses mixed Jacobian-affine coordinates to perform a point
 * multiplication: R = n * P, n scalar. Uses mixed Jacobian-affine
 * coordinates (Jacobian coordinates for doubles and affine coordinates
 * for additions; based on recommendation from Brown et al.). Not very
 * time efficient but quite space efficient, no precomputation needed.
 * group contains the elliptic curve coefficients and the prime that
 * determines the field GFp.  Elliptic curve points P and R can be
 * identical. Performs calculations in floating point number format, since 
 * this is faster than the integer operations on the ULTRASPARC III.
 * Uses left-to-right binary method (double & add) (algorithm 9) for
 * scalar-point multiplication from Brown, Hankerson, Lopez, Menezes.
 * Software Implementation of the NIST Elliptic Curves Over Prime Fields. */
mp_err
ec_GFp_pt_mul_jac_fp(const mp_int *n, const mp_int *px, const mp_int *py,
					 mp_int *rx, mp_int *ry, const ECGroup *ecgroup)
{
	mp_err res;
	mp_int sx, sy, sz;

	ecfp_aff_pt p;
	ecfp_jac_pt r;
	EC_group_fp *group = (EC_group_fp *) ecgroup->extra1;

	int i, l;

	MP_DIGITS(&sx) = 0;
	MP_DIGITS(&sy) = 0;
	MP_DIGITS(&sz) = 0;
	MP_CHECKOK(mp_init(&sx));
	MP_CHECKOK(mp_init(&sy));
	MP_CHECKOK(mp_init(&sz));

	/* if n = 0 then r = inf */
	if (mp_cmp_z(n) == 0) {
		mp_zero(rx);
		mp_zero(ry);
		res = MP_OKAY;
		goto CLEANUP;
		/* if n < 0 then out of range error */
	} else if (mp_cmp_z(n) < 0) {
		res = MP_RANGE;
		goto CLEANUP;
	}

	/* Convert from integer to floating point */
	ecfp_i2fp(p.x, px, ecgroup);
	ecfp_i2fp(p.y, py, ecgroup);
	ecfp_i2fp(group->curvea, &(ecgroup->curvea), ecgroup);

	/* Init r to point at infinity */
	for (i = 0; i < group->numDoubles; i++) {
		r.z[i] = 0;
	}

	/* double and add method */
	l = mpl_significant_bits(n) - 1;

	for (i = l; i >= 0; i--) {
		/* R = 2R */
		group->pt_dbl_jac(&r, &r, group);

		/* if n_i = 1, then R = R + Q */
		if (MP_GET_BIT(n, i) != 0) {
			group->pt_add_jac_aff(&r, &p, &r, group);
		}
	}

	/* Convert from floating point to integer */
	ecfp_fp2i(&sx, r.x, ecgroup);
	ecfp_fp2i(&sy, r.y, ecgroup);
	ecfp_fp2i(&sz, r.z, ecgroup);

	/* convert result R to affine coordinates */
	MP_CHECKOK(ec_GFp_pt_jac2aff(&sx, &sy, &sz, rx, ry, ecgroup));

  CLEANUP:
	mp_clear(&sx);
	mp_clear(&sy);
	mp_clear(&sz);
	return res;
}

/* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic
 * curve points P and R can be identical. Uses mixed Modified-Jacobian
 * co-ordinates for doubling and Chudnovsky Jacobian coordinates for
 * additions. Uses 5-bit window NAF method (algorithm 11) for scalar-point 
 * multiplication from Brown, Hankerson, Lopez, Menezes. Software
 * Implementation of the NIST Elliptic Curves Over Prime Fields. */
mp_err
ec_GFp_point_mul_wNAF_fp(const mp_int *n, const mp_int *px,
						 const mp_int *py, mp_int *rx, mp_int *ry,
						 const ECGroup *ecgroup)
{
	mp_err res = MP_OKAY;
	mp_int sx, sy, sz;
	EC_group_fp *group = (EC_group_fp *) ecgroup->extra1;
	ecfp_chud_pt precomp[16];

	ecfp_aff_pt p;
	ecfp_jm_pt r;

	signed char naf[group->orderBitSize + 1];
	int i;

	MP_DIGITS(&sx) = 0;
	MP_DIGITS(&sy) = 0;
	MP_DIGITS(&sz) = 0;
	MP_CHECKOK(mp_init(&sx));
	MP_CHECKOK(mp_init(&sy));
	MP_CHECKOK(mp_init(&sz));

	/* if n = 0 then r = inf */
	if (mp_cmp_z(n) == 0) {
		mp_zero(rx);
		mp_zero(ry);
		res = MP_OKAY;
		goto CLEANUP;
		/* if n < 0 then out of range error */
	} else if (mp_cmp_z(n) < 0) {
		res = MP_RANGE;
		goto CLEANUP;
	}

	/* Convert from integer to floating point */
	ecfp_i2fp(p.x, px, ecgroup);
	ecfp_i2fp(p.y, py, ecgroup);
	ecfp_i2fp(group->curvea, &(ecgroup->curvea), ecgroup);

	/* Perform precomputation */
	group->precompute_chud(precomp, &p, group);

	/* Compute 5NAF */
	ec_compute_wNAF(naf, group->orderBitSize, n, 5);

	/* Init R = pt at infinity */
	for (i = 0; i < group->numDoubles; i++) {
		r.z[i] = 0;
	}

	/* wNAF method */
	for (i = group->orderBitSize; i >= 0; i--) {
		/* R = 2R */
		group->pt_dbl_jm(&r, &r, group);

		if (naf[i] != 0) {
			group->pt_add_jm_chud(&r, &precomp[(naf[i] + 15) / 2], &r,
								  group);
		}
	}

	/* Convert from floating point to integer */
	ecfp_fp2i(&sx, r.x, ecgroup);
	ecfp_fp2i(&sy, r.y, ecgroup);
	ecfp_fp2i(&sz, r.z, ecgroup);

	/* convert result R to affine coordinates */
	MP_CHECKOK(ec_GFp_pt_jac2aff(&sx, &sy, &sz, rx, ry, ecgroup));

  CLEANUP:
	mp_clear(&sx);
	mp_clear(&sy);
	mp_clear(&sz);
	return res;
}

/* Cleans up extra memory allocated in ECGroup for this implementation. */
void
ec_GFp_extra_free_fp(ECGroup *group)
{
	if (group->extra1 != NULL) {
		free(group->extra1);
		group->extra1 = NULL;
	}
}

/* Tests what precision floating point arithmetic is set to. This should
 * be either a 53-bit mantissa (IEEE standard) or a 64-bit mantissa
 * (extended precision on x86) and sets it into the EC_group_fp. Returns
 * either 53 or 64 accordingly. */
int
ec_set_fp_precision(EC_group_fp * group)
{
	double a = 9007199254740992.0;	/* 2^53 */
	double b = a + 1;

	if (a == b) {
		group->fpPrecision = 53;
		group->alpha = ecfp_alpha_53;
		return 53;
	}
	group->fpPrecision = 64;
	group->alpha = ecfp_alpha_64;
	return 64;
}