DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (fddffdeab170)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/* A 32-bit implementation of the NIST P-256 elliptic curve. */

#include <string.h>

#include "prtypes.h"
#include "mpi.h"
#include "mpi-priv.h"
#include "ecp.h"

typedef PRUint8 u8;
typedef PRUint32 u32;
typedef PRUint64 u64;

/* Our field elements are represented as nine, unsigned 32-bit words. Freebl's
 * MPI library calls them digits, but here they are called limbs, which is
 * GMP's terminology.
 *
 * The value of an felem (field element) is:
 *   x[0] + (x[1] * 2**29) + (x[2] * 2**57) + ... + (x[8] * 2**228)
 *
 * That is, each limb is alternately 29 or 28-bits wide in little-endian
 * order.
 *
 * This means that an felem hits 2**257, rather than 2**256 as we would like. A
 * 28, 29, ... pattern would cause us to hit 2**256, but that causes problems
 * when multiplying as terms end up one bit short of a limb which would require
 * much bit-shifting to correct.
 *
 * Finally, the values stored in an felem are in Montgomery form. So the value
 * |y| is stored as (y*R) mod p, where p is the P-256 prime and R is 2**257.
 */
typedef u32 limb;
#define NLIMBS 9
typedef limb felem[NLIMBS];

static const limb kBottom28Bits = 0xfffffff;
static const limb kBottom29Bits = 0x1fffffff;

/* kOne is the number 1 as an felem. It's 2**257 mod p split up into 29 and
 * 28-bit words.
 */
static const felem kOne = {
    2, 0, 0, 0xffff800,
    0x1fffffff, 0xfffffff, 0x1fbfffff, 0x1ffffff,
    0
};
static const felem kZero = {0};
static const felem kP = {
    0x1fffffff, 0xfffffff, 0x1fffffff, 0x3ff,
    0, 0, 0x200000, 0xf000000,
    0xfffffff
};
static const felem k2P = {
    0x1ffffffe, 0xfffffff, 0x1fffffff, 0x7ff,
    0, 0, 0x400000, 0xe000000,
    0x1fffffff
};

/* kPrecomputed contains precomputed values to aid the calculation of scalar
 * multiples of the base point, G. It's actually two, equal length, tables
 * concatenated.
 *
 * The first table contains (x,y) felem pairs for 16 multiples of the base
 * point, G.
 *
 *   Index  |  Index (binary) | Value
 *       0  |           0000  | 0G (all zeros, omitted)
 *       1  |           0001  | G
 *       2  |           0010  | 2**64G
 *       3  |           0011  | 2**64G + G
 *       4  |           0100  | 2**128G
 *       5  |           0101  | 2**128G + G
 *       6  |           0110  | 2**128G + 2**64G
 *       7  |           0111  | 2**128G + 2**64G + G
 *       8  |           1000  | 2**192G
 *       9  |           1001  | 2**192G + G
 *      10  |           1010  | 2**192G + 2**64G
 *      11  |           1011  | 2**192G + 2**64G + G
 *      12  |           1100  | 2**192G + 2**128G
 *      13  |           1101  | 2**192G + 2**128G + G
 *      14  |           1110  | 2**192G + 2**128G + 2**64G
 *      15  |           1111  | 2**192G + 2**128G + 2**64G + G
 *
 * The second table follows the same style, but the terms are 2**32G,
 * 2**96G, 2**160G, 2**224G.
 *
 * This is ~2KB of data.
 */
static const limb kPrecomputed[NLIMBS * 2 * 15 * 2] = {
    0x11522878, 0xe730d41, 0xdb60179, 0x4afe2ff, 0x12883add, 0xcaddd88, 0x119e7edc, 0xd4a6eab, 0x3120bee,
    0x1d2aac15, 0xf25357c, 0x19e45cdd, 0x5c721d0, 0x1992c5a5, 0xa237487, 0x154ba21, 0x14b10bb, 0xae3fe3,
    0xd41a576, 0x922fc51, 0x234994f, 0x60b60d3, 0x164586ae, 0xce95f18, 0x1fe49073, 0x3fa36cc, 0x5ebcd2c,
    0xb402f2f, 0x15c70bf, 0x1561925c, 0x5a26704, 0xda91e90, 0xcdc1c7f, 0x1ea12446, 0xe1ade1e, 0xec91f22,
    0x26f7778, 0x566847e, 0xa0bec9e, 0x234f453, 0x1a31f21a, 0xd85e75c, 0x56c7109, 0xa267a00, 0xb57c050,
    0x98fb57, 0xaa837cc, 0x60c0792, 0xcfa5e19, 0x61bab9e, 0x589e39b, 0xa324c5, 0x7d6dee7, 0x2976e4b,
    0x1fc4124a, 0xa8c244b, 0x1ce86762, 0xcd61c7e, 0x1831c8e0, 0x75774e1, 0x1d96a5a9, 0x843a649, 0xc3ab0fa,
    0x6e2e7d5, 0x7673a2a, 0x178b65e8, 0x4003e9b, 0x1a1f11c2, 0x7816ea, 0xf643e11, 0x58c43df, 0xf423fc2,
    0x19633ffa, 0x891f2b2, 0x123c231c, 0x46add8c, 0x54700dd, 0x59e2b17, 0x172db40f, 0x83e277d, 0xb0dd609,
    0xfd1da12, 0x35c6e52, 0x19ede20c, 0xd19e0c0, 0x97d0f40, 0xb015b19, 0x449e3f5, 0xe10c9e, 0x33ab581,
    0x56a67ab, 0x577734d, 0x1dddc062, 0xc57b10d, 0x149b39d, 0x26a9e7b, 0xc35df9f, 0x48764cd, 0x76dbcca,
    0xca4b366, 0xe9303ab, 0x1a7480e7, 0x57e9e81, 0x1e13eb50, 0xf466cf3, 0x6f16b20, 0x4ba3173, 0xc168c33,
    0x15cb5439, 0x6a38e11, 0x73658bd, 0xb29564f, 0x3f6dc5b, 0x53b97e, 0x1322c4c0, 0x65dd7ff, 0x3a1e4f6,
    0x14e614aa, 0x9246317, 0x1bc83aca, 0xad97eed, 0xd38ce4a, 0xf82b006, 0x341f077, 0xa6add89, 0x4894acd,
    0x9f162d5, 0xf8410ef, 0x1b266a56, 0xd7f223, 0x3e0cb92, 0xe39b672, 0x6a2901a, 0x69a8556, 0x7e7c0,
    0x9b7d8d3, 0x309a80, 0x1ad05f7f, 0xc2fb5dd, 0xcbfd41d, 0x9ceb638, 0x1051825c, 0xda0cf5b, 0x812e881,
    0x6f35669, 0x6a56f2c, 0x1df8d184, 0x345820, 0x1477d477, 0x1645db1, 0xbe80c51, 0xc22be3e, 0xe35e65a,
    0x1aeb7aa0, 0xc375315, 0xf67bc99, 0x7fdd7b9, 0x191fc1be, 0x61235d, 0x2c184e9, 0x1c5a839, 0x47a1e26,
    0xb7cb456, 0x93e225d, 0x14f3c6ed, 0xccc1ac9, 0x17fe37f3, 0x4988989, 0x1a90c502, 0x2f32042, 0xa17769b,
    0xafd8c7c, 0x8191c6e, 0x1dcdb237, 0x16200c0, 0x107b32a1, 0x66c08db, 0x10d06a02, 0x3fc93, 0x5620023,
    0x16722b27, 0x68b5c59, 0x270fcfc, 0xfad0ecc, 0xe5de1c2, 0xeab466b, 0x2fc513c, 0x407f75c, 0xbaab133,
    0x9705fe9, 0xb88b8e7, 0x734c993, 0x1e1ff8f, 0x19156970, 0xabd0f00, 0x10469ea7, 0x3293ac0, 0xcdc98aa,
    0x1d843fd, 0xe14bfe8, 0x15be825f, 0x8b5212, 0xeb3fb67, 0x81cbd29, 0xbc62f16, 0x2b6fcc7, 0xf5a4e29,
    0x13560b66, 0xc0b6ac2, 0x51ae690, 0xd41e271, 0xf3e9bd4, 0x1d70aab, 0x1029f72, 0x73e1c35, 0xee70fbc,
    0xad81baf, 0x9ecc49a, 0x86c741e, 0xfe6be30, 0x176752e7, 0x23d416, 0x1f83de85, 0x27de188, 0x66f70b8,
    0x181cd51f, 0x96b6e4c, 0x188f2335, 0xa5df759, 0x17a77eb6, 0xfeb0e73, 0x154ae914, 0x2f3ec51, 0x3826b59,
    0xb91f17d, 0x1c72949, 0x1362bf0a, 0xe23fddf, 0xa5614b0, 0xf7d8f, 0x79061, 0x823d9d2, 0x8213f39,
    0x1128ae0b, 0xd095d05, 0xb85c0c2, 0x1ecb2ef, 0x24ddc84, 0xe35e901, 0x18411a4a, 0xf5ddc3d, 0x3786689,
    0x52260e8, 0x5ae3564, 0x542b10d, 0x8d93a45, 0x19952aa4, 0x996cc41, 0x1051a729, 0x4be3499, 0x52b23aa,
    0x109f307e, 0x6f5b6bb, 0x1f84e1e7, 0x77a0cfa, 0x10c4df3f, 0x25a02ea, 0xb048035, 0xe31de66, 0xc6ecaa3,
    0x28ea335, 0x2886024, 0x1372f020, 0xf55d35, 0x15e4684c, 0xf2a9e17, 0x1a4a7529, 0xcb7beb1, 0xb2a78a1,
    0x1ab21f1f, 0x6361ccf, 0x6c9179d, 0xb135627, 0x1267b974, 0x4408bad, 0x1cbff658, 0xe3d6511, 0xc7d76f,
    0x1cc7a69, 0xe7ee31b, 0x54fab4f, 0x2b914f, 0x1ad27a30, 0xcd3579e, 0xc50124c, 0x50daa90, 0xb13f72,
    0xb06aa75, 0x70f5cc6, 0x1649e5aa, 0x84a5312, 0x329043c, 0x41c4011, 0x13d32411, 0xb04a838, 0xd760d2d,
    0x1713b532, 0xbaa0c03, 0x84022ab, 0x6bcf5c1, 0x2f45379, 0x18ae070, 0x18c9e11e, 0x20bca9a, 0x66f496b,
    0x3eef294, 0x67500d2, 0xd7f613c, 0x2dbbeb, 0xb741038, 0xe04133f, 0x1582968d, 0xbe985f7, 0x1acbc1a,
    0x1a6a939f, 0x33e50f6, 0xd665ed4, 0xb4b7bd6, 0x1e5a3799, 0x6b33847, 0x17fa56ff, 0x65ef930, 0x21dc4a,
    0x2b37659, 0x450fe17, 0xb357b65, 0xdf5efac, 0x15397bef, 0x9d35a7f, 0x112ac15f, 0x624e62e, 0xa90ae2f,
    0x107eecd2, 0x1f69bbe, 0x77d6bce, 0x5741394, 0x13c684fc, 0x950c910, 0x725522b, 0xdc78583, 0x40eeabb,
    0x1fde328a, 0xbd61d96, 0xd28c387, 0x9e77d89, 0x12550c40, 0x759cb7d, 0x367ef34, 0xae2a960, 0x91b8bdc,
    0x93462a9, 0xf469ef, 0xb2e9aef, 0xd2ca771, 0x54e1f42, 0x7aaa49, 0x6316abb, 0x2413c8e, 0x5425bf9,
    0x1bed3e3a, 0xf272274, 0x1f5e7326, 0x6416517, 0xea27072, 0x9cedea7, 0x6e7633, 0x7c91952, 0xd806dce,
    0x8e2a7e1, 0xe421e1a, 0x418c9e1, 0x1dbc890, 0x1b395c36, 0xa1dc175, 0x1dc4ef73, 0x8956f34, 0xe4b5cf2,
    0x1b0d3a18, 0x3194a36, 0x6c2641f, 0xe44124c, 0xa2f4eaa, 0xa8c25ba, 0xf927ed7, 0x627b614, 0x7371cca,
    0xba16694, 0x417bc03, 0x7c0a7e3, 0x9c35c19, 0x1168a205, 0x8b6b00d, 0x10e3edc9, 0x9c19bf2, 0x5882229,
    0x1b2b4162, 0xa5cef1a, 0x1543622b, 0x9bd433e, 0x364e04d, 0x7480792, 0x5c9b5b3, 0xe85ff25, 0x408ef57,
    0x1814cfa4, 0x121b41b, 0xd248a0f, 0x3b05222, 0x39bb16a, 0xc75966d, 0xa038113, 0xa4a1769, 0x11fbc6c,
    0x917e50e, 0xeec3da8, 0x169d6eac, 0x10c1699, 0xa416153, 0xf724912, 0x15cd60b7, 0x4acbad9, 0x5efc5fa,
    0xf150ed7, 0x122b51, 0x1104b40a, 0xcb7f442, 0xfbb28ff, 0x6ac53ca, 0x196142cc, 0x7bf0fa9, 0x957651,
    0x4e0f215, 0xed439f8, 0x3f46bd5, 0x5ace82f, 0x110916b6, 0x6db078, 0xffd7d57, 0xf2ecaac, 0xca86dec,
    0x15d6b2da, 0x965ecc9, 0x1c92b4c2, 0x1f3811, 0x1cb080f5, 0x2d8b804, 0x19d1c12d, 0xf20bd46, 0x1951fa7,
    0xa3656c3, 0x523a425, 0xfcd0692, 0xd44ddc8, 0x131f0f5b, 0xaf80e4a, 0xcd9fc74, 0x99bb618, 0x2db944c,
    0xa673090, 0x1c210e1, 0x178c8d23, 0x1474383, 0x10b8743d, 0x985a55b, 0x2e74779, 0x576138, 0x9587927,
    0x133130fa, 0xbe05516, 0x9f4d619, 0xbb62570, 0x99ec591, 0xd9468fe, 0x1d07782d, 0xfc72e0b, 0x701b298,
    0x1863863b, 0x85954b8, 0x121a0c36, 0x9e7fedf, 0xf64b429, 0x9b9d71e, 0x14e2f5d8, 0xf858d3a, 0x942eea8,
    0xda5b765, 0x6edafff, 0xa9d18cc, 0xc65e4ba, 0x1c747e86, 0xe4ea915, 0x1981d7a1, 0x8395659, 0x52ed4e2,
    0x87d43b7, 0x37ab11b, 0x19d292ce, 0xf8d4692, 0x18c3053f, 0x8863e13, 0x4c146c0, 0x6bdf55a, 0x4e4457d,
    0x16152289, 0xac78ec2, 0x1a59c5a2, 0x2028b97, 0x71c2d01, 0x295851f, 0x404747b, 0x878558d, 0x7d29aa4,
    0x13d8341f, 0x8daefd7, 0x139c972d, 0x6b7ea75, 0xd4a9dde, 0xff163d8, 0x81d55d7, 0xa5bef68, 0xb7b30d8,
    0xbe73d6f, 0xaa88141, 0xd976c81, 0x7e7a9cc, 0x18beb771, 0xd773cbd, 0x13f51951, 0x9d0c177, 0x1c49a78,
};

/* Field element operations:
 */

/* NON_ZERO_TO_ALL_ONES returns:
 *   0xffffffff for 0 < x <= 2**31
 *   0 for x == 0 or x > 2**31.
 *
 * x must be a u32 or an equivalent type such as limb.
 */
#define NON_ZERO_TO_ALL_ONES(x) ((((u32)(x) - 1) >> 31) - 1)

/* felem_reduce_carry adds a multiple of p in order to cancel |carry|,
 * which is a term at 2**257.
 *
 * On entry: carry < 2**3, inout[0,2,...] < 2**29, inout[1,3,...] < 2**28.
 * On exit: inout[0,2,..] < 2**30, inout[1,3,...] < 2**29.
 */
static void felem_reduce_carry(felem inout, limb carry)
{
    const u32 carry_mask = NON_ZERO_TO_ALL_ONES(carry);

    inout[0] += carry << 1;
    inout[3] += 0x10000000 & carry_mask;
    /* carry < 2**3 thus (carry << 11) < 2**14 and we added 2**28 in the
     * previous line therefore this doesn't underflow.
     */
    inout[3] -= carry << 11;
    inout[4] += (0x20000000 - 1) & carry_mask;
    inout[5] += (0x10000000 - 1) & carry_mask;
    inout[6] += (0x20000000 - 1) & carry_mask;
    inout[6] -= carry << 22;
    /* This may underflow if carry is non-zero but, if so, we'll fix it in the
     * next line.
     */
    inout[7] -= 1 & carry_mask;
    inout[7] += carry << 25;
}

/* felem_sum sets out = in+in2.
 *
 * On entry, in[i]+in2[i] must not overflow a 32-bit word.
 * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29
 */
static void felem_sum(felem out, const felem in, const felem in2)
{
    limb carry = 0;
    unsigned int i;
    for (i = 0;; i++) {
	out[i] = in[i] + in2[i];
	out[i] += carry;
	carry = out[i] >> 29;
	out[i] &= kBottom29Bits;

	i++;
	if (i == NLIMBS)
	    break;

	out[i] = in[i] + in2[i];
	out[i] += carry;
	carry = out[i] >> 28;
	out[i] &= kBottom28Bits;
    }

    felem_reduce_carry(out, carry);
}

#define two31m3 (((limb)1) << 31) - (((limb)1) << 3)
#define two30m2 (((limb)1) << 30) - (((limb)1) << 2)
#define two30p13m2 (((limb)1) << 30) + (((limb)1) << 13) - (((limb)1) << 2)
#define two31m2 (((limb)1) << 31) - (((limb)1) << 2)
#define two31p24m2 (((limb)1) << 31) + (((limb)1) << 24) - (((limb)1) << 2)
#define two30m27m2 (((limb)1) << 30) - (((limb)1) << 27) - (((limb)1) << 2)

/* zero31 is 0 mod p.
 */
static const felem zero31 = {
    two31m3, two30m2, two31m2, two30p13m2,
    two31m2, two30m2, two31p24m2, two30m27m2,
    two31m2
};

/* felem_diff sets out = in-in2.
 *
 * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and
 *           in2[0,2,...] < 2**30, in2[1,3,...] < 2**29.
 * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
 */
static void felem_diff(felem out, const felem in, const felem in2)
{
    limb carry = 0;
    unsigned int i;

    for (i = 0;; i++) {
	out[i] = in[i] - in2[i];
	out[i] += zero31[i];
	out[i] += carry;
	carry = out[i] >> 29;
	out[i] &= kBottom29Bits;

	i++;
	if (i == NLIMBS)
	    break;

	out[i] = in[i] - in2[i];
	out[i] += zero31[i];
	out[i] += carry;
	carry = out[i] >> 28;
	out[i] &= kBottom28Bits;
    }

    felem_reduce_carry(out, carry);
}

/* felem_reduce_degree sets out = tmp/R mod p where tmp contains 64-bit words
 * with the same 29,28,... bit positions as an felem.
 *
 * The values in felems are in Montgomery form: x*R mod p where R = 2**257.
 * Since we just multiplied two Montgomery values together, the result is
 * x*y*R*R mod p. We wish to divide by R in order for the result also to be
 * in Montgomery form.
 *
 * On entry: tmp[i] < 2**64
 * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29
 */
static void felem_reduce_degree(felem out, u64 tmp[17])
{
    /* The following table may be helpful when reading this code:
     *
     * Limb number:   0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10...
     * Width (bits):  29| 28| 29| 28| 29| 28| 29| 28| 29| 28| 29
     * Start bit:     0 | 29| 57| 86|114|143|171|200|228|257|285
     *   (odd phase): 0 | 28| 57| 85|114|142|171|199|228|256|285
     */
    limb tmp2[18], carry, x, xMask;
    unsigned int i;

    /* tmp contains 64-bit words with the same 29,28,29-bit positions as an
     * felem. So the top of an element of tmp might overlap with another
     * element two positions down. The following loop eliminates this
     * overlap.
     */
    tmp2[0] = tmp[0] & kBottom29Bits;

    /* In the following we use "(limb) tmp[x]" and "(limb) (tmp[x]>>32)" to try
     * and hint to the compiler that it can do a single-word shift by selecting
     * the right register rather than doing a double-word shift and truncating
     * afterwards.
     */
    tmp2[1] = ((limb) tmp[0]) >> 29;
    tmp2[1] |= (((limb) (tmp[0] >> 32)) << 3) & kBottom28Bits;
    tmp2[1] += ((limb) tmp[1]) & kBottom28Bits;
    carry = tmp2[1] >> 28;
    tmp2[1] &= kBottom28Bits;

    for (i = 2; i < 17; i++) {
	tmp2[i] = ((limb) (tmp[i - 2] >> 32)) >> 25;
	tmp2[i] += ((limb) (tmp[i - 1])) >> 28;
	tmp2[i] += (((limb) (tmp[i - 1] >> 32)) << 4) & kBottom29Bits;
	tmp2[i] += ((limb) tmp[i]) & kBottom29Bits;
	tmp2[i] += carry;
	carry = tmp2[i] >> 29;
	tmp2[i] &= kBottom29Bits;

	i++;
	if (i == 17)
	    break;
	tmp2[i] = ((limb) (tmp[i - 2] >> 32)) >> 25;
	tmp2[i] += ((limb) (tmp[i - 1])) >> 29;
	tmp2[i] += (((limb) (tmp[i - 1] >> 32)) << 3) & kBottom28Bits;
	tmp2[i] += ((limb) tmp[i]) & kBottom28Bits;
	tmp2[i] += carry;
	carry = tmp2[i] >> 28;
	tmp2[i] &= kBottom28Bits;
    }

    tmp2[17] = ((limb) (tmp[15] >> 32)) >> 25;
    tmp2[17] += ((limb) (tmp[16])) >> 29;
    tmp2[17] += (((limb) (tmp[16] >> 32)) << 3);
    tmp2[17] += carry;

    /* Montgomery elimination of terms:
     *
     * Since R is 2**257, we can divide by R with a bitwise shift if we can
     * ensure that the right-most 257 bits are all zero. We can make that true
     * by adding multiplies of p without affecting the value.
     *
     * So we eliminate limbs from right to left. Since the bottom 29 bits of p
     * are all ones, then by adding tmp2[0]*p to tmp2 we'll make tmp2[0] == 0.
     * We can do that for 8 further limbs and then right shift to eliminate the
     * extra factor of R.
     */
    for (i = 0;; i += 2) {
	tmp2[i + 1] += tmp2[i] >> 29;
	x = tmp2[i] & kBottom29Bits;
	xMask = NON_ZERO_TO_ALL_ONES(x);
	tmp2[i] = 0;

	/* The bounds calculations for this loop are tricky. Each iteration of
	 * the loop eliminates two words by adding values to words to their
	 * right.
	 *
	 * The following table contains the amounts added to each word (as an
	 * offset from the value of i at the top of the loop). The amounts are
	 * accounted for from the first and second half of the loop separately
	 * and are written as, for example, 28 to mean a value <2**28.
	 *
	 * Word:                   3   4   5   6   7   8   9   10
	 * Added in top half:     28  11      29  21  29  28
	 *                                        28  29
	 *                                            29
	 * Added in bottom half:      29  10      28  21  28   28
	 *                                            29
	 *
	 * The value that is currently offset 7 will be offset 5 for the next
	 * iteration and then offset 3 for the iteration after that. Therefore
	 * the total value added will be the values added at 7, 5 and 3.
	 *
	 * The following table accumulates these values. The sums at the bottom
	 * are written as, for example, 29+28, to mean a value < 2**29+2**28.
	 *
	 * Word:                   3   4   5   6   7   8   9  10  11  12  13
	 *                        28  11  10  29  21  29  28  28  28  28  28
	 *                            29  28  11  28  29  28  29  28  29  28
	 *                                    29  28  21  21  29  21  29  21
	 *                                        10  29  28  21  28  21  28
	 *                                        28  29  28  29  28  29  28
	 *                                            11  10  29  10  29  10
	 *                                            29  28  11  28  11
	 *                                                    29      29
	 *                        --------------------------------------------
	 *                                                30+ 31+ 30+ 31+ 30+
	 *                                                28+ 29+ 28+ 29+ 21+
	 *                                                21+ 28+ 21+ 28+ 10
	 *                                                10  21+ 10  21+
	 *                                                    11      11
	 *
	 * So the greatest amount is added to tmp2[10] and tmp2[12]. If
	 * tmp2[10/12] has an initial value of <2**29, then the maximum value
	 * will be < 2**31 + 2**30 + 2**28 + 2**21 + 2**11, which is < 2**32,
	 * as required.
         */
	tmp2[i + 3] += (x << 10) & kBottom28Bits;
	tmp2[i + 4] += (x >> 18);

	tmp2[i + 6] += (x << 21) & kBottom29Bits;
	tmp2[i + 7] += x >> 8;

	/* At position 200, which is the starting bit position for word 7, we
	 * have a factor of 0xf000000 = 2**28 - 2**24.
	 */
	tmp2[i + 7] += 0x10000000 & xMask;
	/* Word 7 is 28 bits wide, so the 2**28 term exactly hits word 8. */
	tmp2[i + 8] += (x - 1) & xMask;
	tmp2[i + 7] -= (x << 24) & kBottom28Bits;
	tmp2[i + 8] -= x >> 4;

	tmp2[i + 8] += 0x20000000 & xMask;
	tmp2[i + 8] -= x;
	tmp2[i + 8] += (x << 28) & kBottom29Bits;
	tmp2[i + 9] += ((x >> 1) - 1) & xMask;

	if (i+1 == NLIMBS)
	    break;
	tmp2[i + 2] += tmp2[i + 1] >> 28;
	x = tmp2[i + 1] & kBottom28Bits;
	xMask = NON_ZERO_TO_ALL_ONES(x);
	tmp2[i + 1] = 0;

	tmp2[i + 4] += (x << 11) & kBottom29Bits;
	tmp2[i + 5] += (x >> 18);

	tmp2[i + 7] += (x << 21) & kBottom28Bits;
	tmp2[i + 8] += x >> 7;

	/* At position 199, which is the starting bit of the 8th word when
	 * dealing with a context starting on an odd word, we have a factor of
	 * 0x1e000000 = 2**29 - 2**25. Since we have not updated i, the 8th
	 * word from i+1 is i+8.
	 */
	tmp2[i + 8] += 0x20000000 & xMask;
	tmp2[i + 9] += (x - 1) & xMask;
	tmp2[i + 8] -= (x << 25) & kBottom29Bits;
	tmp2[i + 9] -= x >> 4;

	tmp2[i + 9] += 0x10000000 & xMask;
	tmp2[i + 9] -= x;
	tmp2[i + 10] += (x - 1) & xMask;
    }

    /* We merge the right shift with a carry chain. The words above 2**257 have
     * widths of 28,29,... which we need to correct when copying them down.
     */
    carry = 0;
    for (i = 0; i < 8; i++) {
	/* The maximum value of tmp2[i + 9] occurs on the first iteration and
	 * is < 2**30+2**29+2**28. Adding 2**29 (from tmp2[i + 10]) is
	 * therefore safe.
	 */
	out[i] = tmp2[i + 9];
	out[i] += carry;
	out[i] += (tmp2[i + 10] << 28) & kBottom29Bits;
	carry = out[i] >> 29;
	out[i] &= kBottom29Bits;

	i++;
	out[i] = tmp2[i + 9] >> 1;
	out[i] += carry;
	carry = out[i] >> 28;
	out[i] &= kBottom28Bits;
    }

    out[8] = tmp2[17];
    out[8] += carry;
    carry = out[8] >> 29;
    out[8] &= kBottom29Bits;

    felem_reduce_carry(out, carry);
}

/* felem_square sets out=in*in.
 *
 * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29.
 * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
 */
static void felem_square(felem out, const felem in)
{
    u64 tmp[17];

    tmp[0] = ((u64) in[0]) * in[0];
    tmp[1] = ((u64) in[0]) * (in[1] << 1);
    tmp[2] = ((u64) in[0]) * (in[2] << 1) +
	     ((u64) in[1]) * (in[1] << 1);
    tmp[3] = ((u64) in[0]) * (in[3] << 1) +
	     ((u64) in[1]) * (in[2] << 1);
    tmp[4] = ((u64) in[0]) * (in[4] << 1) +
	     ((u64) in[1]) * (in[3] << 2) +
	     ((u64) in[2]) * in[2];
    tmp[5] = ((u64) in[0]) * (in[5] << 1) +
	     ((u64) in[1]) * (in[4] << 1) +
	     ((u64) in[2]) * (in[3] << 1);
    tmp[6] = ((u64) in[0]) * (in[6] << 1) +
	     ((u64) in[1]) * (in[5] << 2) +
	     ((u64) in[2]) * (in[4] << 1) +
	     ((u64) in[3]) * (in[3] << 1);
    tmp[7] = ((u64) in[0]) * (in[7] << 1) +
	     ((u64) in[1]) * (in[6] << 1) +
	     ((u64) in[2]) * (in[5] << 1) +
	     ((u64) in[3]) * (in[4] << 1);
    /* tmp[8] has the greatest value of 2**61 + 2**60 + 2**61 + 2**60 + 2**60,
     * which is < 2**64 as required.
     */
    tmp[8] = ((u64) in[0]) * (in[8] << 1) +
	     ((u64) in[1]) * (in[7] << 2) +
	     ((u64) in[2]) * (in[6] << 1) +
	     ((u64) in[3]) * (in[5] << 2) +
	     ((u64) in[4]) * in[4];
    tmp[9] = ((u64) in[1]) * (in[8] << 1) +
	     ((u64) in[2]) * (in[7] << 1) +
	     ((u64) in[3]) * (in[6] << 1) +
	     ((u64) in[4]) * (in[5] << 1);
    tmp[10] = ((u64) in[2]) * (in[8] << 1) +
	      ((u64) in[3]) * (in[7] << 2) +
	      ((u64) in[4]) * (in[6] << 1) +
	      ((u64) in[5]) * (in[5] << 1);
    tmp[11] = ((u64) in[3]) * (in[8] << 1) +
	      ((u64) in[4]) * (in[7] << 1) +
	      ((u64) in[5]) * (in[6] << 1);
    tmp[12] = ((u64) in[4]) * (in[8] << 1) +
	      ((u64) in[5]) * (in[7] << 2) +
	      ((u64) in[6]) * in[6];
    tmp[13] = ((u64) in[5]) * (in[8] << 1) +
	      ((u64) in[6]) * (in[7] << 1);
    tmp[14] = ((u64) in[6]) * (in[8] << 1) +
	      ((u64) in[7]) * (in[7] << 1);
    tmp[15] = ((u64) in[7]) * (in[8] << 1);
    tmp[16] = ((u64) in[8]) * in[8];

    felem_reduce_degree(out, tmp);
}

/* felem_mul sets out=in*in2.
 *
 * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and
 *           in2[0,2,...] < 2**30, in2[1,3,...] < 2**29.
 * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
 */
static void felem_mul(felem out, const felem in, const felem in2)
{
    u64 tmp[17];

    tmp[0] = ((u64) in[0]) * in2[0];
    tmp[1] = ((u64) in[0]) * (in2[1] << 0) +
	     ((u64) in[1]) * (in2[0] << 0);
    tmp[2] = ((u64) in[0]) * (in2[2] << 0) +
	     ((u64) in[1]) * (in2[1] << 1) +
	     ((u64) in[2]) * (in2[0] << 0);
    tmp[3] = ((u64) in[0]) * (in2[3] << 0) +
	     ((u64) in[1]) * (in2[2] << 0) +
	     ((u64) in[2]) * (in2[1] << 0) +
	     ((u64) in[3]) * (in2[0] << 0);
    tmp[4] = ((u64) in[0]) * (in2[4] << 0) +
	     ((u64) in[1]) * (in2[3] << 1) +
	     ((u64) in[2]) * (in2[2] << 0) +
	     ((u64) in[3]) * (in2[1] << 1) +
	     ((u64) in[4]) * (in2[0] << 0);
    tmp[5] = ((u64) in[0]) * (in2[5] << 0) +
	     ((u64) in[1]) * (in2[4] << 0) +
	     ((u64) in[2]) * (in2[3] << 0) +
	     ((u64) in[3]) * (in2[2] << 0) +
	     ((u64) in[4]) * (in2[1] << 0) +
	     ((u64) in[5]) * (in2[0] << 0);
    tmp[6] = ((u64) in[0]) * (in2[6] << 0) +
	     ((u64) in[1]) * (in2[5] << 1) +
	     ((u64) in[2]) * (in2[4] << 0) +
	     ((u64) in[3]) * (in2[3] << 1) +
	     ((u64) in[4]) * (in2[2] << 0) +
	     ((u64) in[5]) * (in2[1] << 1) +
	     ((u64) in[6]) * (in2[0] << 0);
    tmp[7] = ((u64) in[0]) * (in2[7] << 0) +
	     ((u64) in[1]) * (in2[6] << 0) +
	     ((u64) in[2]) * (in2[5] << 0) +
	     ((u64) in[3]) * (in2[4] << 0) +
	     ((u64) in[4]) * (in2[3] << 0) +
	     ((u64) in[5]) * (in2[2] << 0) +
	     ((u64) in[6]) * (in2[1] << 0) +
	     ((u64) in[7]) * (in2[0] << 0);
    /* tmp[8] has the greatest value but doesn't overflow. See logic in
     * felem_square.
     */
    tmp[8] = ((u64) in[0]) * (in2[8] << 0) +
	     ((u64) in[1]) * (in2[7] << 1) +
	     ((u64) in[2]) * (in2[6] << 0) +
	     ((u64) in[3]) * (in2[5] << 1) +
	     ((u64) in[4]) * (in2[4] << 0) +
	     ((u64) in[5]) * (in2[3] << 1) +
	     ((u64) in[6]) * (in2[2] << 0) +
	     ((u64) in[7]) * (in2[1] << 1) +
	     ((u64) in[8]) * (in2[0] << 0);
    tmp[9] = ((u64) in[1]) * (in2[8] << 0) +
	     ((u64) in[2]) * (in2[7] << 0) +
	     ((u64) in[3]) * (in2[6] << 0) +
	     ((u64) in[4]) * (in2[5] << 0) +
	     ((u64) in[5]) * (in2[4] << 0) +
	     ((u64) in[6]) * (in2[3] << 0) +
	     ((u64) in[7]) * (in2[2] << 0) +
	     ((u64) in[8]) * (in2[1] << 0);
    tmp[10] = ((u64) in[2]) * (in2[8] << 0) +
	      ((u64) in[3]) * (in2[7] << 1) +
	      ((u64) in[4]) * (in2[6] << 0) +
	      ((u64) in[5]) * (in2[5] << 1) +
	      ((u64) in[6]) * (in2[4] << 0) +
	      ((u64) in[7]) * (in2[3] << 1) +
	      ((u64) in[8]) * (in2[2] << 0);
    tmp[11] = ((u64) in[3]) * (in2[8] << 0) +
	      ((u64) in[4]) * (in2[7] << 0) +
	      ((u64) in[5]) * (in2[6] << 0) +
	      ((u64) in[6]) * (in2[5] << 0) +
	      ((u64) in[7]) * (in2[4] << 0) +
	      ((u64) in[8]) * (in2[3] << 0);
    tmp[12] = ((u64) in[4]) * (in2[8] << 0) +
	      ((u64) in[5]) * (in2[7] << 1) +
	      ((u64) in[6]) * (in2[6] << 0) +
	      ((u64) in[7]) * (in2[5] << 1) +
	      ((u64) in[8]) * (in2[4] << 0);
    tmp[13] = ((u64) in[5]) * (in2[8] << 0) +
	      ((u64) in[6]) * (in2[7] << 0) +
	      ((u64) in[7]) * (in2[6] << 0) +
	      ((u64) in[8]) * (in2[5] << 0);
    tmp[14] = ((u64) in[6]) * (in2[8] << 0) +
	      ((u64) in[7]) * (in2[7] << 1) +
	      ((u64) in[8]) * (in2[6] << 0);
    tmp[15] = ((u64) in[7]) * (in2[8] << 0) +
	      ((u64) in[8]) * (in2[7] << 0);
    tmp[16] = ((u64) in[8]) * (in2[8] << 0);

    felem_reduce_degree(out, tmp);
}

static void felem_assign(felem out, const felem in)
{
    memcpy(out, in, sizeof(felem));
}

/* felem_inv calculates |out| = |in|^{-1}
 *
 * Based on Fermat's Little Theorem:
 *   a^p = a (mod p)
 *   a^{p-1} = 1 (mod p)
 *   a^{p-2} = a^{-1} (mod p)
 */
static void felem_inv(felem out, const felem in)
{
    felem ftmp, ftmp2;
    /* each e_I will hold |in|^{2^I - 1} */
    felem e2, e4, e8, e16, e32, e64;
    unsigned int i;

    felem_square(ftmp, in);		/* 2^1 */
    felem_mul(ftmp, in, ftmp);		/* 2^2 - 2^0 */
    felem_assign(e2, ftmp);
    felem_square(ftmp, ftmp);		/* 2^3 - 2^1 */
    felem_square(ftmp, ftmp);		/* 2^4 - 2^2 */
    felem_mul(ftmp, ftmp, e2);		/* 2^4 - 2^0 */
    felem_assign(e4, ftmp);
    felem_square(ftmp, ftmp);		/* 2^5 - 2^1 */
    felem_square(ftmp, ftmp);		/* 2^6 - 2^2 */
    felem_square(ftmp, ftmp);		/* 2^7 - 2^3 */
    felem_square(ftmp, ftmp);		/* 2^8 - 2^4 */
    felem_mul(ftmp, ftmp, e4);		/* 2^8 - 2^0 */
    felem_assign(e8, ftmp);
    for (i = 0; i < 8; i++) {
	felem_square(ftmp, ftmp);
    }					/* 2^16 - 2^8 */
    felem_mul(ftmp, ftmp, e8);		/* 2^16 - 2^0 */
    felem_assign(e16, ftmp);
    for (i = 0; i < 16; i++) {
	felem_square(ftmp, ftmp);
    }					/* 2^32 - 2^16 */
    felem_mul(ftmp, ftmp, e16);		/* 2^32 - 2^0 */
    felem_assign(e32, ftmp);
    for (i = 0; i < 32; i++) {
	felem_square(ftmp, ftmp);
    }					/* 2^64 - 2^32 */
    felem_assign(e64, ftmp);
    felem_mul(ftmp, ftmp, in);		/* 2^64 - 2^32 + 2^0 */
    for (i = 0; i < 192; i++) {
	felem_square(ftmp, ftmp);
    }					/* 2^256 - 2^224 + 2^192 */

    felem_mul(ftmp2, e64, e32);		/* 2^64 - 2^0 */
    for (i = 0; i < 16; i++) {
	felem_square(ftmp2, ftmp2);
    }					/* 2^80 - 2^16 */
    felem_mul(ftmp2, ftmp2, e16);	/* 2^80 - 2^0 */
    for (i = 0; i < 8; i++) {
	felem_square(ftmp2, ftmp2);
    }					/* 2^88 - 2^8 */
    felem_mul(ftmp2, ftmp2, e8);	/* 2^88 - 2^0 */
    for (i = 0; i < 4; i++) {
	felem_square(ftmp2, ftmp2);
    }					/* 2^92 - 2^4 */
    felem_mul(ftmp2, ftmp2, e4);	/* 2^92 - 2^0 */
    felem_square(ftmp2, ftmp2);		/* 2^93 - 2^1 */
    felem_square(ftmp2, ftmp2);		/* 2^94 - 2^2 */
    felem_mul(ftmp2, ftmp2, e2);	/* 2^94 - 2^0 */
    felem_square(ftmp2, ftmp2);		/* 2^95 - 2^1 */
    felem_square(ftmp2, ftmp2);		/* 2^96 - 2^2 */
    felem_mul(ftmp2, ftmp2, in);	/* 2^96 - 3 */

    felem_mul(out, ftmp2, ftmp);	/* 2^256 - 2^224 + 2^192 + 2^96 - 3 */
}

/* felem_scalar_3 sets out=3*out.
 *
 * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
 * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
 */
static void felem_scalar_3(felem out)
{
    limb carry = 0;
    unsigned int i;

    for (i = 0;; i++) {
	out[i] *= 3;
	out[i] += carry;
	carry = out[i] >> 29;
	out[i] &= kBottom29Bits;

	i++;
	if (i == NLIMBS)
	    break;

	out[i] *= 3;
	out[i] += carry;
	carry = out[i] >> 28;
	out[i] &= kBottom28Bits;
    }

    felem_reduce_carry(out, carry);
}

/* felem_scalar_4 sets out=4*out.
 *
 * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
 * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
 */
static void felem_scalar_4(felem out)
{
    limb carry = 0, next_carry;
    unsigned int i;

    for (i = 0;; i++) {
	next_carry = out[i] >> 27;
	out[i] <<= 2;
	out[i] &= kBottom29Bits;
	out[i] += carry;
	carry = next_carry + (out[i] >> 29);
	out[i] &= kBottom29Bits;

	i++;
	if (i == NLIMBS)
	    break;
	next_carry = out[i] >> 26;
	out[i] <<= 2;
	out[i] &= kBottom28Bits;
	out[i] += carry;
	carry = next_carry + (out[i] >> 28);
	out[i] &= kBottom28Bits;
    }

    felem_reduce_carry(out, carry);
}

/* felem_scalar_8 sets out=8*out.
 *
 * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
 * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
 */
static void felem_scalar_8(felem out)
{
    limb carry = 0, next_carry;
    unsigned int i;

    for (i = 0;; i++) {
	next_carry = out[i] >> 26;
	out[i] <<= 3;
	out[i] &= kBottom29Bits;
	out[i] += carry;
	carry = next_carry + (out[i] >> 29);
	out[i] &= kBottom29Bits;

	i++;
	if (i == NLIMBS)
	    break;
	next_carry = out[i] >> 25;
	out[i] <<= 3;
	out[i] &= kBottom28Bits;
	out[i] += carry;
	carry = next_carry + (out[i] >> 28);
	out[i] &= kBottom28Bits;
    }

    felem_reduce_carry(out, carry);
}

/* felem_is_zero_vartime returns 1 iff |in| == 0. It takes a variable amount of
 * time depending on the value of |in|.
 */
static char felem_is_zero_vartime(const felem in)
{
    limb carry;
    int i;
    limb tmp[NLIMBS];
    felem_assign(tmp, in);

    /* First, reduce tmp to a minimal form.
     */
    do {
	carry = 0;
	for (i = 0;; i++) {
	    tmp[i] += carry;
	    carry = tmp[i] >> 29;
	    tmp[i] &= kBottom29Bits;

	    i++;
	    if (i == NLIMBS)
		break;

	    tmp[i] += carry;
	    carry = tmp[i] >> 28;
	    tmp[i] &= kBottom28Bits;
	}

	felem_reduce_carry(tmp, carry);
    } while (carry);

    /* tmp < 2**257, so the only possible zero values are 0, p and 2p.
     */
    return memcmp(tmp, kZero, sizeof(tmp)) == 0 ||
	   memcmp(tmp, kP, sizeof(tmp)) == 0 ||
	   memcmp(tmp, k2P, sizeof(tmp)) == 0;
}

/* Group operations:
 *
 * Elements of the elliptic curve group are represented in Jacobian
 * coordinates: (x, y, z). An affine point (x', y') is x'=x/z**2, y'=y/z**3 in
 * Jacobian form.
 */

/* point_double sets {x_out,y_out,z_out} = 2*{x,y,z}.
 *
 * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
 */
static void point_double(felem x_out, felem y_out, felem z_out,
			 const felem x, const felem y, const felem z)
{
    felem delta, gamma, alpha, beta, tmp, tmp2;

    felem_square(delta, z);
    felem_square(gamma, y);
    felem_mul(beta, x, gamma);

    felem_sum(tmp, x, delta);
    felem_diff(tmp2, x, delta);
    felem_mul(alpha, tmp, tmp2);
    felem_scalar_3(alpha);

    felem_sum(tmp, y, z);
    felem_square(tmp, tmp);
    felem_diff(tmp, tmp, gamma);
    felem_diff(z_out, tmp, delta);

    felem_scalar_4(beta);
    felem_square(x_out, alpha);
    felem_diff(x_out, x_out, beta);
    felem_diff(x_out, x_out, beta);

    felem_diff(tmp, beta, x_out);
    felem_mul(tmp, alpha, tmp);
    felem_square(tmp2, gamma);
    felem_scalar_8(tmp2);
    felem_diff(y_out, tmp, tmp2);
}

/* point_add_mixed sets {x_out,y_out,z_out} = {x1,y1,z1} + {x2,y2,1}.
 * (i.e. the second point is affine.)
 *
 * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
 *
 * Note that this function does not handle P+P, infinity+P nor P+infinity
 * correctly.
 */
static void point_add_mixed(felem x_out, felem y_out, felem z_out,
			    const felem x1, const felem y1, const felem z1,
			    const felem x2, const felem y2)
{
    felem z1z1, z1z1z1, s2, u2, h, i, j, r, rr, v, tmp;

    felem_square(z1z1, z1);
    felem_sum(tmp, z1, z1);

    felem_mul(u2, x2, z1z1);
    felem_mul(z1z1z1, z1, z1z1);
    felem_mul(s2, y2, z1z1z1);
    felem_diff(h, u2, x1);
    felem_sum(i, h, h);
    felem_square(i, i);
    felem_mul(j, h, i);
    felem_diff(r, s2, y1);
    felem_sum(r, r, r);
    felem_mul(v, x1, i);

    felem_mul(z_out, tmp, h);
    felem_square(rr, r);
    felem_diff(x_out, rr, j);
    felem_diff(x_out, x_out, v);
    felem_diff(x_out, x_out, v);

    felem_diff(tmp, v, x_out);
    felem_mul(y_out, tmp, r);
    felem_mul(tmp, y1, j);
    felem_diff(y_out, y_out, tmp);
    felem_diff(y_out, y_out, tmp);
}

/* point_add sets {x_out,y_out,z_out} = {x1,y1,z1} + {x2,y2,z2}.
 *
 * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
 *
 * Note that this function does not handle P+P, infinity+P nor P+infinity
 * correctly.
 */
static void point_add(felem x_out, felem y_out, felem z_out,
		      const felem x1, const felem y1, const felem z1,
		      const felem x2, const felem y2, const felem z2)
{
    felem z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp;

    felem_square(z1z1, z1);
    felem_square(z2z2, z2);
    felem_mul(u1, x1, z2z2);

    felem_sum(tmp, z1, z2);
    felem_square(tmp, tmp);
    felem_diff(tmp, tmp, z1z1);
    felem_diff(tmp, tmp, z2z2);

    felem_mul(z2z2z2, z2, z2z2);
    felem_mul(s1, y1, z2z2z2);

    felem_mul(u2, x2, z1z1);
    felem_mul(z1z1z1, z1, z1z1);
    felem_mul(s2, y2, z1z1z1);
    felem_diff(h, u2, u1);
    felem_sum(i, h, h);
    felem_square(i, i);
    felem_mul(j, h, i);
    felem_diff(r, s2, s1);
    felem_sum(r, r, r);
    felem_mul(v, u1, i);

    felem_mul(z_out, tmp, h);
    felem_square(rr, r);
    felem_diff(x_out, rr, j);
    felem_diff(x_out, x_out, v);
    felem_diff(x_out, x_out, v);

    felem_diff(tmp, v, x_out);
    felem_mul(y_out, tmp, r);
    felem_mul(tmp, s1, j);
    felem_diff(y_out, y_out, tmp);
    felem_diff(y_out, y_out, tmp);
}

/* point_add_or_double_vartime sets {x_out,y_out,z_out} = {x1,y1,z1} +
 *                                                        {x2,y2,z2}.
 *
 * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
 *
 * This function handles the case where {x1,y1,z1}={x2,y2,z2}.
 */
static void point_add_or_double_vartime(
    felem x_out, felem y_out, felem z_out,
    const felem x1, const felem y1, const felem z1,
    const felem x2, const felem y2, const felem z2)
{
    felem z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp;
    char x_equal, y_equal;

    felem_square(z1z1, z1);
    felem_square(z2z2, z2);
    felem_mul(u1, x1, z2z2);

    felem_sum(tmp, z1, z2);
    felem_square(tmp, tmp);
    felem_diff(tmp, tmp, z1z1);
    felem_diff(tmp, tmp, z2z2);

    felem_mul(z2z2z2, z2, z2z2);
    felem_mul(s1, y1, z2z2z2);

    felem_mul(u2, x2, z1z1);
    felem_mul(z1z1z1, z1, z1z1);
    felem_mul(s2, y2, z1z1z1);
    felem_diff(h, u2, u1);
    x_equal = felem_is_zero_vartime(h);
    felem_sum(i, h, h);
    felem_square(i, i);
    felem_mul(j, h, i);
    felem_diff(r, s2, s1);
    y_equal = felem_is_zero_vartime(r);
    if (x_equal && y_equal) {
	point_double(x_out, y_out, z_out, x1, y1, z1);
	return;
    }
    felem_sum(r, r, r);
    felem_mul(v, u1, i);

    felem_mul(z_out, tmp, h);
    felem_square(rr, r);
    felem_diff(x_out, rr, j);
    felem_diff(x_out, x_out, v);
    felem_diff(x_out, x_out, v);

    felem_diff(tmp, v, x_out);
    felem_mul(y_out, tmp, r);
    felem_mul(tmp, s1, j);
    felem_diff(y_out, y_out, tmp);
    felem_diff(y_out, y_out, tmp);
}

/* copy_conditional sets out=in if mask = 0xffffffff in constant time.
 *
 * On entry: mask is either 0 or 0xffffffff.
 */
static void copy_conditional(felem out, const felem in, limb mask)
{
    int i;

    for (i = 0; i < NLIMBS; i++) {
	const limb tmp = mask & (in[i] ^ out[i]);
	out[i] ^= tmp;
    }
}

/* select_affine_point sets {out_x,out_y} to the index'th entry of table.
 * On entry: index < 16, table[0] must be zero.
 */
static void select_affine_point(felem out_x, felem out_y,
				const limb *table, limb index)
{
    limb i, j;

    memset(out_x, 0, sizeof(felem));
    memset(out_y, 0, sizeof(felem));

    for (i = 1; i < 16; i++) {
	limb mask = i ^ index;
	mask |= mask >> 2;
	mask |= mask >> 1;
	mask &= 1;
	mask--;
	for (j = 0; j < NLIMBS; j++, table++) {
	    out_x[j] |= *table & mask;
	}
	for (j = 0; j < NLIMBS; j++, table++) {
	    out_y[j] |= *table & mask;
	}
    }
}

/* select_jacobian_point sets {out_x,out_y,out_z} to the index'th entry of
 * table.  On entry: index < 16, table[0] must be zero.
 */
static void select_jacobian_point(felem out_x, felem out_y, felem out_z,
				  const limb *table, limb index)
{
    limb i, j;

    memset(out_x, 0, sizeof(felem));
    memset(out_y, 0, sizeof(felem));
    memset(out_z, 0, sizeof(felem));

    /* The implicit value at index 0 is all zero. We don't need to perform that
     * iteration of the loop because we already set out_* to zero.
     */
    table += 3*NLIMBS;

    for (i = 1; i < 16; i++) {
	limb mask = i ^ index;
	mask |= mask >> 2;
	mask |= mask >> 1;
	mask &= 1;
	mask--;
	for (j = 0; j < NLIMBS; j++, table++) {
	    out_x[j] |= *table & mask;
	}
	for (j = 0; j < NLIMBS; j++, table++) {
	    out_y[j] |= *table & mask;
	}
	for (j = 0; j < NLIMBS; j++, table++) {
	    out_z[j] |= *table & mask;
	}
    }
}

/* get_bit returns the bit'th bit of scalar. */
static char get_bit(const u8 scalar[32], int bit)
{
    return ((scalar[bit >> 3]) >> (bit & 7)) & 1;
}

/* scalar_base_mult sets {nx,ny,nz} = scalar*G where scalar is a little-endian
 * number. Note that the value of scalar must be less than the order of the
 * group.
 */
static void scalar_base_mult(felem nx, felem ny, felem nz, const u8 scalar[32])
{
    int i, j;
    limb n_is_infinity_mask = -1, p_is_noninfinite_mask, mask;
    u32 table_offset;

    felem px, py;
    felem tx, ty, tz;

    memset(nx, 0, sizeof(felem));
    memset(ny, 0, sizeof(felem));
    memset(nz, 0, sizeof(felem));

    /* The loop adds bits at positions 0, 64, 128 and 192, followed by
     * positions 32,96,160 and 224 and does this 32 times.
     */
    for (i = 0; i < 32; i++) {
	if (i) {
	    point_double(nx, ny, nz, nx, ny, nz);
	}
	table_offset = 0;
	for (j = 0; j <= 32; j += 32) {
	    char bit0 = get_bit(scalar, 31 - i + j);
	    char bit1 = get_bit(scalar, 95 - i + j);
	    char bit2 = get_bit(scalar, 159 - i + j);
	    char bit3 = get_bit(scalar, 223 - i + j);
	    limb index = bit0 | (bit1 << 1) | (bit2 << 2) | (bit3 << 3);

	    select_affine_point(px, py, kPrecomputed + table_offset, index);
	    table_offset += 30 * NLIMBS;

	    /* Since scalar is less than the order of the group, we know that
	     * {nx,ny,nz} != {px,py,1}, unless both are zero, which we handle
	     * below.
	     */
	    point_add_mixed(tx, ty, tz, nx, ny, nz, px, py);
	    /* The result of point_add_mixed is incorrect if {nx,ny,nz} is zero
	     * (a.k.a.  the point at infinity). We handle that situation by
	     * copying the point from the table.
	     */
	    copy_conditional(nx, px, n_is_infinity_mask);
	    copy_conditional(ny, py, n_is_infinity_mask);
	    copy_conditional(nz, kOne, n_is_infinity_mask);

	    /* Equally, the result is also wrong if the point from the table is
	     * zero, which happens when the index is zero. We handle that by
	     * only copying from {tx,ty,tz} to {nx,ny,nz} if index != 0.
	     */
	    p_is_noninfinite_mask = NON_ZERO_TO_ALL_ONES(index);
	    mask = p_is_noninfinite_mask & ~n_is_infinity_mask;
	    copy_conditional(nx, tx, mask);
	    copy_conditional(ny, ty, mask);
	    copy_conditional(nz, tz, mask);
	    /* If p was not zero, then n is now non-zero. */
	    n_is_infinity_mask &= ~p_is_noninfinite_mask;
	}
    }
}

/* point_to_affine converts a Jacobian point to an affine point. If the input
 * is the point at infinity then it returns (0, 0) in constant time.
 */
static void point_to_affine(felem x_out, felem y_out,
			    const felem nx, const felem ny, const felem nz) {
    felem z_inv, z_inv_sq;
    felem_inv(z_inv, nz);
    felem_square(z_inv_sq, z_inv);
    felem_mul(x_out, nx, z_inv_sq);
    felem_mul(z_inv, z_inv, z_inv_sq);
    felem_mul(y_out, ny, z_inv);
}

/* scalar_mult sets {nx,ny,nz} = scalar*{x,y}. */
static void scalar_mult(felem nx, felem ny, felem nz,
			const felem x, const felem y, const u8 scalar[32])
{
    int i;
    felem px, py, pz, tx, ty, tz;
    felem precomp[16][3];
    limb n_is_infinity_mask, index, p_is_noninfinite_mask, mask;

    /* We precompute 0,1,2,... times {x,y}. */
    memset(precomp, 0, sizeof(felem) * 3);
    memcpy(&precomp[1][0], x, sizeof(felem));
    memcpy(&precomp[1][1], y, sizeof(felem));
    memcpy(&precomp[1][2], kOne, sizeof(felem));

    for (i = 2; i < 16; i += 2) {
	point_double(precomp[i][0], precomp[i][1], precomp[i][2],
		     precomp[i / 2][0], precomp[i / 2][1], precomp[i / 2][2]);

	point_add_mixed(precomp[i + 1][0], precomp[i + 1][1], precomp[i + 1][2],
			precomp[i][0], precomp[i][1], precomp[i][2], x, y);
    }

    memset(nx, 0, sizeof(felem));
    memset(ny, 0, sizeof(felem));
    memset(nz, 0, sizeof(felem));
    n_is_infinity_mask = -1;

    /* We add in a window of four bits each iteration and do this 64 times. */
    for (i = 0; i < 64; i++) {
	if (i) {
	    point_double(nx, ny, nz, nx, ny, nz);
	    point_double(nx, ny, nz, nx, ny, nz);
	    point_double(nx, ny, nz, nx, ny, nz);
	    point_double(nx, ny, nz, nx, ny, nz);
	}

	index = scalar[31 - i / 2];
	if ((i & 1) == 1) {
	    index &= 15;
	} else {
	    index >>= 4;
	}

	/* See the comments in scalar_base_mult about handling infinities. */
	select_jacobian_point(px, py, pz, precomp[0][0], index);
	point_add(tx, ty, tz, nx, ny, nz, px, py, pz);
	copy_conditional(nx, px, n_is_infinity_mask);
	copy_conditional(ny, py, n_is_infinity_mask);
	copy_conditional(nz, pz, n_is_infinity_mask);

	p_is_noninfinite_mask = NON_ZERO_TO_ALL_ONES(index);
	mask = p_is_noninfinite_mask & ~n_is_infinity_mask;
	copy_conditional(nx, tx, mask);
	copy_conditional(ny, ty, mask);
	copy_conditional(nz, tz, mask);
	n_is_infinity_mask &= ~p_is_noninfinite_mask;
    }
}

/* Interface with Freebl: */

/* BYTESWAP_MP_DIGIT_TO_LE swaps the bytes of a mp_digit to
 * little-endian order.
 */
#ifdef IS_BIG_ENDIAN
#ifdef __APPLE__
#include <libkern/OSByteOrder.h>
#define BYTESWAP32(x) OSSwapInt32(x)
#define BYTESWAP64(x) OSSwapInt64(x)
#else
#define BYTESWAP32(x) \
    (((x) >> 24) | (((x) >> 8) & 0xff00) | (((x) & 0xff00) << 8) | ((x) << 24))
#define BYTESWAP64(x) \
    (((x) >> 56) | (((x) >> 40) & 0xff00) | \
     (((x) >> 24) & 0xff0000) | (((x) >> 8) & 0xff000000) | \
     (((x) & 0xff000000) << 8) | (((x) & 0xff0000) << 24) | \
     (((x) & 0xff00) << 40) | ((x) << 56))
#endif

#ifdef MP_USE_UINT_DIGIT
#define BYTESWAP_MP_DIGIT_TO_LE(x) BYTESWAP32(x)
#else
#define BYTESWAP_MP_DIGIT_TO_LE(x) BYTESWAP64(x)
#endif
#endif /* IS_BIG_ENDIAN */

#ifdef MP_USE_UINT_DIGIT
static const mp_digit kRInvDigits[8] = {
    0x80000000, 1, 0xffffffff, 0,
    0x80000001, 0xfffffffe, 1, 0x7fffffff
};
#else
static const mp_digit kRInvDigits[4] = {
    PR_UINT64(0x180000000),  0xffffffff,
    PR_UINT64(0xfffffffe80000001), PR_UINT64(0x7fffffff00000001)
};
#endif
#define MP_DIGITS_IN_256_BITS (32/sizeof(mp_digit))
static const mp_int kRInv = {
    MP_ZPOS,
    MP_DIGITS_IN_256_BITS,
    MP_DIGITS_IN_256_BITS,
    (mp_digit*) kRInvDigits
};

static const limb kTwo28 = 0x10000000;
static const limb kTwo29 = 0x20000000;

/* to_montgomery sets out = R*in. */
static mp_err to_montgomery(felem out, const mp_int *in, const ECGroup *group)
{
    /* There are no MPI functions for bitshift operations and we wish to shift
     * in 257 bits left so we move the digits 256-bits left and then multiply
     * by two.
     */
    mp_int in_shifted;
    int i;
    mp_err res;

    mp_init(&in_shifted);
    s_mp_pad(&in_shifted, MP_USED(in) + MP_DIGITS_IN_256_BITS);
    memcpy(&MP_DIGIT(&in_shifted, MP_DIGITS_IN_256_BITS),
	   MP_DIGITS(in),
	   MP_USED(in)*sizeof(mp_digit));
    mp_mul_2(&in_shifted, &in_shifted);
    MP_CHECKOK(group->meth->field_mod(&in_shifted, &in_shifted, group->meth));

    for (i = 0;; i++) {
	out[i] = MP_DIGIT(&in_shifted, 0) & kBottom29Bits;
	mp_div_d(&in_shifted, kTwo29, &in_shifted, NULL);

	i++;
	if (i == NLIMBS)
	    break;
	out[i] = MP_DIGIT(&in_shifted, 0) & kBottom28Bits;
	mp_div_d(&in_shifted, kTwo28, &in_shifted, NULL);
    }

CLEANUP:
    mp_clear(&in_shifted);
    return res;
}

/* from_montgomery sets out=in/R. */
static mp_err from_montgomery(mp_int *out, const felem in,
			      const ECGroup *group)
{
    mp_int result, tmp;
    mp_err res;
    int i;

    mp_init(&result);
    mp_init(&tmp);

    MP_CHECKOK(mp_add_d(&tmp, in[NLIMBS-1], &result));
    for (i = NLIMBS-2; i >= 0; i--) {
	if ((i & 1) == 0) {
	    MP_CHECKOK(mp_mul_d(&result, kTwo29, &tmp));
	} else {
	    MP_CHECKOK(mp_mul_d(&result, kTwo28, &tmp));
	}
	MP_CHECKOK(mp_add_d(&tmp, in[i], &result));
    }

    MP_CHECKOK(mp_mul(&result, &kRInv, out));
    MP_CHECKOK(group->meth->field_mod(out, out, group->meth));

CLEANUP:
    mp_clear(&result);
    mp_clear(&tmp);
    return res;
}

/* scalar_from_mp_int sets out_scalar=n, where n < the group order. */
static void scalar_from_mp_int(u8 out_scalar[32], const mp_int *n)
{
    /* We require that |n| is less than the order of the group and therefore it
     * will fit into |out_scalar|. However, these is a timing side-channel here
     * that we cannot avoid: if |n| is sufficiently small it may be one or more
     * words too short and we'll copy less data.
     */
    memset(out_scalar, 0, 32);
#ifdef IS_LITTLE_ENDIAN
    memcpy(out_scalar, MP_DIGITS(n), MP_USED(n) * sizeof(mp_digit));
#else
    {
	mp_size i;
	mp_digit swapped[MP_DIGITS_IN_256_BITS];
	for (i = 0; i < MP_USED(n); i++) {
	    swapped[i] = BYTESWAP_MP_DIGIT_TO_LE(MP_DIGIT(n, i));
	}
	memcpy(out_scalar, swapped, MP_USED(n) * sizeof(mp_digit));
    }
#endif
}

/* ec_GFp_nistp256_base_point_mul sets {out_x,out_y} = nG, where n is < the
 * order of the group.
 */
static mp_err ec_GFp_nistp256_base_point_mul(const mp_int *n,
				             mp_int *out_x, mp_int *out_y,
				             const ECGroup *group)
{
    u8 scalar[32];
    felem x, y, z, x_affine, y_affine;
    mp_err res;

    /* FIXME(agl): test that n < order. */

    scalar_from_mp_int(scalar, n);
    scalar_base_mult(x, y, z, scalar);
    point_to_affine(x_affine, y_affine, x, y, z);
    MP_CHECKOK(from_montgomery(out_x, x_affine, group));
    MP_CHECKOK(from_montgomery(out_y, y_affine, group));

CLEANUP:
    return res;
}

/* ec_GFp_nistp256_point_mul sets {out_x,out_y} = n*{in_x,in_y}, where n is <
 * the order of the group.
 */
static mp_err ec_GFp_nistp256_point_mul(const mp_int *n,
				        const mp_int *in_x, const mp_int *in_y,
				        mp_int *out_x, mp_int *out_y,
				        const ECGroup *group)
{
    u8 scalar[32];
    felem x, y, z, x_affine, y_affine, px, py;
    mp_err res;

    scalar_from_mp_int(scalar, n);

    MP_CHECKOK(to_montgomery(px, in_x, group));
    MP_CHECKOK(to_montgomery(py, in_y, group));

    scalar_mult(x, y, z, px, py, scalar);
    point_to_affine(x_affine, y_affine, x, y, z);
    MP_CHECKOK(from_montgomery(out_x, x_affine, group));
    MP_CHECKOK(from_montgomery(out_y, y_affine, group));

CLEANUP:
    return res;
}

/* ec_GFp_nistp256_point_mul_vartime sets {out_x,out_y} = n1*G +
 * n2*{in_x,in_y}, where n1 and n2 are < the order of the group.
 *
 * As indicated by the name, this function operates in variable time. This
 * is safe because it's used for signature validation which doesn't deal
 * with secrets.
 */
static mp_err ec_GFp_nistp256_points_mul_vartime(
	const mp_int *n1, const mp_int *n2,
	const mp_int *in_x, const mp_int *in_y,
	mp_int *out_x, mp_int *out_y,
	const ECGroup *group)
{
    u8 scalar1[32], scalar2[32];
    felem x1, y1, z1, x2, y2, z2, x_affine, y_affine, px, py;
    mp_err res = MP_OKAY;

    /* If n2 == NULL, this is just a base-point multiplication. */
    if (n2 == NULL) {
	return ec_GFp_nistp256_base_point_mul(n1, out_x, out_y, group);
    }

    /* If n1 == nULL, this is just an arbitary-point multiplication. */
    if (n1 == NULL) {
	return ec_GFp_nistp256_point_mul(n2, in_x, in_y, out_x, out_y, group);
    }

    /* If both scalars are zero, then the result is the point at infinity. */
    if (mp_cmp_z(n1) == 0 && mp_cmp_z(n2) == 0) {
	mp_zero(out_x);
	mp_zero(out_y);
	return res;
    }

    scalar_from_mp_int(scalar1, n1);
    scalar_from_mp_int(scalar2, n2);

    MP_CHECKOK(to_montgomery(px, in_x, group));
    MP_CHECKOK(to_montgomery(py, in_y, group));
    scalar_base_mult(x1, y1, z1, scalar1);
    scalar_mult(x2, y2, z2, px, py, scalar2);

    if (mp_cmp_z(n2) == 0) {
	/* If n2 == 0, then {x2,y2,z2} is zero and the result is just
	 * {x1,y1,z1}. */
    } else if (mp_cmp_z(n1) == 0) {
	/* If n1 == 0, then {x1,y1,z1} is zero and the result is just
	 * {x2,y2,z2}. */
	memcpy(x1, x2, sizeof(x2));
	memcpy(y1, y2, sizeof(y2));
	memcpy(z1, z2, sizeof(z2));
    } else {
	/* This function handles the case where {x1,y1,z1} == {x2,y2,z2}. */
	point_add_or_double_vartime(x1, y1, z1, x1, y1, z1, x2, y2, z2);
    }

    point_to_affine(x_affine, y_affine, x1, y1, z1);
    MP_CHECKOK(from_montgomery(out_x, x_affine, group));
    MP_CHECKOK(from_montgomery(out_y, y_affine, group));

CLEANUP:
    return res;
}

/* Wire in fast point multiplication for named curves. */
mp_err ec_group_set_gfp256_32(ECGroup *group, ECCurveName name)
{
    if (name == ECCurve_NIST_P256) {
        group->base_point_mul = &ec_GFp_nistp256_base_point_mul;
        group->point_mul = &ec_GFp_nistp256_point_mul;
        group->points_mul = &ec_GFp_nistp256_points_mul_vartime;
    }
    return MP_OKAY;
}