DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (fddffdeab170)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
/******************************************************************************
 *
 * Copyright (C) 2008 Jason Evans <jasone@FreeBSD.org>.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice(s), this list of conditions and the following disclaimer
 *    unmodified other than the allowable addition of one or more
 *    copyright notices.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice(s), this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ******************************************************************************
 *
 * cpp macro implementation of left-leaning red-black trees.
 *
 * Usage:
 *
 *   (Optional.)
 *   #define SIZEOF_PTR ...
 *   #define SIZEOF_PTR_2POW ...
 *   #define RB_NO_C99_VARARRAYS
 *
 *   (Optional, see assert(3).)
 *   #define NDEBUG
 *
 *   (Required.)
 *   #include <assert.h>
 *   #include <rb.h>
 *   ...
 *
 * All operations are done non-recursively.  Parent pointers are not used, and
 * color bits are stored in the least significant bit of right-child pointers,
 * thus making node linkage as compact as is possible for red-black trees.
 *
 * Some macros use a comparison function pointer, which is expected to have the
 * following prototype:
 *
 *   int (a_cmp *)(a_type *a_node, a_type *a_other);
 *                         ^^^^^^
 *                      or a_key
 *
 * Interpretation of comparision function return values:
 *
 *   -1 : a_node <  a_other
 *    0 : a_node == a_other
 *    1 : a_node >  a_other
 *
 * In all cases, the a_node or a_key macro argument is the first argument to the
 * comparison function, which makes it possible to write comparison functions
 * that treat the first argument specially.
 *
 ******************************************************************************/

#ifndef RB_H_
#define	RB_H_

#if 0
#include <sys/cdefs.h>
__FBSDID("$FreeBSD: head/lib/libc/stdlib/rb.h 178995 2008-05-14 18:33:13Z jasone $");
#endif

/* Node structure. */
#define	rb_node(a_type)							\
struct {								\
    a_type *rbn_left;							\
    a_type *rbn_right_red;						\
}

/* Root structure. */
#define	rb_tree(a_type)							\
struct {								\
    a_type *rbt_root;							\
    a_type rbt_nil;							\
}

/* Left accessors. */
#define	rbp_left_get(a_type, a_field, a_node)				\
    ((a_node)->a_field.rbn_left)
#define	rbp_left_set(a_type, a_field, a_node, a_left) do {		\
    (a_node)->a_field.rbn_left = a_left;				\
} while (0)

/* Right accessors. */
#define	rbp_right_get(a_type, a_field, a_node)				\
    ((a_type *) (((intptr_t) (a_node)->a_field.rbn_right_red)		\
      & ((ssize_t)-2)))
#define	rbp_right_set(a_type, a_field, a_node, a_right) do {		\
    (a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) a_right)	\
      | (((uintptr_t) (a_node)->a_field.rbn_right_red) & ((size_t)1)));	\
} while (0)

/* Color accessors. */
#define	rbp_red_get(a_type, a_field, a_node)				\
    ((bool) (((uintptr_t) (a_node)->a_field.rbn_right_red)		\
      & ((size_t)1)))
#define	rbp_color_set(a_type, a_field, a_node, a_red) do {		\
    (a_node)->a_field.rbn_right_red = (a_type *) ((((intptr_t)		\
      (a_node)->a_field.rbn_right_red) & ((ssize_t)-2))			\
      | ((ssize_t)a_red));						\
} while (0)
#define	rbp_red_set(a_type, a_field, a_node) do {			\
    (a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t)		\
      (a_node)->a_field.rbn_right_red) | ((size_t)1));			\
} while (0)
#define	rbp_black_set(a_type, a_field, a_node) do {			\
    (a_node)->a_field.rbn_right_red = (a_type *) (((intptr_t)		\
      (a_node)->a_field.rbn_right_red) & ((ssize_t)-2));		\
} while (0)

/* Node initializer. */
#define	rbp_node_new(a_type, a_field, a_tree, a_node) do {		\
    rbp_left_set(a_type, a_field, (a_node), &(a_tree)->rbt_nil);	\
    rbp_right_set(a_type, a_field, (a_node), &(a_tree)->rbt_nil);	\
    rbp_red_set(a_type, a_field, (a_node));				\
} while (0)

/* Tree initializer. */
#define	rb_new(a_type, a_field, a_tree) do {				\
    (a_tree)->rbt_root = &(a_tree)->rbt_nil;				\
    rbp_node_new(a_type, a_field, a_tree, &(a_tree)->rbt_nil);		\
    rbp_black_set(a_type, a_field, &(a_tree)->rbt_nil);			\
} while (0)

/* Tree operations. */
#define	rbp_black_height(a_type, a_field, a_tree, r_height) do {	\
    a_type *rbp_bh_t;							\
    for (rbp_bh_t = (a_tree)->rbt_root, (r_height) = 0;			\
      rbp_bh_t != &(a_tree)->rbt_nil;					\
      rbp_bh_t = rbp_left_get(a_type, a_field, rbp_bh_t)) {		\
	if (rbp_red_get(a_type, a_field, rbp_bh_t) == false) {		\
	    (r_height)++;						\
	}								\
    }									\
} while (0)

#define	rbp_first(a_type, a_field, a_tree, a_root, r_node) do {		\
    for ((r_node) = (a_root);						\
      rbp_left_get(a_type, a_field, (r_node)) != &(a_tree)->rbt_nil;	\
      (r_node) = rbp_left_get(a_type, a_field, (r_node))) {		\
    }									\
} while (0)

#define	rbp_last(a_type, a_field, a_tree, a_root, r_node) do {		\
    for ((r_node) = (a_root);						\
      rbp_right_get(a_type, a_field, (r_node)) != &(a_tree)->rbt_nil;	\
      (r_node) = rbp_right_get(a_type, a_field, (r_node))) {		\
    }									\
} while (0)

#define	rbp_next(a_type, a_field, a_cmp, a_tree, a_node, r_node) do {	\
    if (rbp_right_get(a_type, a_field, (a_node))			\
      != &(a_tree)->rbt_nil) {						\
	rbp_first(a_type, a_field, a_tree, rbp_right_get(a_type,	\
	  a_field, (a_node)), (r_node));				\
    } else {								\
	a_type *rbp_n_t = (a_tree)->rbt_root;				\
	assert(rbp_n_t != &(a_tree)->rbt_nil);				\
	(r_node) = &(a_tree)->rbt_nil;					\
	while (true) {							\
	    int rbp_n_cmp = (a_cmp)((a_node), rbp_n_t);			\
	    if (rbp_n_cmp < 0) {					\
		(r_node) = rbp_n_t;					\
		rbp_n_t = rbp_left_get(a_type, a_field, rbp_n_t);	\
	    } else if (rbp_n_cmp > 0) {					\
		rbp_n_t = rbp_right_get(a_type, a_field, rbp_n_t);	\
	    } else {							\
		break;							\
	    }								\
	    assert(rbp_n_t != &(a_tree)->rbt_nil);			\
	}								\
    }									\
} while (0)

#define	rbp_prev(a_type, a_field, a_cmp, a_tree, a_node, r_node) do {	\
    if (rbp_left_get(a_type, a_field, (a_node)) != &(a_tree)->rbt_nil) {\
	rbp_last(a_type, a_field, a_tree, rbp_left_get(a_type,		\
	  a_field, (a_node)), (r_node));				\
    } else {								\
	a_type *rbp_p_t = (a_tree)->rbt_root;				\
	assert(rbp_p_t != &(a_tree)->rbt_nil);				\
	(r_node) = &(a_tree)->rbt_nil;					\
	while (true) {							\
	    int rbp_p_cmp = (a_cmp)((a_node), rbp_p_t);			\
	    if (rbp_p_cmp < 0) {					\
		rbp_p_t = rbp_left_get(a_type, a_field, rbp_p_t);	\
	    } else if (rbp_p_cmp > 0) {					\
		(r_node) = rbp_p_t;					\
		rbp_p_t = rbp_right_get(a_type, a_field, rbp_p_t);	\
	    } else {							\
		break;							\
	    }								\
	    assert(rbp_p_t != &(a_tree)->rbt_nil);			\
	}								\
    }									\
} while (0)

#define	rb_first(a_type, a_field, a_tree, r_node) do {			\
    rbp_first(a_type, a_field, a_tree, (a_tree)->rbt_root, (r_node));	\
    if ((r_node) == &(a_tree)->rbt_nil) {				\
	(r_node) = NULL;						\
    }									\
} while (0)

#define	rb_last(a_type, a_field, a_tree, r_node) do {			\
    rbp_last(a_type, a_field, a_tree, (a_tree)->rbt_root, r_node);	\
    if ((r_node) == &(a_tree)->rbt_nil) {				\
	(r_node) = NULL;						\
    }									\
} while (0)

#define	rb_next(a_type, a_field, a_cmp, a_tree, a_node, r_node) do {	\
    rbp_next(a_type, a_field, a_cmp, a_tree, (a_node), (r_node));	\
    if ((r_node) == &(a_tree)->rbt_nil) {				\
	(r_node) = NULL;						\
    }									\
} while (0)

#define	rb_prev(a_type, a_field, a_cmp, a_tree, a_node, r_node) do {	\
    rbp_prev(a_type, a_field, a_cmp, a_tree, (a_node), (r_node));	\
    if ((r_node) == &(a_tree)->rbt_nil) {				\
	(r_node) = NULL;						\
    }									\
} while (0)

#define	rb_search(a_type, a_field, a_cmp, a_tree, a_key, r_node) do {	\
    int rbp_se_cmp;							\
    (r_node) = (a_tree)->rbt_root;					\
    while ((r_node) != &(a_tree)->rbt_nil				\
      && (rbp_se_cmp = (a_cmp)((a_key), (r_node))) != 0) {		\
	if (rbp_se_cmp < 0) {						\
	    (r_node) = rbp_left_get(a_type, a_field, (r_node));		\
	} else {							\
	    (r_node) = rbp_right_get(a_type, a_field, (r_node));	\
	}								\
    }									\
    if ((r_node) == &(a_tree)->rbt_nil) {				\
	(r_node) = NULL;						\
    }									\
} while (0)

/*
 * Find a match if it exists.  Otherwise, find the next greater node, if one
 * exists.
 */
#define	rb_nsearch(a_type, a_field, a_cmp, a_tree, a_key, r_node) do {	\
    a_type *rbp_ns_t = (a_tree)->rbt_root;				\
    (r_node) = NULL;							\
    while (rbp_ns_t != &(a_tree)->rbt_nil) {				\
	int rbp_ns_cmp = (a_cmp)((a_key), rbp_ns_t);			\
	if (rbp_ns_cmp < 0) {						\
	    (r_node) = rbp_ns_t;					\
	    rbp_ns_t = rbp_left_get(a_type, a_field, rbp_ns_t);		\
	} else if (rbp_ns_cmp > 0) {					\
	    rbp_ns_t = rbp_right_get(a_type, a_field, rbp_ns_t);	\
	} else {							\
	    (r_node) = rbp_ns_t;					\
	    break;							\
	}								\
    }									\
} while (0)

/*
 * Find a match if it exists.  Otherwise, find the previous lesser node, if one
 * exists.
 */
#define	rb_psearch(a_type, a_field, a_cmp, a_tree, a_key, r_node) do {	\
    a_type *rbp_ps_t = (a_tree)->rbt_root;				\
    (r_node) = NULL;							\
    while (rbp_ps_t != &(a_tree)->rbt_nil) {				\
	int rbp_ps_cmp = (a_cmp)((a_key), rbp_ps_t);			\
	if (rbp_ps_cmp < 0) {						\
	    rbp_ps_t = rbp_left_get(a_type, a_field, rbp_ps_t);		\
	} else if (rbp_ps_cmp > 0) {					\
	    (r_node) = rbp_ps_t;					\
	    rbp_ps_t = rbp_right_get(a_type, a_field, rbp_ps_t);	\
	} else {							\
	    (r_node) = rbp_ps_t;					\
	    break;							\
	}								\
    }									\
} while (0)

#define	rbp_rotate_left(a_type, a_field, a_node, r_node) do {		\
    (r_node) = rbp_right_get(a_type, a_field, (a_node));		\
    rbp_right_set(a_type, a_field, (a_node),				\
      rbp_left_get(a_type, a_field, (r_node)));				\
    rbp_left_set(a_type, a_field, (r_node), (a_node));			\
} while (0)

#define	rbp_rotate_right(a_type, a_field, a_node, r_node) do {		\
    (r_node) = rbp_left_get(a_type, a_field, (a_node));			\
    rbp_left_set(a_type, a_field, (a_node),				\
      rbp_right_get(a_type, a_field, (r_node)));			\
    rbp_right_set(a_type, a_field, (r_node), (a_node));			\
} while (0)

#define	rbp_lean_left(a_type, a_field, a_node, r_node) do {		\
    bool rbp_ll_red;							\
    rbp_rotate_left(a_type, a_field, (a_node), (r_node));		\
    rbp_ll_red = rbp_red_get(a_type, a_field, (a_node));		\
    rbp_color_set(a_type, a_field, (r_node), rbp_ll_red);		\
    rbp_red_set(a_type, a_field, (a_node));				\
} while (0)

#define	rbp_lean_right(a_type, a_field, a_node, r_node) do {		\
    bool rbp_lr_red;							\
    rbp_rotate_right(a_type, a_field, (a_node), (r_node));		\
    rbp_lr_red = rbp_red_get(a_type, a_field, (a_node));		\
    rbp_color_set(a_type, a_field, (r_node), rbp_lr_red);		\
    rbp_red_set(a_type, a_field, (a_node));				\
} while (0)

#define	rbp_move_red_left(a_type, a_field, a_node, r_node) do {		\
    a_type *rbp_mrl_t, *rbp_mrl_u;					\
    rbp_mrl_t = rbp_left_get(a_type, a_field, (a_node));		\
    rbp_red_set(a_type, a_field, rbp_mrl_t);				\
    rbp_mrl_t = rbp_right_get(a_type, a_field, (a_node));		\
    rbp_mrl_u = rbp_left_get(a_type, a_field, rbp_mrl_t);		\
    if (rbp_red_get(a_type, a_field, rbp_mrl_u)) {			\
	rbp_rotate_right(a_type, a_field, rbp_mrl_t, rbp_mrl_u);	\
	rbp_right_set(a_type, a_field, (a_node), rbp_mrl_u);		\
	rbp_rotate_left(a_type, a_field, (a_node), (r_node));		\
	rbp_mrl_t = rbp_right_get(a_type, a_field, (a_node));		\
	if (rbp_red_get(a_type, a_field, rbp_mrl_t)) {			\
	    rbp_black_set(a_type, a_field, rbp_mrl_t);			\
	    rbp_red_set(a_type, a_field, (a_node));			\
	    rbp_rotate_left(a_type, a_field, (a_node), rbp_mrl_t);	\
	    rbp_left_set(a_type, a_field, (r_node), rbp_mrl_t);		\
	} else {							\
	    rbp_black_set(a_type, a_field, (a_node));			\
	}								\
    } else {								\
	rbp_red_set(a_type, a_field, (a_node));				\
	rbp_rotate_left(a_type, a_field, (a_node), (r_node));		\
    }									\
} while (0)

#define	rbp_move_red_right(a_type, a_field, a_node, r_node) do {	\
    a_type *rbp_mrr_t;							\
    rbp_mrr_t = rbp_left_get(a_type, a_field, (a_node));		\
    if (rbp_red_get(a_type, a_field, rbp_mrr_t)) {			\
	a_type *rbp_mrr_u, *rbp_mrr_v;					\
	rbp_mrr_u = rbp_right_get(a_type, a_field, rbp_mrr_t);		\
	rbp_mrr_v = rbp_left_get(a_type, a_field, rbp_mrr_u);		\
	if (rbp_red_get(a_type, a_field, rbp_mrr_v)) {			\
	    rbp_color_set(a_type, a_field, rbp_mrr_u,			\
	      rbp_red_get(a_type, a_field, (a_node)));			\
	    rbp_black_set(a_type, a_field, rbp_mrr_v);			\
	    rbp_rotate_left(a_type, a_field, rbp_mrr_t, rbp_mrr_u);	\
	    rbp_left_set(a_type, a_field, (a_node), rbp_mrr_u);		\
	    rbp_rotate_right(a_type, a_field, (a_node), (r_node));	\
	    rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t);	\
	    rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t);	\
	} else {							\
	    rbp_color_set(a_type, a_field, rbp_mrr_t,			\
	      rbp_red_get(a_type, a_field, (a_node)));			\
	    rbp_red_set(a_type, a_field, rbp_mrr_u);			\
	    rbp_rotate_right(a_type, a_field, (a_node), (r_node));	\
	    rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t);	\
	    rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t);	\
	}								\
	rbp_red_set(a_type, a_field, (a_node));				\
    } else {								\
	rbp_red_set(a_type, a_field, rbp_mrr_t);			\
	rbp_mrr_t = rbp_left_get(a_type, a_field, rbp_mrr_t);		\
	if (rbp_red_get(a_type, a_field, rbp_mrr_t)) {			\
	    rbp_black_set(a_type, a_field, rbp_mrr_t);			\
	    rbp_rotate_right(a_type, a_field, (a_node), (r_node));	\
	    rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t);	\
	    rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t);	\
	} else {							\
	    rbp_rotate_left(a_type, a_field, (a_node), (r_node));	\
	}								\
    }									\
} while (0)

#define	rb_insert(a_type, a_field, a_cmp, a_tree, a_node) do {		\
    a_type rbp_i_s;							\
    a_type *rbp_i_g, *rbp_i_p, *rbp_i_c, *rbp_i_t, *rbp_i_u;		\
    int rbp_i_cmp = 0;							\
    rbp_i_g = &(a_tree)->rbt_nil;					\
    rbp_left_set(a_type, a_field, &rbp_i_s, (a_tree)->rbt_root);	\
    rbp_right_set(a_type, a_field, &rbp_i_s, &(a_tree)->rbt_nil);	\
    rbp_black_set(a_type, a_field, &rbp_i_s);				\
    rbp_i_p = &rbp_i_s;							\
    rbp_i_c = (a_tree)->rbt_root;					\
    /* Iteratively search down the tree for the insertion point,      */\
    /* splitting 4-nodes as they are encountered.  At the end of each */\
    /* iteration, rbp_i_g->rbp_i_p->rbp_i_c is a 3-level path down    */\
    /* the tree, assuming a sufficiently deep tree.                   */\
    while (rbp_i_c != &(a_tree)->rbt_nil) {				\
	rbp_i_t = rbp_left_get(a_type, a_field, rbp_i_c);		\
	rbp_i_u = rbp_left_get(a_type, a_field, rbp_i_t);		\
	if (rbp_red_get(a_type, a_field, rbp_i_t)			\
	  && rbp_red_get(a_type, a_field, rbp_i_u)) {			\
	    /* rbp_i_c is the top of a logical 4-node, so split it.   */\
	    /* This iteration does not move down the tree, due to the */\
	    /* disruptiveness of node splitting.                      */\
	    /*                                                        */\
	    /* Rotate right.                                          */\
	    rbp_rotate_right(a_type, a_field, rbp_i_c, rbp_i_t);	\
	    /* Pass red links up one level.                           */\
	    rbp_i_u = rbp_left_get(a_type, a_field, rbp_i_t);		\
	    rbp_black_set(a_type, a_field, rbp_i_u);			\
	    if (rbp_left_get(a_type, a_field, rbp_i_p) == rbp_i_c) {	\
		rbp_left_set(a_type, a_field, rbp_i_p, rbp_i_t);	\
		rbp_i_c = rbp_i_t;					\
	    } else {							\
		/* rbp_i_c was the right child of rbp_i_p, so rotate  */\
		/* left in order to maintain the left-leaning         */\
		/* invariant.                                         */\
		assert(rbp_right_get(a_type, a_field, rbp_i_p)		\
		  == rbp_i_c);						\
		rbp_right_set(a_type, a_field, rbp_i_p, rbp_i_t);	\
		rbp_lean_left(a_type, a_field, rbp_i_p, rbp_i_u);	\
		if (rbp_left_get(a_type, a_field, rbp_i_g) == rbp_i_p) {\
		    rbp_left_set(a_type, a_field, rbp_i_g, rbp_i_u);	\
		} else {						\
		    assert(rbp_right_get(a_type, a_field, rbp_i_g)	\
		      == rbp_i_p);					\
		    rbp_right_set(a_type, a_field, rbp_i_g, rbp_i_u);	\
		}							\
		rbp_i_p = rbp_i_u;					\
		rbp_i_cmp = (a_cmp)((a_node), rbp_i_p);			\
		if (rbp_i_cmp < 0) {					\
		    rbp_i_c = rbp_left_get(a_type, a_field, rbp_i_p);	\
		} else {						\
		    assert(rbp_i_cmp > 0);				\
		    rbp_i_c = rbp_right_get(a_type, a_field, rbp_i_p);	\
		}							\
		continue;						\
	    }								\
	}								\
	rbp_i_g = rbp_i_p;						\
	rbp_i_p = rbp_i_c;						\
	rbp_i_cmp = (a_cmp)((a_node), rbp_i_c);				\
	if (rbp_i_cmp < 0) {						\
	    rbp_i_c = rbp_left_get(a_type, a_field, rbp_i_c);		\
	} else {							\
	    assert(rbp_i_cmp > 0);					\
	    rbp_i_c = rbp_right_get(a_type, a_field, rbp_i_c);		\
	}								\
    }									\
    /* rbp_i_p now refers to the node under which to insert.          */\
    rbp_node_new(a_type, a_field, a_tree, (a_node));			\
    if (rbp_i_cmp > 0) {						\
	rbp_right_set(a_type, a_field, rbp_i_p, (a_node));		\
	rbp_lean_left(a_type, a_field, rbp_i_p, rbp_i_t);		\
	if (rbp_left_get(a_type, a_field, rbp_i_g) == rbp_i_p) {	\
	    rbp_left_set(a_type, a_field, rbp_i_g, rbp_i_t);		\
	} else if (rbp_right_get(a_type, a_field, rbp_i_g) == rbp_i_p) {\
	    rbp_right_set(a_type, a_field, rbp_i_g, rbp_i_t);		\
	}								\
    } else {								\
	rbp_left_set(a_type, a_field, rbp_i_p, (a_node));		\
    }									\
    /* Update the root and make sure that it is black.                */\
    (a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_i_s);	\
    rbp_black_set(a_type, a_field, (a_tree)->rbt_root);			\
} while (0)

#define	rb_remove(a_type, a_field, a_cmp, a_tree, a_node) do {		\
    a_type rbp_r_s;							\
    a_type *rbp_r_p, *rbp_r_c, *rbp_r_xp, *rbp_r_t, *rbp_r_u;		\
    int rbp_r_cmp;							\
    rbp_left_set(a_type, a_field, &rbp_r_s, (a_tree)->rbt_root);	\
    rbp_right_set(a_type, a_field, &rbp_r_s, &(a_tree)->rbt_nil);	\
    rbp_black_set(a_type, a_field, &rbp_r_s);				\
    rbp_r_p = &rbp_r_s;							\
    rbp_r_c = (a_tree)->rbt_root;					\
    rbp_r_xp = &(a_tree)->rbt_nil;					\
    /* Iterate down the tree, but always transform 2-nodes to 3- or   */\
    /* 4-nodes in order to maintain the invariant that the current    */\
    /* node is not a 2-node.  This allows simple deletion once a leaf */\
    /* is reached.  Handle the root specially though, since there may */\
    /* be no way to convert it from a 2-node to a 3-node.             */\
    rbp_r_cmp = (a_cmp)((a_node), rbp_r_c);				\
    if (rbp_r_cmp < 0) {						\
	rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c);		\
	rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t);		\
	if (rbp_red_get(a_type, a_field, rbp_r_t) == false		\
	  && rbp_red_get(a_type, a_field, rbp_r_u) == false) {		\
	    /* Apply standard transform to prepare for left move.     */\
	    rbp_move_red_left(a_type, a_field, rbp_r_c, rbp_r_t);	\
	    rbp_black_set(a_type, a_field, rbp_r_t);			\
	    rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);		\
	    rbp_r_c = rbp_r_t;						\
	} else {							\
	    /* Move left.                                             */\
	    rbp_r_p = rbp_r_c;						\
	    rbp_r_c = rbp_left_get(a_type, a_field, rbp_r_c);		\
	}								\
    } else {								\
	if (rbp_r_cmp == 0) {						\
	    assert((a_node) == rbp_r_c);				\
	    if (rbp_right_get(a_type, a_field, rbp_r_c)			\
	      == &(a_tree)->rbt_nil) {					\
		/* Delete root node (which is also a leaf node).      */\
		if (rbp_left_get(a_type, a_field, rbp_r_c)		\
		  != &(a_tree)->rbt_nil) {				\
		    rbp_lean_right(a_type, a_field, rbp_r_c, rbp_r_t);	\
		    rbp_right_set(a_type, a_field, rbp_r_t,		\
		      &(a_tree)->rbt_nil);				\
		} else {						\
		    rbp_r_t = &(a_tree)->rbt_nil;			\
		}							\
		rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);	\
	    } else {							\
		/* This is the node we want to delete, but we will    */\
		/* instead swap it with its successor and delete the  */\
		/* successor.  Record enough information to do the    */\
		/* swap later.  rbp_r_xp is the a_node's parent.      */\
		rbp_r_xp = rbp_r_p;					\
		rbp_r_cmp = 1; /* Note that deletion is incomplete.   */\
	    }								\
	}								\
	if (rbp_r_cmp == 1) {						\
	    if (rbp_red_get(a_type, a_field, rbp_left_get(a_type,	\
	      a_field, rbp_right_get(a_type, a_field, rbp_r_c)))	\
	      == false) {						\
		rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c);	\
		if (rbp_red_get(a_type, a_field, rbp_r_t)) {		\
		    /* Standard transform.                            */\
		    rbp_move_red_right(a_type, a_field, rbp_r_c,	\
		      rbp_r_t);						\
		} else {						\
		    /* Root-specific transform.                       */\
		    rbp_red_set(a_type, a_field, rbp_r_c);		\
		    rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t);	\
		    if (rbp_red_get(a_type, a_field, rbp_r_u)) {	\
			rbp_black_set(a_type, a_field, rbp_r_u);	\
			rbp_rotate_right(a_type, a_field, rbp_r_c,	\
			  rbp_r_t);					\
			rbp_rotate_left(a_type, a_field, rbp_r_c,	\
			  rbp_r_u);					\
			rbp_right_set(a_type, a_field, rbp_r_t,		\
			  rbp_r_u);					\
		    } else {						\
			rbp_red_set(a_type, a_field, rbp_r_t);		\
			rbp_rotate_left(a_type, a_field, rbp_r_c,	\
			  rbp_r_t);					\
		    }							\
		}							\
		rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);	\
		rbp_r_c = rbp_r_t;					\
	    } else {							\
		/* Move right.                                        */\
		rbp_r_p = rbp_r_c;					\
		rbp_r_c = rbp_right_get(a_type, a_field, rbp_r_c);	\
	    }								\
	}								\
    }									\
    if (rbp_r_cmp != 0) {						\
	while (true) {							\
	    assert(rbp_r_p != &(a_tree)->rbt_nil);			\
	    rbp_r_cmp = (a_cmp)((a_node), rbp_r_c);			\
	    if (rbp_r_cmp < 0) {					\
		rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c);	\
		if (rbp_r_t == &(a_tree)->rbt_nil) {			\
		    /* rbp_r_c now refers to the successor node to    */\
		    /* relocate, and rbp_r_xp/a_node refer to the     */\
		    /* context for the relocation.                    */\
		    if (rbp_left_get(a_type, a_field, rbp_r_xp)		\
		      == (a_node)) {					\
			rbp_left_set(a_type, a_field, rbp_r_xp,		\
			  rbp_r_c);					\
		    } else {						\
			assert(rbp_right_get(a_type, a_field,		\
			  rbp_r_xp) == (a_node));			\
			rbp_right_set(a_type, a_field, rbp_r_xp,	\
			  rbp_r_c);					\
		    }							\
		    rbp_left_set(a_type, a_field, rbp_r_c,		\
		      rbp_left_get(a_type, a_field, (a_node)));		\
		    rbp_right_set(a_type, a_field, rbp_r_c,		\
		      rbp_right_get(a_type, a_field, (a_node)));	\
		    rbp_color_set(a_type, a_field, rbp_r_c,		\
		      rbp_red_get(a_type, a_field, (a_node)));		\
		    if (rbp_left_get(a_type, a_field, rbp_r_p)		\
		      == rbp_r_c) {					\
			rbp_left_set(a_type, a_field, rbp_r_p,		\
			  &(a_tree)->rbt_nil);				\
		    } else {						\
			assert(rbp_right_get(a_type, a_field, rbp_r_p)	\
			  == rbp_r_c);					\
			rbp_right_set(a_type, a_field, rbp_r_p,		\
			  &(a_tree)->rbt_nil);				\
		    }							\
		    break;						\
		}							\
		rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t);	\
		if (rbp_red_get(a_type, a_field, rbp_r_t) == false	\
		  && rbp_red_get(a_type, a_field, rbp_r_u) == false) {	\
		    rbp_move_red_left(a_type, a_field, rbp_r_c,		\
		      rbp_r_t);						\
		    if (rbp_left_get(a_type, a_field, rbp_r_p)		\
		      == rbp_r_c) {					\
			rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);\
		    } else {						\
			rbp_right_set(a_type, a_field, rbp_r_p,		\
			  rbp_r_t);					\
		    }							\
		    rbp_r_c = rbp_r_t;					\
		} else {						\
		    rbp_r_p = rbp_r_c;					\
		    rbp_r_c = rbp_left_get(a_type, a_field, rbp_r_c);	\
		}							\
	    } else {							\
		/* Check whether to delete this node (it has to be    */\
		/* the correct node and a leaf node).                 */\
		if (rbp_r_cmp == 0) {					\
		    assert((a_node) == rbp_r_c);			\
		    if (rbp_right_get(a_type, a_field, rbp_r_c)		\
		      == &(a_tree)->rbt_nil) {				\
			/* Delete leaf node.                          */\
			if (rbp_left_get(a_type, a_field, rbp_r_c)	\
			  != &(a_tree)->rbt_nil) {			\
			    rbp_lean_right(a_type, a_field, rbp_r_c,	\
			      rbp_r_t);					\
			    rbp_right_set(a_type, a_field, rbp_r_t,	\
			      &(a_tree)->rbt_nil);			\
			} else {					\
			    rbp_r_t = &(a_tree)->rbt_nil;		\
			}						\
			if (rbp_left_get(a_type, a_field, rbp_r_p)	\
			  == rbp_r_c) {					\
			    rbp_left_set(a_type, a_field, rbp_r_p,	\
			      rbp_r_t);					\
			} else {					\
			    rbp_right_set(a_type, a_field, rbp_r_p,	\
			      rbp_r_t);					\
			}						\
			break;						\
		    } else {						\
			/* This is the node we want to delete, but we */\
			/* will instead swap it with its successor    */\
			/* and delete the successor.  Record enough   */\
			/* information to do the swap later.          */\
			/* rbp_r_xp is a_node's parent.               */\
			rbp_r_xp = rbp_r_p;				\
		    }							\
		}							\
		rbp_r_t = rbp_right_get(a_type, a_field, rbp_r_c);	\
		rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t);	\
		if (rbp_red_get(a_type, a_field, rbp_r_u) == false) {	\
		    rbp_move_red_right(a_type, a_field, rbp_r_c,	\
		      rbp_r_t);						\
		    if (rbp_left_get(a_type, a_field, rbp_r_p)		\
		      == rbp_r_c) {					\
			rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);\
		    } else {						\
			rbp_right_set(a_type, a_field, rbp_r_p,		\
			  rbp_r_t);					\
		    }							\
		    rbp_r_c = rbp_r_t;					\
		} else {						\
		    rbp_r_p = rbp_r_c;					\
		    rbp_r_c = rbp_right_get(a_type, a_field, rbp_r_c);	\
		}							\
	    }								\
	}								\
    }									\
    /* Update root.                                                   */\
    (a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_r_s);	\
} while (0)

/*
 * The rb_wrap() macro provides a convenient way to wrap functions around the
 * cpp macros.  The main benefits of wrapping are that 1) repeated macro
 * expansion can cause code bloat, especially for rb_{insert,remove)(), and
 * 2) type, linkage, comparison functions, etc. need not be specified at every
 * call point.
 */

#define	rb_wrap(a_attr, a_prefix, a_tree_type, a_type, a_field, a_cmp)	\
a_attr void								\
a_prefix##new(a_tree_type *tree) {					\
    rb_new(a_type, a_field, tree);					\
}									\
a_attr a_type *								\
a_prefix##first(a_tree_type *tree) {					\
    a_type *ret;							\
    rb_first(a_type, a_field, tree, ret);				\
    return (ret);							\
}									\
a_attr a_type *								\
a_prefix##last(a_tree_type *tree) {					\
    a_type *ret;							\
    rb_last(a_type, a_field, tree, ret);				\
    return (ret);							\
}									\
a_attr a_type *								\
a_prefix##next(a_tree_type *tree, a_type *node) {			\
    a_type *ret;							\
    rb_next(a_type, a_field, a_cmp, tree, node, ret);			\
    return (ret);							\
}									\
a_attr a_type *								\
a_prefix##prev(a_tree_type *tree, a_type *node) {			\
    a_type *ret;							\
    rb_prev(a_type, a_field, a_cmp, tree, node, ret);			\
    return (ret);							\
}									\
a_attr a_type *								\
a_prefix##search(a_tree_type *tree, a_type *key) {			\
    a_type *ret;							\
    rb_search(a_type, a_field, a_cmp, tree, key, ret);			\
    return (ret);							\
}									\
a_attr a_type *								\
a_prefix##nsearch(a_tree_type *tree, a_type *key) {			\
    a_type *ret;							\
    rb_nsearch(a_type, a_field, a_cmp, tree, key, ret);			\
    return (ret);							\
}									\
a_attr a_type *								\
a_prefix##psearch(a_tree_type *tree, a_type *key) {			\
    a_type *ret;							\
    rb_psearch(a_type, a_field, a_cmp, tree, key, ret);			\
    return (ret);							\
}									\
a_attr void								\
a_prefix##insert(a_tree_type *tree, a_type *node) {			\
    rb_insert(a_type, a_field, a_cmp, tree, node);			\
}									\
a_attr void								\
a_prefix##remove(a_tree_type *tree, a_type *node) {			\
    rb_remove(a_type, a_field, a_cmp, tree, node);			\
}

/*
 * The iterators simulate recursion via an array of pointers that store the
 * current path.  This is critical to performance, since a series of calls to
 * rb_{next,prev}() would require time proportional to (n lg n), whereas this
 * implementation only requires time proportional to (n).
 *
 * Since the iterators cache a path down the tree, any tree modification may
 * cause the cached path to become invalid.  In order to continue iteration,
 * use something like the following sequence:
 *
 *   {
 *       a_type *node, *tnode;
 *
 *       rb_foreach_begin(a_type, a_field, a_tree, node) {
 *           ...
 *           rb_next(a_type, a_field, a_cmp, a_tree, node, tnode);
 *           rb_remove(a_type, a_field, a_cmp, a_tree, node);
 *           rb_foreach_next(a_type, a_field, a_cmp, a_tree, tnode);
 *           ...
 *       } rb_foreach_end(a_type, a_field, a_tree, node)
 *   }
 *
 * Note that this idiom is not advised if every iteration modifies the tree,
 * since in that case there is no algorithmic complexity improvement over a
 * series of rb_{next,prev}() calls, thus making the setup overhead wasted
 * effort.
 */

#ifdef RB_NO_C99_VARARRAYS
   /*
    * Avoid using variable-length arrays, at the cost of using more stack space.
    * Size the path arrays such that they are always large enough, even if a
    * tree consumes all of memory.  Since each node must contain a minimum of
    * two pointers, there can never be more nodes than:
    *
    *   1 << ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1))
    *
    * Since the depth of a tree is limited to 3*lg(#nodes), the maximum depth
    * is:
    *
    *   (3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1)))
    *
    * This works out to a maximum depth of 87 and 180 for 32- and 64-bit
    * systems, respectively (approximatly 348 and 1440 bytes, respectively).
    */
#  define rbp_compute_f_height(a_type, a_field, a_tree)
#  define rbp_f_height	(3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1)))
#  define rbp_compute_fr_height(a_type, a_field, a_tree)
#  define rbp_fr_height	(3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1)))
#else
#  define rbp_compute_f_height(a_type, a_field, a_tree)			\
    /* Compute the maximum possible tree depth (3X the black height). */\
    unsigned rbp_f_height;						\
    rbp_black_height(a_type, a_field, a_tree, rbp_f_height);		\
    rbp_f_height *= 3;
#  define rbp_compute_fr_height(a_type, a_field, a_tree)		\
    /* Compute the maximum possible tree depth (3X the black height). */\
    unsigned rbp_fr_height;						\
    rbp_black_height(a_type, a_field, a_tree, rbp_fr_height);		\
    rbp_fr_height *= 3;
#endif

#define	rb_foreach_begin(a_type, a_field, a_tree, a_var) {		\
    rbp_compute_f_height(a_type, a_field, a_tree)			\
    {									\
	/* Initialize the path to contain the left spine.             */\
	a_type *rbp_f_path[rbp_f_height];				\
	a_type *rbp_f_node;						\
	bool rbp_f_synced = false;					\
	unsigned rbp_f_depth = 0;					\
	if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) {			\
	    rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root;		\
	    rbp_f_depth++;						\
	    while ((rbp_f_node = rbp_left_get(a_type, a_field,		\
	      rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) {	\
		rbp_f_path[rbp_f_depth] = rbp_f_node;			\
		rbp_f_depth++;						\
	    }								\
	}								\
	/* While the path is non-empty, iterate.                      */\
	while (rbp_f_depth > 0) {					\
	    (a_var) = rbp_f_path[rbp_f_depth-1];

/* Only use if modifying the tree during iteration. */
#define	rb_foreach_next(a_type, a_field, a_cmp, a_tree, a_node)		\
	    /* Re-initialize the path to contain the path to a_node.  */\
	    rbp_f_depth = 0;						\
	    if (a_node != NULL) {					\
		if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) {		\
		    rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root;	\
		    rbp_f_depth++;					\
		    rbp_f_node = rbp_f_path[0];				\
		    while (true) {					\
			int rbp_f_cmp = (a_cmp)((a_node),		\
			  rbp_f_path[rbp_f_depth-1]);			\
			if (rbp_f_cmp < 0) {				\
			    rbp_f_node = rbp_left_get(a_type, a_field,	\
			      rbp_f_path[rbp_f_depth-1]);		\
			} else if (rbp_f_cmp > 0) {			\
			    rbp_f_node = rbp_right_get(a_type, a_field,	\
			      rbp_f_path[rbp_f_depth-1]);		\
			} else {					\
			    break;					\
			}						\
			assert(rbp_f_node != &(a_tree)->rbt_nil);	\
			rbp_f_path[rbp_f_depth] = rbp_f_node;		\
			rbp_f_depth++;					\
		    }							\
		}							\
	    }								\
	    rbp_f_synced = true;

#define	rb_foreach_end(a_type, a_field, a_tree, a_var)			\
	    if (rbp_f_synced) {						\
		rbp_f_synced = false;					\
		continue;						\
	    }								\
	    /* Find the successor.                                    */\
	    if ((rbp_f_node = rbp_right_get(a_type, a_field,		\
	      rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) {	\
	        /* The successor is the left-most node in the right   */\
		/* subtree.                                           */\
		rbp_f_path[rbp_f_depth] = rbp_f_node;			\
		rbp_f_depth++;						\
		while ((rbp_f_node = rbp_left_get(a_type, a_field,	\
		  rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) {	\
		    rbp_f_path[rbp_f_depth] = rbp_f_node;		\
		    rbp_f_depth++;					\
		}							\
	    } else {							\
		/* The successor is above the current node.  Unwind   */\
		/* until a left-leaning edge is removed from the      */\
		/* path, or the path is empty.                        */\
		for (rbp_f_depth--; rbp_f_depth > 0; rbp_f_depth--) {	\
		    if (rbp_left_get(a_type, a_field,			\
		      rbp_f_path[rbp_f_depth-1])			\
		      == rbp_f_path[rbp_f_depth]) {			\
			break;						\
		    }							\
		}							\
	    }								\
	}								\
    }									\
}

#define	rb_foreach_reverse_begin(a_type, a_field, a_tree, a_var) {	\
    rbp_compute_fr_height(a_type, a_field, a_tree)			\
    {									\
	/* Initialize the path to contain the right spine.            */\
	a_type *rbp_fr_path[rbp_fr_height];				\
	a_type *rbp_fr_node;						\
	bool rbp_fr_synced = false;					\
	unsigned rbp_fr_depth = 0;					\
	if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) {			\
	    rbp_fr_path[rbp_fr_depth] = (a_tree)->rbt_root;		\
	    rbp_fr_depth++;						\
	    while ((rbp_fr_node = rbp_right_get(a_type, a_field,	\
	      rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) {	\
		rbp_fr_path[rbp_fr_depth] = rbp_fr_node;		\
		rbp_fr_depth++;						\
	    }								\
	}								\
	/* While the path is non-empty, iterate.                      */\
	while (rbp_fr_depth > 0) {					\
	    (a_var) = rbp_fr_path[rbp_fr_depth-1];

/* Only use if modifying the tree during iteration. */
#define	rb_foreach_reverse_prev(a_type, a_field, a_cmp, a_tree, a_node)	\
	    /* Re-initialize the path to contain the path to a_node.  */\
	    rbp_fr_depth = 0;						\
	    if (a_node != NULL) {					\
		if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) {		\
		    rbp_fr_path[rbp_fr_depth] = (a_tree)->rbt_root;	\
		    rbp_fr_depth++;					\
		    rbp_fr_node = rbp_fr_path[0];			\
		    while (true) {					\
			int rbp_fr_cmp = (a_cmp)((a_node),		\
			  rbp_fr_path[rbp_fr_depth-1]);			\
			if (rbp_fr_cmp < 0) {				\
			    rbp_fr_node = rbp_left_get(a_type, a_field,	\
			      rbp_fr_path[rbp_fr_depth-1]);		\
			} else if (rbp_fr_cmp > 0) {			\
			    rbp_fr_node = rbp_right_get(a_type, a_field,\
			      rbp_fr_path[rbp_fr_depth-1]);		\
			} else {					\
			    break;					\
			}						\
			assert(rbp_fr_node != &(a_tree)->rbt_nil);	\
			rbp_fr_path[rbp_fr_depth] = rbp_fr_node;	\
			rbp_fr_depth++;					\
		    }							\
		}							\
	    }								\
	    rbp_fr_synced = true;

#define	rb_foreach_reverse_end(a_type, a_field, a_tree, a_var)		\
	    if (rbp_fr_synced) {					\
		rbp_fr_synced = false;					\
		continue;						\
	    }								\
	    if (rbp_fr_depth == 0) {					\
		/* rb_foreach_reverse_sync() was called with a NULL   */\
		/* a_node.                                            */\
		break;							\
	    }								\
	    /* Find the predecessor.                                  */\
	    if ((rbp_fr_node = rbp_left_get(a_type, a_field,		\
	      rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) {	\
	        /* The predecessor is the right-most node in the left */\
		/* subtree.                                           */\
		rbp_fr_path[rbp_fr_depth] = rbp_fr_node;		\
		rbp_fr_depth++;						\
		while ((rbp_fr_node = rbp_right_get(a_type, a_field,	\
		  rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) {\
		    rbp_fr_path[rbp_fr_depth] = rbp_fr_node;		\
		    rbp_fr_depth++;					\
		}							\
	    } else {							\
		/* The predecessor is above the current node.  Unwind */\
		/* until a right-leaning edge is removed from the     */\
		/* path, or the path is empty.                        */\
		for (rbp_fr_depth--; rbp_fr_depth > 0; rbp_fr_depth--) {\
		    if (rbp_right_get(a_type, a_field,			\
		      rbp_fr_path[rbp_fr_depth-1])			\
		      == rbp_fr_path[rbp_fr_depth]) {			\
			break;						\
		    }							\
		}							\
	    }								\
	}								\
    }									\
}

#endif /* RB_H_ */