DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (fddffdeab170)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
/*
 * jutils.c
 *
 * This file was part of the Independent JPEG Group's software:
 * Copyright (C) 1991-1996, Thomas G. Lane.
 * It was modified by The libjpeg-turbo Project to include only code
 * relevant to libjpeg-turbo.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains tables and miscellaneous utility routines needed
 * for both compression and decompression.
 * Note we prefix all global names with "j" to minimize conflicts with
 * a surrounding application.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"


/*
 * jpeg_zigzag_order[i] is the zigzag-order position of the i'th element
 * of a DCT block read in natural order (left to right, top to bottom).
 */

#if 0                           /* This table is not actually needed in v6a */

const int jpeg_zigzag_order[DCTSIZE2] = {
   0,  1,  5,  6, 14, 15, 27, 28,
   2,  4,  7, 13, 16, 26, 29, 42,
   3,  8, 12, 17, 25, 30, 41, 43,
   9, 11, 18, 24, 31, 40, 44, 53,
  10, 19, 23, 32, 39, 45, 52, 54,
  20, 22, 33, 38, 46, 51, 55, 60,
  21, 34, 37, 47, 50, 56, 59, 61,
  35, 36, 48, 49, 57, 58, 62, 63
};

#endif

/*
 * jpeg_natural_order[i] is the natural-order position of the i'th element
 * of zigzag order.
 *
 * When reading corrupted data, the Huffman decoders could attempt
 * to reference an entry beyond the end of this array (if the decoded
 * zero run length reaches past the end of the block).  To prevent
 * wild stores without adding an inner-loop test, we put some extra
 * "63"s after the real entries.  This will cause the extra coefficient
 * to be stored in location 63 of the block, not somewhere random.
 * The worst case would be a run-length of 15, which means we need 16
 * fake entries.
 */

const int jpeg_natural_order[DCTSIZE2+16] = {
  0,  1,  8, 16,  9,  2,  3, 10,
 17, 24, 32, 25, 18, 11,  4,  5,
 12, 19, 26, 33, 40, 48, 41, 34,
 27, 20, 13,  6,  7, 14, 21, 28,
 35, 42, 49, 56, 57, 50, 43, 36,
 29, 22, 15, 23, 30, 37, 44, 51,
 58, 59, 52, 45, 38, 31, 39, 46,
 53, 60, 61, 54, 47, 55, 62, 63,
 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
 63, 63, 63, 63, 63, 63, 63, 63
};


/*
 * Arithmetic utilities
 */

GLOBAL(long)
jdiv_round_up (long a, long b)
/* Compute a/b rounded up to next integer, ie, ceil(a/b) */
/* Assumes a >= 0, b > 0 */
{
  return (a + b - 1L) / b;
}


GLOBAL(long)
jround_up (long a, long b)
/* Compute a rounded up to next multiple of b, ie, ceil(a/b)*b */
/* Assumes a >= 0, b > 0 */
{
  a += b - 1L;
  return a - (a % b);
}


GLOBAL(void)
jcopy_sample_rows (JSAMPARRAY input_array, int source_row,
                   JSAMPARRAY output_array, int dest_row,
                   int num_rows, JDIMENSION num_cols)
/* Copy some rows of samples from one place to another.
 * num_rows rows are copied from input_array[source_row++]
 * to output_array[dest_row++]; these areas may overlap for duplication.
 * The source and destination arrays must be at least as wide as num_cols.
 */
{
  register JSAMPROW inptr, outptr;
  register size_t count = (size_t) (num_cols * sizeof(JSAMPLE));
  register int row;

  input_array += source_row;
  output_array += dest_row;

  for (row = num_rows; row > 0; row--) {
    inptr = *input_array++;
    outptr = *output_array++;
    MEMCOPY(outptr, inptr, count);
  }
}


GLOBAL(void)
jcopy_block_row (JBLOCKROW input_row, JBLOCKROW output_row,
                 JDIMENSION num_blocks)
/* Copy a row of coefficient blocks from one place to another. */
{
  MEMCOPY(output_row, input_row, num_blocks * (DCTSIZE2 * sizeof(JCOEF)));
}


GLOBAL(void)
jzero_far (void * target, size_t bytestozero)
/* Zero out a chunk of memory. */
/* This might be sample-array data, block-array data, or alloc_large data. */
{
  MEMZERO(target, bytestozero);
}