DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (fddffdeab170)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
/*
 * jcdctmgr.c
 *
 * This file was part of the Independent JPEG Group's software:
 * Copyright (C) 1994-1996, Thomas G. Lane.
 * libjpeg-turbo Modifications:
 * Copyright (C) 1999-2006, MIYASAKA Masaru.
 * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
 * Copyright (C) 2011, 2014-2015 D. R. Commander
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains the forward-DCT management logic.
 * This code selects a particular DCT implementation to be used,
 * and it performs related housekeeping chores including coefficient
 * quantization.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h"               /* Private declarations for DCT subsystem */
#include "jsimddct.h"


/* Private subobject for this module */

typedef void (*forward_DCT_method_ptr) (DCTELEM * data);
typedef void (*float_DCT_method_ptr) (FAST_FLOAT * data);

typedef void (*convsamp_method_ptr) (JSAMPARRAY sample_data,
                                     JDIMENSION start_col,
                                     DCTELEM * workspace);
typedef void (*float_convsamp_method_ptr) (JSAMPARRAY sample_data,
                                           JDIMENSION start_col,
                                           FAST_FLOAT *workspace);

typedef void (*quantize_method_ptr) (JCOEFPTR coef_block, DCTELEM * divisors,
                                     DCTELEM * workspace);
typedef void (*float_quantize_method_ptr) (JCOEFPTR coef_block,
                                           FAST_FLOAT * divisors,
                                           FAST_FLOAT * workspace);

METHODDEF(void) quantize (JCOEFPTR, DCTELEM *, DCTELEM *);

typedef struct {
  struct jpeg_forward_dct pub;  /* public fields */

  /* Pointer to the DCT routine actually in use */
  forward_DCT_method_ptr dct;
  convsamp_method_ptr convsamp;
  quantize_method_ptr quantize;

  /* The actual post-DCT divisors --- not identical to the quant table
   * entries, because of scaling (especially for an unnormalized DCT).
   * Each table is given in normal array order.
   */
  DCTELEM * divisors[NUM_QUANT_TBLS];

  /* work area for FDCT subroutine */
  DCTELEM * workspace;

#ifdef DCT_FLOAT_SUPPORTED
  /* Same as above for the floating-point case. */
  float_DCT_method_ptr float_dct;
  float_convsamp_method_ptr float_convsamp;
  float_quantize_method_ptr float_quantize;
  FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
  FAST_FLOAT * float_workspace;
#endif
} my_fdct_controller;

typedef my_fdct_controller * my_fdct_ptr;


#if BITS_IN_JSAMPLE == 8

/*
 * Find the highest bit in an integer through binary search.
 */

LOCAL(int)
flss (UINT16 val)
{
  int bit;

  bit = 16;

  if (!val)
    return 0;

  if (!(val & 0xff00)) {
    bit -= 8;
    val <<= 8;
  }
  if (!(val & 0xf000)) {
    bit -= 4;
    val <<= 4;
  }
  if (!(val & 0xc000)) {
    bit -= 2;
    val <<= 2;
  }
  if (!(val & 0x8000)) {
    bit -= 1;
    val <<= 1;
  }

  return bit;
}


/*
 * Compute values to do a division using reciprocal.
 *
 * This implementation is based on an algorithm described in
 *   "How to optimize for the Pentium family of microprocessors"
 *   (http://www.agner.org/assem/).
 * More information about the basic algorithm can be found in
 * the paper "Integer Division Using Reciprocals" by Robert Alverson.
 *
 * The basic idea is to replace x/d by x * d^-1. In order to store
 * d^-1 with enough precision we shift it left a few places. It turns
 * out that this algoright gives just enough precision, and also fits
 * into DCTELEM:
 *
 *   b = (the number of significant bits in divisor) - 1
 *   r = (word size) + b
 *   f = 2^r / divisor
 *
 * f will not be an integer for most cases, so we need to compensate
 * for the rounding error introduced:
 *
 *   no fractional part:
 *
 *       result = input >> r
 *
 *   fractional part of f < 0.5:
 *
 *       round f down to nearest integer
 *       result = ((input + 1) * f) >> r
 *
 *   fractional part of f > 0.5:
 *
 *       round f up to nearest integer
 *       result = (input * f) >> r
 *
 * This is the original algorithm that gives truncated results. But we
 * want properly rounded results, so we replace "input" with
 * "input + divisor/2".
 *
 * In order to allow SIMD implementations we also tweak the values to
 * allow the same calculation to be made at all times:
 *
 *   dctbl[0] = f rounded to nearest integer
 *   dctbl[1] = divisor / 2 (+ 1 if fractional part of f < 0.5)
 *   dctbl[2] = 1 << ((word size) * 2 - r)
 *   dctbl[3] = r - (word size)
 *
 * dctbl[2] is for stupid instruction sets where the shift operation
 * isn't member wise (e.g. MMX).
 *
 * The reason dctbl[2] and dctbl[3] reduce the shift with (word size)
 * is that most SIMD implementations have a "multiply and store top
 * half" operation.
 *
 * Lastly, we store each of the values in their own table instead
 * of in a consecutive manner, yet again in order to allow SIMD
 * routines.
 */

LOCAL(int)
compute_reciprocal (UINT16 divisor, DCTELEM * dtbl)
{
  UDCTELEM2 fq, fr;
  UDCTELEM c;
  int b, r;

  if (divisor == 1) {
    /* divisor == 1 means unquantized, so these reciprocal/correction/shift
     * values will cause the C quantization algorithm to act like the
     * identity function.  Since only the C quantization algorithm is used in
     * these cases, the scale value is irrelevant.
     */
    dtbl[DCTSIZE2 * 0] = (DCTELEM) 1;                       /* reciprocal */
    dtbl[DCTSIZE2 * 1] = (DCTELEM) 0;                       /* correction */
    dtbl[DCTSIZE2 * 2] = (DCTELEM) 1;                       /* scale */
    dtbl[DCTSIZE2 * 3] = (DCTELEM) (-sizeof(DCTELEM) * 8);  /* shift */
    return 0;
  }

  b = flss(divisor) - 1;
  r  = sizeof(DCTELEM) * 8 + b;

  fq = ((UDCTELEM2)1 << r) / divisor;
  fr = ((UDCTELEM2)1 << r) % divisor;

  c = divisor / 2; /* for rounding */

  if (fr == 0) { /* divisor is power of two */
    /* fq will be one bit too large to fit in DCTELEM, so adjust */
    fq >>= 1;
    r--;
  } else if (fr <= (divisor / 2U)) { /* fractional part is < 0.5 */
    c++;
  } else { /* fractional part is > 0.5 */
    fq++;
  }

  dtbl[DCTSIZE2 * 0] = (DCTELEM) fq;      /* reciprocal */
  dtbl[DCTSIZE2 * 1] = (DCTELEM) c;       /* correction + roundfactor */
  dtbl[DCTSIZE2 * 2] = (DCTELEM) (1 << (sizeof(DCTELEM)*8*2 - r));  /* scale */
  dtbl[DCTSIZE2 * 3] = (DCTELEM) r - sizeof(DCTELEM)*8; /* shift */

  if(r <= 16) return 0;
  else return 1;
}

#endif


/*
 * Initialize for a processing pass.
 * Verify that all referenced Q-tables are present, and set up
 * the divisor table for each one.
 * In the current implementation, DCT of all components is done during
 * the first pass, even if only some components will be output in the
 * first scan.  Hence all components should be examined here.
 */

METHODDEF(void)
start_pass_fdctmgr (j_compress_ptr cinfo)
{
  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
  int ci, qtblno, i;
  jpeg_component_info *compptr;
  JQUANT_TBL * qtbl;
  DCTELEM * dtbl;

  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       ci++, compptr++) {
    qtblno = compptr->quant_tbl_no;
    /* Make sure specified quantization table is present */
    if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
        cinfo->quant_tbl_ptrs[qtblno] == NULL)
      ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
    qtbl = cinfo->quant_tbl_ptrs[qtblno];
    /* Compute divisors for this quant table */
    /* We may do this more than once for same table, but it's not a big deal */
    switch (cinfo->dct_method) {
#ifdef DCT_ISLOW_SUPPORTED
    case JDCT_ISLOW:
      /* For LL&M IDCT method, divisors are equal to raw quantization
       * coefficients multiplied by 8 (to counteract scaling).
       */
      if (fdct->divisors[qtblno] == NULL) {
        fdct->divisors[qtblno] = (DCTELEM *)
          (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
                                      (DCTSIZE2 * 4) * sizeof(DCTELEM));
      }
      dtbl = fdct->divisors[qtblno];
      for (i = 0; i < DCTSIZE2; i++) {
#if BITS_IN_JSAMPLE == 8
        if(!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i])
          && fdct->quantize == jsimd_quantize)
          fdct->quantize = quantize;
#else
        dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
#endif
      }
      break;
#endif
#ifdef DCT_IFAST_SUPPORTED
    case JDCT_IFAST:
      {
        /* For AA&N IDCT method, divisors are equal to quantization
         * coefficients scaled by scalefactor[row]*scalefactor[col], where
         *   scalefactor[0] = 1
         *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
         * We apply a further scale factor of 8.
         */
#define CONST_BITS 14
        static const INT16 aanscales[DCTSIZE2] = {
          /* precomputed values scaled up by 14 bits */
          16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
          22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
          21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
          19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
          16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
          12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
           8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
           4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
        };
        SHIFT_TEMPS

        if (fdct->divisors[qtblno] == NULL) {
          fdct->divisors[qtblno] = (DCTELEM *)
            (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
                                        (DCTSIZE2 * 4) * sizeof(DCTELEM));
        }
        dtbl = fdct->divisors[qtblno];
        for (i = 0; i < DCTSIZE2; i++) {
#if BITS_IN_JSAMPLE == 8
          if(!compute_reciprocal(
            DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
                                  (INT32) aanscales[i]),
                    CONST_BITS-3), &dtbl[i])
            && fdct->quantize == jsimd_quantize)
            fdct->quantize = quantize;
#else
           dtbl[i] = (DCTELEM)
             DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
                                   (INT32) aanscales[i]),
                     CONST_BITS-3);
#endif
        }
      }
      break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
    case JDCT_FLOAT:
      {
        /* For float AA&N IDCT method, divisors are equal to quantization
         * coefficients scaled by scalefactor[row]*scalefactor[col], where
         *   scalefactor[0] = 1
         *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
         * We apply a further scale factor of 8.
         * What's actually stored is 1/divisor so that the inner loop can
         * use a multiplication rather than a division.
         */
        FAST_FLOAT * fdtbl;
        int row, col;
        static const double aanscalefactor[DCTSIZE] = {
          1.0, 1.387039845, 1.306562965, 1.175875602,
          1.0, 0.785694958, 0.541196100, 0.275899379
        };

        if (fdct->float_divisors[qtblno] == NULL) {
          fdct->float_divisors[qtblno] = (FAST_FLOAT *)
            (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
                                        DCTSIZE2 * sizeof(FAST_FLOAT));
        }
        fdtbl = fdct->float_divisors[qtblno];
        i = 0;
        for (row = 0; row < DCTSIZE; row++) {
          for (col = 0; col < DCTSIZE; col++) {
            fdtbl[i] = (FAST_FLOAT)
              (1.0 / (((double) qtbl->quantval[i] *
                       aanscalefactor[row] * aanscalefactor[col] * 8.0)));
            i++;
          }
        }
      }
      break;
#endif
    default:
      ERREXIT(cinfo, JERR_NOT_COMPILED);
      break;
    }
  }
}


/*
 * Load data into workspace, applying unsigned->signed conversion.
 */

METHODDEF(void)
convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM * workspace)
{
  register DCTELEM *workspaceptr;
  register JSAMPROW elemptr;
  register int elemr;

  workspaceptr = workspace;
  for (elemr = 0; elemr < DCTSIZE; elemr++) {
    elemptr = sample_data[elemr] + start_col;

#if DCTSIZE == 8                /* unroll the inner loop */
    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
#else
    {
      register int elemc;
      for (elemc = DCTSIZE; elemc > 0; elemc--)
        *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
    }
#endif
  }
}


/*
 * Quantize/descale the coefficients, and store into coef_blocks[].
 */

METHODDEF(void)
quantize (JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace)
{
  int i;
  DCTELEM temp;
  JCOEFPTR output_ptr = coef_block;

#if BITS_IN_JSAMPLE == 8

  UDCTELEM recip, corr;
  int shift;
  UDCTELEM2 product;

  for (i = 0; i < DCTSIZE2; i++) {
    temp = workspace[i];
    recip = divisors[i + DCTSIZE2 * 0];
    corr =  divisors[i + DCTSIZE2 * 1];
    shift = divisors[i + DCTSIZE2 * 3];

    if (temp < 0) {
      temp = -temp;
      product = (UDCTELEM2)(temp + corr) * recip;
      product >>= shift + sizeof(DCTELEM)*8;
      temp = product;
      temp = -temp;
    } else {
      product = (UDCTELEM2)(temp + corr) * recip;
      product >>= shift + sizeof(DCTELEM)*8;
      temp = product;
    }
    output_ptr[i] = (JCOEF) temp;
  }

#else

  register DCTELEM qval;

  for (i = 0; i < DCTSIZE2; i++) {
    qval = divisors[i];
    temp = workspace[i];
    /* Divide the coefficient value by qval, ensuring proper rounding.
     * Since C does not specify the direction of rounding for negative
     * quotients, we have to force the dividend positive for portability.
     *
     * In most files, at least half of the output values will be zero
     * (at default quantization settings, more like three-quarters...)
     * so we should ensure that this case is fast.  On many machines,
     * a comparison is enough cheaper than a divide to make a special test
     * a win.  Since both inputs will be nonnegative, we need only test
     * for a < b to discover whether a/b is 0.
     * If your machine's division is fast enough, define FAST_DIVIDE.
     */
#ifdef FAST_DIVIDE
#define DIVIDE_BY(a,b)  a /= b
#else
#define DIVIDE_BY(a,b)  if (a >= b) a /= b; else a = 0
#endif
    if (temp < 0) {
      temp = -temp;
      temp += qval>>1;  /* for rounding */
      DIVIDE_BY(temp, qval);
      temp = -temp;
    } else {
      temp += qval>>1;  /* for rounding */
      DIVIDE_BY(temp, qval);
    }
    output_ptr[i] = (JCOEF) temp;
  }

#endif

}


/*
 * Perform forward DCT on one or more blocks of a component.
 *
 * The input samples are taken from the sample_data[] array starting at
 * position start_row/start_col, and moving to the right for any additional
 * blocks. The quantized coefficients are returned in coef_blocks[].
 */

METHODDEF(void)
forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
             JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
             JDIMENSION start_row, JDIMENSION start_col,
             JDIMENSION num_blocks)
/* This version is used for integer DCT implementations. */
{
  /* This routine is heavily used, so it's worth coding it tightly. */
  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
  DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
  DCTELEM * workspace;
  JDIMENSION bi;

  /* Make sure the compiler doesn't look up these every pass */
  forward_DCT_method_ptr do_dct = fdct->dct;
  convsamp_method_ptr do_convsamp = fdct->convsamp;
  quantize_method_ptr do_quantize = fdct->quantize;
  workspace = fdct->workspace;

  sample_data += start_row;     /* fold in the vertical offset once */

  for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
    /* Load data into workspace, applying unsigned->signed conversion */
    (*do_convsamp) (sample_data, start_col, workspace);

    /* Perform the DCT */
    (*do_dct) (workspace);

    /* Quantize/descale the coefficients, and store into coef_blocks[] */
    (*do_quantize) (coef_blocks[bi], divisors, workspace);
  }
}


#ifdef DCT_FLOAT_SUPPORTED


METHODDEF(void)
convsamp_float (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT * workspace)
{
  register FAST_FLOAT *workspaceptr;
  register JSAMPROW elemptr;
  register int elemr;

  workspaceptr = workspace;
  for (elemr = 0; elemr < DCTSIZE; elemr++) {
    elemptr = sample_data[elemr] + start_col;
#if DCTSIZE == 8                /* unroll the inner loop */
    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
#else
    {
      register int elemc;
      for (elemc = DCTSIZE; elemc > 0; elemc--)
        *workspaceptr++ = (FAST_FLOAT)
                          (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
    }
#endif
  }
}


METHODDEF(void)
quantize_float (JCOEFPTR coef_block, FAST_FLOAT * divisors, FAST_FLOAT * workspace)
{
  register FAST_FLOAT temp;
  register int i;
  register JCOEFPTR output_ptr = coef_block;

  for (i = 0; i < DCTSIZE2; i++) {
    /* Apply the quantization and scaling factor */
    temp = workspace[i] * divisors[i];

    /* Round to nearest integer.
     * Since C does not specify the direction of rounding for negative
     * quotients, we have to force the dividend positive for portability.
     * The maximum coefficient size is +-16K (for 12-bit data), so this
     * code should work for either 16-bit or 32-bit ints.
     */
    output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
  }
}


METHODDEF(void)
forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
                   JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
                   JDIMENSION start_row, JDIMENSION start_col,
                   JDIMENSION num_blocks)
/* This version is used for floating-point DCT implementations. */
{
  /* This routine is heavily used, so it's worth coding it tightly. */
  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
  FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
  FAST_FLOAT * workspace;
  JDIMENSION bi;


  /* Make sure the compiler doesn't look up these every pass */
  float_DCT_method_ptr do_dct = fdct->float_dct;
  float_convsamp_method_ptr do_convsamp = fdct->float_convsamp;
  float_quantize_method_ptr do_quantize = fdct->float_quantize;
  workspace = fdct->float_workspace;

  sample_data += start_row;     /* fold in the vertical offset once */

  for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
    /* Load data into workspace, applying unsigned->signed conversion */
    (*do_convsamp) (sample_data, start_col, workspace);

    /* Perform the DCT */
    (*do_dct) (workspace);

    /* Quantize/descale the coefficients, and store into coef_blocks[] */
    (*do_quantize) (coef_blocks[bi], divisors, workspace);
  }
}

#endif /* DCT_FLOAT_SUPPORTED */


/*
 * Initialize FDCT manager.
 */

GLOBAL(void)
jinit_forward_dct (j_compress_ptr cinfo)
{
  my_fdct_ptr fdct;
  int i;

  fdct = (my_fdct_ptr)
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
                                sizeof(my_fdct_controller));
  cinfo->fdct = (struct jpeg_forward_dct *) fdct;
  fdct->pub.start_pass = start_pass_fdctmgr;

  /* First determine the DCT... */
  switch (cinfo->dct_method) {
#ifdef DCT_ISLOW_SUPPORTED
  case JDCT_ISLOW:
    fdct->pub.forward_DCT = forward_DCT;
    if (jsimd_can_fdct_islow())
      fdct->dct = jsimd_fdct_islow;
    else
      fdct->dct = jpeg_fdct_islow;
    break;
#endif
#ifdef DCT_IFAST_SUPPORTED
  case JDCT_IFAST:
    fdct->pub.forward_DCT = forward_DCT;
    if (jsimd_can_fdct_ifast())
      fdct->dct = jsimd_fdct_ifast;
    else
      fdct->dct = jpeg_fdct_ifast;
    break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
  case JDCT_FLOAT:
    fdct->pub.forward_DCT = forward_DCT_float;
    if (jsimd_can_fdct_float())
      fdct->float_dct = jsimd_fdct_float;
    else
      fdct->float_dct = jpeg_fdct_float;
    break;
#endif
  default:
    ERREXIT(cinfo, JERR_NOT_COMPILED);
    break;
  }

  /* ...then the supporting stages. */
  switch (cinfo->dct_method) {
#ifdef DCT_ISLOW_SUPPORTED
  case JDCT_ISLOW:
#endif
#ifdef DCT_IFAST_SUPPORTED
  case JDCT_IFAST:
#endif
#if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED)
    if (jsimd_can_convsamp())
      fdct->convsamp = jsimd_convsamp;
    else
      fdct->convsamp = convsamp;
    if (jsimd_can_quantize())
      fdct->quantize = jsimd_quantize;
    else
      fdct->quantize = quantize;
    break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
  case JDCT_FLOAT:
    if (jsimd_can_convsamp_float())
      fdct->float_convsamp = jsimd_convsamp_float;
    else
      fdct->float_convsamp = convsamp_float;
    if (jsimd_can_quantize_float())
      fdct->float_quantize = jsimd_quantize_float;
    else
      fdct->float_quantize = quantize_float;
    break;
#endif
  default:
    ERREXIT(cinfo, JERR_NOT_COMPILED);
    break;
  }

  /* Allocate workspace memory */
#ifdef DCT_FLOAT_SUPPORTED
  if (cinfo->dct_method == JDCT_FLOAT)
    fdct->float_workspace = (FAST_FLOAT *)
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
                                  sizeof(FAST_FLOAT) * DCTSIZE2);
  else
#endif
    fdct->workspace = (DCTELEM *)
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
                                  sizeof(DCTELEM) * DCTSIZE2);

  /* Mark divisor tables unallocated */
  for (i = 0; i < NUM_QUANT_TBLS; i++) {
    fdct->divisors[i] = NULL;
#ifdef DCT_FLOAT_SUPPORTED
    fdct->float_divisors[i] = NULL;
#endif
  }
}