DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (fddffdeab170)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef frontend_Parser_h
#define frontend_Parser_h

/*
 * JS parser definitions.
 */

#include "jspubtd.h"

#include "frontend/BytecodeCompiler.h"
#include "frontend/FullParseHandler.h"
#include "frontend/ParseMaps.h"
#include "frontend/ParseNode.h"
#include "frontend/SharedContext.h"
#include "frontend/SyntaxParseHandler.h"

namespace js {

class ModuleObject;
class StaticFunctionBoxScopeObject;

namespace frontend {

struct StmtInfoPC : public StmtInfoBase
{
    static const unsigned BlockIdLimit = 1 << ParseNode::NumBlockIdBits;

    StmtInfoPC*     enclosing;
    StmtInfoPC*     enclosingScope;

    uint32_t        blockid;        /* for simplified dominance computation */
    uint32_t        innerBlockScopeDepth; /* maximum depth of nested block scopes, in slots */

    // Lexical declarations inside switches are tricky because the block id
    // doesn't convey dominance information. Record what index the current
    // case's lexical declarations start at so we may generate dead zone
    // checks for other cases' declarations.
    //
    // Only valid if type is StmtType::SWITCH.
    uint16_t        firstDominatingLexicalInCase;

    explicit StmtInfoPC(ExclusiveContext* cx)
      : StmtInfoBase(cx),
        blockid(BlockIdLimit),
        innerBlockScopeDepth(0),
        firstDominatingLexicalInCase(0)
    {}
};

typedef HashSet<JSAtom*, DefaultHasher<JSAtom*>, LifoAllocPolicy<Fallible>> FuncStmtSet;
class SharedContext;

typedef Vector<Definition*, 16> DeclVector;

struct GenericParseContext
{
    // Enclosing function or global context.
    GenericParseContext* parent;

    // Context shared between parsing and bytecode generation.
    SharedContext* sc;

    // The following flags are set when a particular code feature is detected
    // in a function.

    // Function has 'return <expr>;'
    bool funHasReturnExpr:1;

    // Function has 'return;'
    bool funHasReturnVoid:1;

    GenericParseContext(GenericParseContext* parent, SharedContext* sc)
      : parent(parent),
        sc(sc),
        funHasReturnExpr(false),
        funHasReturnVoid(false)
    {}
};

template <typename ParseHandler>
bool
GenerateBlockId(TokenStream& ts, ParseContext<ParseHandler>* pc, uint32_t& blockid);

/*
 * The struct ParseContext stores information about the current parsing context,
 * which is part of the parser state (see the field Parser::pc). The current
 * parsing context is either the global context, or the function currently being
 * parsed. When the parser encounters a function definition, it creates a new
 * ParseContext, makes it the new current context, and sets its parent to the
 * context in which it encountered the definition.
 */
template <typename ParseHandler>
struct MOZ_STACK_CLASS ParseContext : public GenericParseContext
{
    typedef typename ParseHandler::Node Node;
    typedef typename ParseHandler::DefinitionNode DefinitionNode;

    uint32_t        bodyid;         /* block number of program/function body */

    StmtInfoStack<StmtInfoPC> stmtStack;

    Node            maybeFunction;  /* sc->isFunctionBox, the pn where pn->pn_funbox == sc */

    // If sc->isFunctionBox(), this is used to temporarily link up the
    // FunctionBox with the JSFunction so the static scope chain may be walked
    // without a JSScript.
    mozilla::Maybe<JSFunction::AutoParseUsingFunctionBox> parseUsingFunctionBox;

    // lastYieldOffset stores the offset of the last yield that was parsed.
    // NoYieldOffset is its initial value.
    static const uint32_t NoYieldOffset = UINT32_MAX;
    uint32_t         lastYieldOffset;

    // Most functions start off being parsed as non-generators.
    // Non-generators transition to LegacyGenerator on parsing "yield" in JS 1.7.
    // An ES6 generator is marked as a "star generator" before its body is parsed.
    GeneratorKind generatorKind() const {
        return sc->isFunctionBox() ? sc->asFunctionBox()->generatorKind() : NotGenerator;
    }
    bool isGenerator() const { return generatorKind() != NotGenerator; }
    bool isLegacyGenerator() const { return generatorKind() == LegacyGenerator; }
    bool isStarGenerator() const { return generatorKind() == StarGenerator; }

    bool isArrowFunction() const {
        return sc->isFunctionBox() && sc->asFunctionBox()->function()->isArrow();
    }
    bool isMethod() const {
        return sc->isFunctionBox() && sc->asFunctionBox()->function()->isMethod();
    }

    uint32_t        blockScopeDepth; /* maximum depth of nested block scopes, in slots */
    Node            blockNode;      /* parse node for a block with let declarations
                                       (block with its own lexical scope)  */

  private:
    AtomDecls<ParseHandler> decls_;     /* function, const, and var declarations */
    DeclVector      args_;              /* argument definitions */
    DeclVector      vars_;              /* var/const definitions */
    DeclVector      bodyLevelLexicals_; /* lexical definitions at body-level */

    bool checkLocalsOverflow(TokenStream& ts);

  public:
    const AtomDecls<ParseHandler>& decls() const {
        return decls_;
    }

    uint32_t numArgs() const {
        MOZ_ASSERT(sc->isFunctionBox());
        return args_.length();
    }

    /*
     * This function adds a definition to the lexical scope represented by this
     * ParseContext.
     *
     * Pre-conditions:
     *  + The caller must have already taken care of name collisions:
     *    - For non-let definitions, this means 'name' isn't in 'decls'.
     *    - For let definitions, this means 'name' isn't already a name in the
     *      current block.
     *  + The given 'pn' is either a placeholder (created by a previous unbound
     *    use) or an un-bound un-linked name node.
     *  + The given 'kind' is one of ARG, CONST, VAR, or LET. In particular,
     *    NAMED_LAMBDA is handled in an ad hoc special case manner (see
     *    LeaveFunction) that we should consider rewriting.
     *
     * Post-conditions:
     *  + pc->decls().lookupFirst(name) == pn
     *  + The given name 'pn' has been converted in-place into a
     *    non-placeholder definition.
     *  + If this is a function scope (sc->inFunction), 'pn' is bound to a
     *    particular local/argument slot.
     *  + PND_CONST is set for Definition::COSNT
     *  + Pre-existing uses of pre-existing placeholders have been linked to
     *    'pn' if they are in the scope of 'pn'.
     *  + Pre-existing placeholders in the scope of 'pn' have been removed.
     */
    bool define(TokenStream& ts, HandlePropertyName name, Node pn, Definition::Kind);

    /*
     * Let definitions may shadow same-named definitions in enclosing scopes.
     * To represesent this, 'decls' is not a plain map, but actually:
     *   decls :: name -> stack of definitions
     * New bindings are pushed onto the stack, name lookup always refers to the
     * top of the stack, and leaving a block scope calls popLetDecl for each
     * name in the block's scope.
     */
    void popLetDecl(JSAtom* atom);

    /* See the sad story in defineArg. */
    void prepareToAddDuplicateArg(HandlePropertyName name, DefinitionNode prevDecl);

    /* See the sad story in MakeDefIntoUse. */
    void updateDecl(TokenStream& ts, JSAtom* atom, Node newDecl);

    // After a script has been parsed, the parser generates the code's
    // "bindings". Bindings are a data-structure, ultimately stored in the
    // compiled JSScript, that serve three purposes:
    //
    //  - After parsing, the ParseContext is destroyed and 'decls' along with
    //    it. Mostly, the emitter just uses the binding information stored in
    //    the use/def nodes, but the emitter occasionally needs 'bindings' for
    //    various scope-related queries.
    //
    //  - For functions, bindings provide the initial js::Shape to use when
    //    creating a dynamic scope object (js::CallObject). This shape is used
    //    during dynamic name lookup.
    //
    //  - Sometimes a script's bindings are accessed at runtime to retrieve the
    //    contents of the lexical scope (e.g., from the debugger).
    //
    //  - For global and eval scripts, ES6 15.1.8 specifies that if there are
    //    name conflicts in the script, *no* bindings from the script are
    //    instantiated. So, record the vars and lexical bindings to check for
    //    redeclarations in the prologue.
    bool generateBindings(ExclusiveContext* cx, TokenStream& ts, LifoAlloc& alloc,
                          MutableHandle<Bindings> bindings) const;

  private:
    ParseContext**  parserPC;     /* this points to the Parser's active pc
                                       and holds either |this| or one of
                                       |this|'s descendents */

    // Value for parserPC to restore at the end. Use 'parent' instead for
    // information about the parse chain, this may be nullptr if
    // parent != nullptr.
    ParseContext<ParseHandler>* oldpc;

  public:
    OwnedAtomDefnMapPtr lexdeps;    /* unresolved lexical name dependencies */

    FuncStmtSet*    funcStmts;     /* Set of (non-top-level) function statements
                                       that will alias any top-level bindings with
                                       the same name. */

    // All inner functions in this context. Only filled in when parsing syntax.
    Rooted<TraceableVector<JSFunction*>> innerFunctions;

    // In a function context, points to a Directive struct that can be updated
    // to reflect new directives encountered in the Directive Prologue that
    // require reparsing the function. In global/module/generator-tail contexts,
    // we don't need to reparse when encountering a DirectivePrologue so this
    // pointer may be nullptr.
    Directives* newDirectives;

    // Set when parsing a declaration-like destructuring pattern.  This flag
    // causes PrimaryExpr to create PN_NAME parse nodes for variable references
    // which are not hooked into any definition's use chain, added to any tree
    // context's AtomList, etc. etc.  checkDestructuring will do that work
    // later.
    //
    // The comments atop checkDestructuring explain the distinction between
    // assignment-like and declaration-like destructuring patterns, and why
    // they need to be treated differently.
    bool            inDeclDestructuring:1;

    ParseContext(Parser<ParseHandler>* prs, GenericParseContext* parent,
                 Node maybeFunction, SharedContext* sc, Directives* newDirectives)
      : GenericParseContext(parent, sc),
        bodyid(0),           // initialized in init()
        stmtStack(prs->context),
        maybeFunction(maybeFunction),
        lastYieldOffset(NoYieldOffset),
        blockScopeDepth(0),
        blockNode(ParseHandler::null()),
        decls_(prs->context, prs->alloc),
        args_(prs->context),
        vars_(prs->context),
        bodyLevelLexicals_(prs->context),
        parserPC(&prs->pc),
        oldpc(prs->pc),
        lexdeps(prs->context),
        funcStmts(nullptr),
        innerFunctions(prs->context, TraceableVector<JSFunction*>(prs->context)),
        newDirectives(newDirectives),
        inDeclDestructuring(false)
    {
        prs->pc = this;
        if (sc->isFunctionBox())
            parseUsingFunctionBox.emplace(prs->context, sc->asFunctionBox());
    }

    ~ParseContext();

    bool init(Parser<ParseHandler>& parser);

    unsigned blockid() { return stmtStack.innermost() ? stmtStack.innermost()->blockid : bodyid; }

    StmtInfoPC* innermostStmt() const { return stmtStack.innermost(); }
    StmtInfoPC* innermostScopeStmt() const { return stmtStack.innermostScopeStmt(); }
    JSObject* innermostStaticScope() const {
        if (StmtInfoPC* stmt = innermostScopeStmt())
            return stmt->staticScope;
        return sc->staticScope();
    }

    // True if we are at the topmost level of a entire script or function body.
    // For example, while parsing this code we would encounter f1 and f2 at
    // body level, but we would not encounter f3 or f4 at body level:
    //
    //   function f1() { function f2() { } }
    //   if (cond) { function f3() { if (cond) { function f4() { } } } }
    //
    bool atBodyLevel() {
        // 'eval' and non-syntactic scripts are always under an invisible
        // lexical scope, but since it is not syntactic, it should still be
        // considered at body level.
        if (sc->staticScope()->is<StaticEvalObject>()) {
            bool bl = !innermostStmt()->enclosing;
            MOZ_ASSERT_IF(bl, innermostStmt()->type == StmtType::BLOCK);
            MOZ_ASSERT_IF(bl, innermostStmt()->staticScope
                                             ->template as<StaticBlockObject>()
                                             .enclosingStaticScope() == sc->staticScope());
            return bl;
        }
        return !innermostStmt();
    }

    bool atGlobalLevel() {
        return atBodyLevel() && sc->isGlobalContext() && !innermostScopeStmt();
    }

    // True if we are at the topmost level of a module only.
    bool atModuleLevel() {
        return atBodyLevel() && sc->isModuleBox();
    }

    // True if the current lexical scope is the topmost level of a module.
    bool atModuleScope() {
        return sc->isModuleBox() && !innermostScopeStmt();
    }

    // True if this is the ParseContext for the body of a function created by
    // the Function constructor.
    bool isFunctionConstructorBody() const {
        return sc->isFunctionBox() && !parent && sc->asFunctionBox()->function()->isLambda();
    }

    inline bool useAsmOrInsideUseAsm() const {
        return sc->isFunctionBox() && sc->asFunctionBox()->useAsmOrInsideUseAsm();
    }
};

template <typename ParseHandler>
inline
Directives::Directives(ParseContext<ParseHandler>* parent)
  : strict_(parent->sc->strict()),
    asmJS_(parent->useAsmOrInsideUseAsm())
{}

template <typename ParseHandler>
struct BindData;

class CompExprTransplanter;

enum VarContext { HoistVars, DontHoistVars };
enum PropListType { ObjectLiteral, ClassBody, DerivedClassBody };
enum class PropertyType {
    Normal,
    Shorthand,
    Getter,
    GetterNoExpressionClosure,
    Setter,
    SetterNoExpressionClosure,
    Method,
    GeneratorMethod,
    Constructor,
    DerivedConstructor
};

// Specify a value for an ES6 grammar parametrization.  We have no enum for
// [Return] because its behavior is exactly equivalent to checking whether
// we're in a function box -- easier and simpler than passing an extra
// parameter everywhere.
enum YieldHandling { YieldIsName, YieldIsKeyword };
enum InHandling { InAllowed, InProhibited };
enum DefaultHandling { NameRequired, AllowDefaultName };
enum TripledotHandling { TripledotAllowed, TripledotProhibited };

template <typename ParseHandler>
class Parser : private JS::AutoGCRooter, public StrictModeGetter
{
    class MOZ_STACK_CLASS AutoPushStmtInfoPC
    {
        Parser<ParseHandler>& parser_;
        StmtInfoPC stmt_;

      public:
        AutoPushStmtInfoPC(Parser<ParseHandler>& parser, StmtType type);
        AutoPushStmtInfoPC(Parser<ParseHandler>& parser, StmtType type,
                           NestedScopeObject& staticScope);
        ~AutoPushStmtInfoPC();

        bool generateBlockId();
        bool makeInnermostLexicalScope(StaticBlockObject& blockObj);

        StmtInfoPC& operator*() { return stmt_; }
        StmtInfoPC* operator->() { return &stmt_; }
        operator StmtInfoPC*() { return &stmt_; }
    };

  public:
    ExclusiveContext* const context;
    LifoAlloc& alloc;

    TokenStream         tokenStream;
    LifoAlloc::Mark     tempPoolMark;

    /* list of parsed objects for GC tracing */
    ObjectBox* traceListHead;

    /* innermost parse context (stack-allocated) */
    ParseContext<ParseHandler>* pc;

    // List of all block scopes.
    AutoObjectVector blockScopes;

    /* Compression token for aborting. */
    SourceCompressionTask* sct;

    ScriptSource*       ss;

    /* Root atoms and objects allocated for the parsed tree. */
    AutoKeepAtoms       keepAtoms;

    /* Perform constant-folding; must be true when interfacing with the emitter. */
    const bool          foldConstants:1;

  private:
#if DEBUG
    /* Our fallible 'checkOptions' member function has been called. */
    bool checkOptionsCalled:1;
#endif

    /*
     * Not all language constructs can be handled during syntax parsing. If it
     * is not known whether the parse succeeds or fails, this bit is set and
     * the parse will return false.
     */
    bool abortedSyntaxParse:1;

    /* Unexpected end of input, i.e. TOK_EOF not at top-level. */
    bool isUnexpectedEOF_:1;

    typedef typename ParseHandler::Node Node;
    typedef typename ParseHandler::DefinitionNode DefinitionNode;

  public:
    /* State specific to the kind of parse being performed. */
    ParseHandler handler;

    void prepareNodeForMutation(Node node) { handler.prepareNodeForMutation(node); }
    void freeTree(Node node) { handler.freeTree(node); }

  private:
    bool reportHelper(ParseReportKind kind, bool strict, uint32_t offset,
                      unsigned errorNumber, va_list args);
  public:
    bool report(ParseReportKind kind, bool strict, Node pn, unsigned errorNumber, ...);
    bool reportNoOffset(ParseReportKind kind, bool strict, unsigned errorNumber, ...);
    bool reportWithOffset(ParseReportKind kind, bool strict, uint32_t offset, unsigned errorNumber,
                          ...);

    Parser(ExclusiveContext* cx, LifoAlloc* alloc, const ReadOnlyCompileOptions& options,
           const char16_t* chars, size_t length, bool foldConstants,
           Parser<SyntaxParseHandler>* syntaxParser,
           LazyScript* lazyOuterFunction);
    ~Parser();

    bool checkOptions();

    // A Parser::Mark is the extension of the LifoAlloc::Mark to the entire
    // Parser's state. Note: clients must still take care that any ParseContext
    // that points into released ParseNodes is destroyed.
    class Mark
    {
        friend class Parser;
        LifoAlloc::Mark mark;
        ObjectBox* traceListHead;
    };
    Mark mark() const {
        Mark m;
        m.mark = alloc.mark();
        m.traceListHead = traceListHead;
        return m;
    }
    void release(Mark m) {
        alloc.release(m.mark);
        traceListHead = m.traceListHead;
    }

    friend void js::frontend::MarkParser(JSTracer* trc, JS::AutoGCRooter* parser);

    const char* getFilename() const { return tokenStream.getFilename(); }
    JSVersion versionNumber() const { return tokenStream.versionNumber(); }

    /*
     * Parse a top-level JS script.
     */
    Node parse();

    /*
     * Allocate a new parsed object or function container from
     * cx->tempLifoAlloc.
     */
    ObjectBox* newObjectBox(JSObject* obj);
    FunctionBox* newFunctionBox(Node fn, JSFunction* fun, ParseContext<ParseHandler>* outerpc,
                                Directives directives, GeneratorKind generatorKind,
                                JSObject* enclosingStaticScope);

    // Use when the funbox is the outermost.
    FunctionBox* newFunctionBox(Node fn, HandleFunction fun, Directives directives,
                                GeneratorKind generatorKind, HandleObject enclosingStaticScope)
    {
        return newFunctionBox(fn, fun, nullptr, directives, generatorKind,
                              enclosingStaticScope);
    }

    // Use when the funbox should be linked to the outerpc's innermost scope.
    FunctionBox* newFunctionBox(Node fn, HandleFunction fun, ParseContext<ParseHandler>* outerpc,
                                Directives directives, GeneratorKind generatorKind)
    {
        RootedObject enclosing(context, outerpc->innermostStaticScope());
        return newFunctionBox(fn, fun, outerpc, directives, generatorKind, enclosing);
    }

    ModuleBox* newModuleBox(Node pn, HandleModuleObject module);

    /*
     * Create a new function object given a name (which is optional if this is
     * a function expression).
     */
    JSFunction* newFunction(HandleAtom atom, FunctionSyntaxKind kind, GeneratorKind generatorKind,
                            HandleObject proto);

    bool generateBlockId(JSObject* staticScope, uint32_t* blockIdOut) {
        if (blockScopes.length() == StmtInfoPC::BlockIdLimit) {
            tokenStream.reportError(JSMSG_NEED_DIET, "program");
            return false;
        }
        MOZ_ASSERT(blockScopes.length() < StmtInfoPC::BlockIdLimit);
        *blockIdOut = blockScopes.length();
        return blockScopes.append(staticScope);
    }

    void trace(JSTracer* trc);

    bool hadAbortedSyntaxParse() {
        return abortedSyntaxParse;
    }
    void clearAbortedSyntaxParse() {
        abortedSyntaxParse = false;
    }

    bool isUnexpectedEOF() const { return isUnexpectedEOF_; }

    bool checkUnescapedName();

  private:
    Parser* thisForCtor() { return this; }

    JSAtom * stopStringCompression();

    Node stringLiteral();
    Node noSubstitutionTemplate();
    Node templateLiteral(YieldHandling yieldHandling);
    bool taggedTemplate(YieldHandling yieldHandling, Node nodeList, TokenKind tt);
    bool appendToCallSiteObj(Node callSiteObj);
    bool addExprAndGetNextTemplStrToken(YieldHandling yieldHandling, Node nodeList,
                                        TokenKind* ttp);
    bool checkStatementsEOF();

    inline Node newName(PropertyName* name);
    inline Node newYieldExpression(uint32_t begin, Node expr, bool isYieldStar = false);

    inline bool abortIfSyntaxParser();

  public:
    /* Public entry points for parsing. */
    Node statement(YieldHandling yieldHandling, bool canHaveDirectives = false);

    bool maybeParseDirective(Node list, Node pn, bool* cont);

    // Parse the body of an eval.
    //
    // Eval scripts are distinguished from global scripts in that in ES6, per
    // 18.2.1.1 steps 9 and 10, all eval scripts are executed under a fresh
    // lexical scope.
    Node evalBody();

    // Parse the body of a global script.
    Node globalBody();

    // Parse a module.
    Node standaloneModule(Handle<ModuleObject*> module);

    // Parse a function, given only its body. Used for the Function and
    // Generator constructors.
    Node standaloneFunctionBody(HandleFunction fun, Handle<PropertyNameVector> formals,
                                GeneratorKind generatorKind,
                                Directives inheritedDirectives, Directives* newDirectives,
                                HandleObject enclosingStaticScope);

    // Parse a function, given only its arguments and body. Used for lazily
    // parsed functions.
    Node standaloneLazyFunction(HandleFunction fun, bool strict, GeneratorKind generatorKind);

    /*
     * Parse a function body.  Pass StatementListBody if the body is a list of
     * statements; pass ExpressionBody if the body is a single expression.
     */
    enum FunctionBodyType { StatementListBody, ExpressionBody };
    Node functionBody(InHandling inHandling, YieldHandling yieldHandling, FunctionSyntaxKind kind,
                      FunctionBodyType type);

    bool functionArgsAndBodyGeneric(InHandling inHandling, YieldHandling yieldHandling, Node pn,
                                    HandleFunction fun, FunctionSyntaxKind kind);

    // Determine whether |yield| is a valid name in the current context, or
    // whether it's prohibited due to strictness, JS version, or occurrence
    // inside a star generator.
    bool checkYieldNameValidity();
    bool yieldExpressionsSupported() {
        return versionNumber() >= JSVERSION_1_7 || pc->isGenerator();
    }

    virtual bool strictMode() { return pc->sc->strict(); }
    bool setLocalStrictMode(bool strict) {
        MOZ_ASSERT(tokenStream.debugHasNoLookahead());
        return pc->sc->setLocalStrictMode(strict);
    }

    const ReadOnlyCompileOptions& options() const {
        return tokenStream.options();
    }

  private:
    enum InvokedPrediction { PredictUninvoked = false, PredictInvoked = true };
    enum ForInitLocation { InForInit, NotInForInit };

  private:
    /*
     * JS parsers, from lowest to highest precedence.
     *
     * Each parser must be called during the dynamic scope of a ParseContext
     * object, pointed to by this->pc.
     *
     * Each returns a parse node tree or null on error.
     *
     * Parsers whose name has a '1' suffix leave the TokenStream state
     * pointing to the token one past the end of the parsed fragment.  For a
     * number of the parsers this is convenient and avoids a lot of
     * unnecessary ungetting and regetting of tokens.
     *
     * Some parsers have two versions:  an always-inlined version (with an 'i'
     * suffix) and a never-inlined version (with an 'n' suffix).
     */
    Node functionStmt(YieldHandling yieldHandling, DefaultHandling defaultHandling);
    Node functionExpr(InvokedPrediction invoked = PredictUninvoked);
    Node statements(YieldHandling yieldHandling);

    Node blockStatement(YieldHandling yieldHandling);
    Node ifStatement(YieldHandling yieldHandling);
    Node doWhileStatement(YieldHandling yieldHandling);
    Node whileStatement(YieldHandling yieldHandling);
    Node forStatement(YieldHandling yieldHandling);
    Node switchStatement(YieldHandling yieldHandling);
    Node continueStatement(YieldHandling yieldHandling);
    Node breakStatement(YieldHandling yieldHandling);
    Node returnStatement(YieldHandling yieldHandling);
    Node withStatement(YieldHandling yieldHandling);
    Node labeledStatement(YieldHandling yieldHandling);
    Node throwStatement(YieldHandling yieldHandling);
    Node tryStatement(YieldHandling yieldHandling);
    Node debuggerStatement();

    Node lexicalDeclaration(YieldHandling yieldHandling, bool isConst);
    Node importDeclaration();
    Node exportDeclaration();
    Node expressionStatement(YieldHandling yieldHandling,
                             InvokedPrediction invoked = PredictUninvoked);
    Node variables(YieldHandling yieldHandling,
                   ParseNodeKind kind,
                   ForInitLocation location,
                   bool* psimple = nullptr, StaticBlockObject* blockObj = nullptr,
                   VarContext varContext = HoistVars);
    Node expr(InHandling inHandling, YieldHandling yieldHandling,
              TripledotHandling tripledotHandling,
              InvokedPrediction invoked = PredictUninvoked);
    Node assignExpr(InHandling inHandling, YieldHandling yieldHandling,
                    TripledotHandling tripledotHandling,
                    InvokedPrediction invoked = PredictUninvoked);
    Node assignExprWithoutYield(YieldHandling yieldHandling, unsigned err);
    Node yieldExpression(InHandling inHandling);
    Node condExpr1(InHandling inHandling, YieldHandling yieldHandling,
                   TripledotHandling tripledotHandling,
                   InvokedPrediction invoked = PredictUninvoked);
    Node orExpr1(InHandling inHandling, YieldHandling yieldHandling,
                 TripledotHandling tripledotHandling,
                   InvokedPrediction invoked = PredictUninvoked);
    Node unaryExpr(YieldHandling yieldHandling, TripledotHandling tripledotHandling,
                   InvokedPrediction invoked = PredictUninvoked);
    Node memberExpr(YieldHandling yieldHandling, TripledotHandling tripledotHandling, TokenKind tt,
                    bool allowCallSyntax, InvokedPrediction invoked = PredictUninvoked);
    Node primaryExpr(YieldHandling yieldHandling, TripledotHandling tripledotHandling, TokenKind tt,
                     InvokedPrediction invoked = PredictUninvoked);
    Node exprInParens(InHandling inHandling, YieldHandling yieldHandling,
                      TripledotHandling tripledotHandling);

    bool tryNewTarget(Node& newTarget);
    bool checkAndMarkSuperScope();

    Node methodDefinition(YieldHandling yieldHandling, PropertyType propType,
                          HandlePropertyName funName);

    /*
     * Additional JS parsers.
     */
    bool functionArguments(YieldHandling yieldHandling, FunctionSyntaxKind kind,
                           Node funcpn, bool* hasRest);

    Node functionDef(InHandling inHandling, YieldHandling uieldHandling, HandlePropertyName name,
                     FunctionSyntaxKind kind, GeneratorKind generatorKind,
                     InvokedPrediction invoked = PredictUninvoked);
    bool functionArgsAndBody(InHandling inHandling, Node pn, HandleFunction fun,
                             FunctionSyntaxKind kind, GeneratorKind generatorKind,
                             Directives inheritedDirectives, Directives* newDirectives);

    Node unaryOpExpr(YieldHandling yieldHandling, ParseNodeKind kind, JSOp op, uint32_t begin);

    Node condition(InHandling inHandling, YieldHandling yieldHandling);

    /* comprehensions */
    Node legacyComprehensionTail(Node kid, unsigned blockid, GeneratorKind comprehensionKind,
                                 ParseContext<ParseHandler>* outerpc,
                                 unsigned innerBlockScopeDepth);
    Node legacyArrayComprehension(Node array);
    Node generatorComprehensionLambda(GeneratorKind comprehensionKind, unsigned begin,
                                      Node innerStmt);
    Node legacyGeneratorExpr(Node kid);
    Node comprehensionFor(GeneratorKind comprehensionKind);
    Node comprehensionIf(GeneratorKind comprehensionKind);
    Node comprehensionTail(GeneratorKind comprehensionKind);
    Node comprehension(GeneratorKind comprehensionKind);
    Node arrayComprehension(uint32_t begin);
    Node generatorComprehension(uint32_t begin);

    bool argumentList(YieldHandling yieldHandling, Node listNode, bool* isSpread);
    Node destructuringExpr(YieldHandling yieldHandling, BindData<ParseHandler>* data,
                           TokenKind tt);
    Node destructuringExprWithoutYield(YieldHandling yieldHandling, BindData<ParseHandler>* data,
                                       TokenKind tt, unsigned msg);

    Node newBoundImportForCurrentName();
    bool namedImportsOrNamespaceImport(TokenKind tt, Node importSpecSet);
    bool addExportName(JSAtom* exportName);

    enum ClassContext { ClassStatement, ClassExpression };
    Node classDefinition(YieldHandling yieldHandling, ClassContext classContext, DefaultHandling defaultHandling);

    Node identifierName(YieldHandling yieldHandling);

    bool matchLabel(YieldHandling yieldHandling, MutableHandle<PropertyName*> label);

    bool allowsForEachIn() {
#if !JS_HAS_FOR_EACH_IN
        return false;
#else
        return versionNumber() >= JSVERSION_1_6;
#endif
    }

    enum AssignmentFlavor {
        PlainAssignment,
        CompoundAssignment,
        KeyedDestructuringAssignment,
        IncrementAssignment,
        DecrementAssignment
    };

    bool checkAndMarkAsAssignmentLhs(Node pn, AssignmentFlavor flavor);
    bool matchInOrOf(bool* isForInp, bool* isForOfp);

    bool checkFunctionArguments();
    bool makeDefIntoUse(Definition* dn, Node pn, HandleAtom atom);
    bool checkFunctionDefinition(HandlePropertyName funName, Node* pn, FunctionSyntaxKind kind,
                                 bool* pbodyProcessed);
    bool finishFunctionDefinition(Node pn, FunctionBox* funbox, Node body);
    bool addFreeVariablesFromLazyFunction(JSFunction* fun, ParseContext<ParseHandler>* pc);

    bool isValidForStatementLHS(Node pn1, JSVersion version, bool forDecl, bool forEach,
                                ParseNodeKind headKind);
    bool checkForHeadConstInitializers(Node pn1);

    // Use when the current token is TOK_NAME and is known to be 'let'.
    bool shouldParseLetDeclaration(bool* parseDeclOut);

    // Use when the lookahead token is TOK_NAME and is known to be 'let'. If a
    // let declaration should be parsed, the TOK_NAME token of 'let' is
    // consumed. Otherwise, the current token remains the TOK_NAME token of
    // 'let'.
    bool peekShouldParseLetDeclaration(bool* parseDeclOut, TokenStream::Modifier modifier);

  public:
    enum FunctionCallBehavior {
        PermitAssignmentToFunctionCalls,
        ForbidAssignmentToFunctionCalls
    };

    bool isValidSimpleAssignmentTarget(Node node,
                                       FunctionCallBehavior behavior = ForbidAssignmentToFunctionCalls);

  private:
    bool reportIfArgumentsEvalTarget(Node nameNode);
    bool reportIfNotValidSimpleAssignmentTarget(Node target, AssignmentFlavor flavor);

    bool checkAndMarkAsIncOperand(Node kid, AssignmentFlavor flavor);

    bool checkStrictAssignment(Node lhs);

    bool checkStrictBinding(PropertyName* name, Node pn);
    bool defineArg(Node funcpn, HandlePropertyName name,
                   bool disallowDuplicateArgs = false, Node* duplicatedArg = nullptr);
    Node pushLexicalScope(AutoPushStmtInfoPC& stmt);
    Node pushLexicalScope(Handle<StaticBlockObject*> blockObj, AutoPushStmtInfoPC& stmt);
    Node pushLetScope(Handle<StaticBlockObject*> blockObj, AutoPushStmtInfoPC& stmt);
    bool noteNameUse(HandlePropertyName name, Node pn);
    Node propertyName(YieldHandling yieldHandling, Node propList,
                      PropertyType* propType, MutableHandleAtom propAtom);
    Node computedPropertyName(YieldHandling yieldHandling, Node literal);
    Node arrayInitializer(YieldHandling yieldHandling);
    Node newRegExp();

    Node objectLiteral(YieldHandling yieldHandling);

    bool checkAndPrepareLexical(bool isConst, const TokenPos& errorPos);
    Node makeInitializedLexicalBinding(HandlePropertyName name, bool isConst, const TokenPos& pos);

    Node newBindingNode(PropertyName* name, bool functionScope, VarContext varContext = HoistVars);

    // Top-level entrypoint into destructuring pattern checking/name-analyzing.
    bool checkDestructuringPattern(BindData<ParseHandler>* data, Node pattern);

    // Recursive methods for checking/name-analyzing subcomponents of a
    // destructuring pattern.  The array/object methods *must* be passed arrays
    // or objects.  The name method may be passed anything but will report an
    // error if not passed a name.
    bool checkDestructuringArray(BindData<ParseHandler>* data, Node arrayPattern);
    bool checkDestructuringObject(BindData<ParseHandler>* data, Node objectPattern);
    bool checkDestructuringName(BindData<ParseHandler>* data, Node expr);

    bool bindInitialized(BindData<ParseHandler>* data, Node pn);
    bool bindUninitialized(BindData<ParseHandler>* data, Node pn);
    bool makeSetCall(Node node, unsigned errnum);
    Node cloneDestructuringDefault(Node opn);
    Node cloneLeftHandSide(Node opn);
    Node cloneParseTree(Node opn);

    Node newNumber(const Token& tok) {
        return handler.newNumber(tok.number(), tok.decimalPoint(), tok.pos);
    }

    static bool
    bindDestructuringArg(BindData<ParseHandler>* data,
                         HandlePropertyName name, Parser<ParseHandler>* parser);

    static bool
    bindLexical(BindData<ParseHandler>* data,
                HandlePropertyName name, Parser<ParseHandler>* parser);

    static bool
    bindVar(BindData<ParseHandler>* data,
            HandlePropertyName name, Parser<ParseHandler>* parser);

    static Node null() { return ParseHandler::null(); }

    bool reportRedeclaration(Node pn, Definition::Kind redeclKind, HandlePropertyName name);
    bool reportBadReturn(Node pn, ParseReportKind kind, unsigned errnum, unsigned anonerrnum);
    DefinitionNode getOrCreateLexicalDependency(ParseContext<ParseHandler>* pc, JSAtom* atom);

    bool leaveFunction(Node fn, ParseContext<ParseHandler>* outerpc,
                       FunctionSyntaxKind kind = Expression);

    TokenPos pos() const { return tokenStream.currentToken().pos; }

    bool asmJS(Node list);

    void addTelemetry(JSCompartment::DeprecatedLanguageExtension e);

    friend class LegacyCompExprTransplanter;
    friend struct BindData<ParseHandler>;
};

} /* namespace frontend */
} /* namespace js */

/*
 * Convenience macro to access Parser.tokenStream as a pointer.
 */
#define TS(p) (&(p)->tokenStream)

#endif /* frontend_Parser_h */