DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (fddffdeab170)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// This is the implementation of decompression of the proposed WOFF Ultra
// Condensed file format.

#include <cassert>
#include <cstdlib>
#include <vector>

#include "decode.h"

#include "opentype-sanitiser.h"
#include "ots-memory-stream.h"
#include "ots.h"
#include "woff2.h"

#define TABLE_NAME "WOFF2"

namespace {

// simple glyph flags
const uint8_t kGlyfOnCurve = 1 << 0;
const uint8_t kGlyfXShort = 1 << 1;
const uint8_t kGlyfYShort = 1 << 2;
const uint8_t kGlyfRepeat = 1 << 3;
const uint8_t kGlyfThisXIsSame = 1 << 4;
const uint8_t kGlyfThisYIsSame = 1 << 5;

// composite glyph flags
const int FLAG_ARG_1_AND_2_ARE_WORDS = 1 << 0;
const int FLAG_WE_HAVE_A_SCALE = 1 << 3;
const int FLAG_MORE_COMPONENTS = 1 << 5;
const int FLAG_WE_HAVE_AN_X_AND_Y_SCALE = 1 << 6;
const int FLAG_WE_HAVE_A_TWO_BY_TWO = 1 << 7;
const int FLAG_WE_HAVE_INSTRUCTIONS = 1 << 8;

const size_t kSfntHeaderSize = 12;
const size_t kSfntEntrySize = 16;
const size_t kCheckSumAdjustmentOffset = 8;

const size_t kEndPtsOfContoursOffset = 10;
const size_t kCompositeGlyphBegin = 10;

const unsigned int kWoff2FlagsTransform = 1 << 5;

const uint32_t kKnownTags[] = {
  OTS_TAG('c','m','a','p'),  // 0
  OTS_TAG('h','e','a','d'),  // 1
  OTS_TAG('h','h','e','a'),  // 2
  OTS_TAG('h','m','t','x'),  // 3
  OTS_TAG('m','a','x','p'),  // 4
  OTS_TAG('n','a','m','e'),  // 5
  OTS_TAG('O','S','/','2'),  // 6
  OTS_TAG('p','o','s','t'),  // 7
  OTS_TAG('c','v','t',' '),  // 8
  OTS_TAG('f','p','g','m'),  // 9
  OTS_TAG('g','l','y','f'),  // 10
  OTS_TAG('l','o','c','a'),  // 11
  OTS_TAG('p','r','e','p'),  // 12
  OTS_TAG('C','F','F',' '),  // 13
  OTS_TAG('V','O','R','G'),  // 14
  OTS_TAG('E','B','D','T'),  // 15
  OTS_TAG('E','B','L','C'),  // 16
  OTS_TAG('g','a','s','p'),  // 17
  OTS_TAG('h','d','m','x'),  // 18
  OTS_TAG('k','e','r','n'),  // 19
  OTS_TAG('L','T','S','H'),  // 20
  OTS_TAG('P','C','L','T'),  // 21
  OTS_TAG('V','D','M','X'),  // 22
  OTS_TAG('v','h','e','a'),  // 23
  OTS_TAG('v','m','t','x'),  // 24
  OTS_TAG('B','A','S','E'),  // 25
  OTS_TAG('G','D','E','F'),  // 26
  OTS_TAG('G','P','O','S'),  // 27
  OTS_TAG('G','S','U','B'),  // 28
  OTS_TAG('E','B','S','C'),  // 29
  OTS_TAG('J','S','T','F'),  // 30
  OTS_TAG('M','A','T','H'),  // 31
  OTS_TAG('C','B','D','T'),  // 32
  OTS_TAG('C','B','L','C'),  // 33
  OTS_TAG('C','O','L','R'),  // 34
  OTS_TAG('C','P','A','L'),  // 35
  OTS_TAG('S','V','G',' '),  // 36
  OTS_TAG('s','b','i','x'),  // 37
  OTS_TAG('a','c','n','t'),  // 38
  OTS_TAG('a','v','a','r'),  // 39
  OTS_TAG('b','d','a','t'),  // 40
  OTS_TAG('b','l','o','c'),  // 41
  OTS_TAG('b','s','l','n'),  // 42
  OTS_TAG('c','v','a','r'),  // 43
  OTS_TAG('f','d','s','c'),  // 44
  OTS_TAG('f','e','a','t'),  // 45
  OTS_TAG('f','m','t','x'),  // 46
  OTS_TAG('f','v','a','r'),  // 47
  OTS_TAG('g','v','a','r'),  // 48
  OTS_TAG('h','s','t','y'),  // 49
  OTS_TAG('j','u','s','t'),  // 50
  OTS_TAG('l','c','a','r'),  // 51
  OTS_TAG('m','o','r','t'),  // 52
  OTS_TAG('m','o','r','x'),  // 53
  OTS_TAG('o','p','b','d'),  // 54
  OTS_TAG('p','r','o','p'),  // 55
  OTS_TAG('t','r','a','k'),  // 56
  OTS_TAG('Z','a','p','f'),  // 57
  OTS_TAG('S','i','l','f'),  // 58
  OTS_TAG('G','l','a','t'),  // 59
  OTS_TAG('G','l','o','c'),  // 60
  OTS_TAG('F','e','a','t'),  // 61
  OTS_TAG('S','i','l','l'),  // 62
};

struct Point {
  int16_t x;
  int16_t y;
  bool on_curve;
};

struct Table {
  uint32_t tag;
  uint32_t flags;

  uint32_t transform_length;

  uint32_t dst_offset;
  uint32_t dst_length;

  Table()
      : tag(0),
        flags(0),
        transform_length(0),
        dst_offset(0),
        dst_length(0) {}

  bool operator<(const Table& other) const {
    return tag < other.tag;
  }
};

// Based on section 6.1.1 of MicroType Express draft spec
bool Read255UShort(ots::Buffer* buf, uint16_t* value) {
  static const uint8_t kWordCode = 253;
  static const uint8_t kOneMoreByteCode2 = 254;
  static const uint8_t kOneMoreByteCode1 = 255;
  static const uint8_t kLowestUCode = 253;
  uint8_t code = 0;
  if (!buf->ReadU8(&code)) {
    return OTS_FAILURE();
  }
  if (code == kWordCode) {
    uint16_t result = 0;
    if (!buf->ReadU16(&result)) {
      return OTS_FAILURE();
    }
    *value = result;
    return true;
  } else if (code == kOneMoreByteCode1) {
    uint8_t result = 0;
    if (!buf->ReadU8(&result)) {
      return OTS_FAILURE();
    }
    *value = result + kLowestUCode;
    return true;
  } else if (code == kOneMoreByteCode2) {
    uint8_t result = 0;
    if (!buf->ReadU8(&result)) {
      return OTS_FAILURE();
    }
    *value = result + kLowestUCode * 2;
    return true;
  } else {
    *value = code;
    return true;
  }
}

bool ReadBase128(ots::Buffer* buf, uint32_t* value) {
  uint32_t result = 0;
  for (size_t i = 0; i < 5; ++i) {
    uint8_t code = 0;
    if (!buf->ReadU8(&code)) {
      return OTS_FAILURE();
    }
    if (i == 0 && code == 0x80) {
      return OTS_FAILURE();
    }
    // If any of the top seven bits are set then we're about to overflow.
    if (result & 0xfe000000U) {
      return OTS_FAILURE();
    }
    result = (result << 7) | (code & 0x7f);
    if ((code & 0x80) == 0) {
      *value = result;
      return true;
    }
  }
  // Make sure not to exceed the size bound
  return OTS_FAILURE();
}

// Caller must ensure that buffer overrun won't happen.
// TODO(ksakamaoto): Consider creating 'writer' version of the Buffer class
// and use it across the code.
size_t StoreU32(uint8_t* dst, size_t offset, uint32_t x) {
  dst[offset] = x >> 24;
  dst[offset + 1] = (x >> 16) & 0xff;
  dst[offset + 2] = (x >> 8) & 0xff;
  dst[offset + 3] = x & 0xff;
  return offset + 4;
}

size_t StoreU16(uint8_t* dst, size_t offset, uint16_t x) {
  dst[offset] = x >> 8;
  dst[offset + 1] = x & 0xff;
  return offset + 2;
}

int WithSign(int flag, int baseval) {
  assert(0 <= baseval && baseval < 65536);
  return (flag & 1) ? baseval : -baseval;
}

bool TripletDecode(const uint8_t* flags_in, const uint8_t* in, size_t in_size,
    unsigned int n_points, std::vector<Point>* result,
    size_t* in_bytes_consumed) {
  int x = 0;
  int y = 0;

  // Early return if |in| buffer is too small. Each point consumes 1-4 bytes.
  if (n_points > in_size) {
    return OTS_FAILURE();
  }
  unsigned int triplet_index = 0;

  for (unsigned int i = 0; i < n_points; ++i) {
    uint8_t flag = flags_in[i];
    bool on_curve = !(flag >> 7);
    flag &= 0x7f;
    unsigned int n_data_bytes;
    if (flag < 84) {
      n_data_bytes = 1;
    } else if (flag < 120) {
      n_data_bytes = 2;
    } else if (flag < 124) {
      n_data_bytes = 3;
    } else {
      n_data_bytes = 4;
    }
    if (triplet_index + n_data_bytes > in_size ||
        triplet_index + n_data_bytes < triplet_index) {
      return OTS_FAILURE();
    }
    int dx, dy;
    if (flag < 10) {
      dx = 0;
      dy = WithSign(flag, ((flag & 14) << 7) + in[triplet_index]);
    } else if (flag < 20) {
      dx = WithSign(flag, (((flag - 10) & 14) << 7) + in[triplet_index]);
      dy = 0;
    } else if (flag < 84) {
      int b0 = flag - 20;
      int b1 = in[triplet_index];
      dx = WithSign(flag, 1 + (b0 & 0x30) + (b1 >> 4));
      dy = WithSign(flag >> 1, 1 + ((b0 & 0x0c) << 2) + (b1 & 0x0f));
    } else if (flag < 120) {
      int b0 = flag - 84;
      dx = WithSign(flag, 1 + ((b0 / 12) << 8) + in[triplet_index]);
      dy = WithSign(flag >> 1,
                    1 + (((b0 % 12) >> 2) << 8) + in[triplet_index + 1]);
    } else if (flag < 124) {
      int b2 = in[triplet_index + 1];
      dx = WithSign(flag, (in[triplet_index] << 4) + (b2 >> 4));
      dy = WithSign(flag >> 1, ((b2 & 0x0f) << 8) + in[triplet_index + 2]);
    } else {
      dx = WithSign(flag, (in[triplet_index] << 8) + in[triplet_index + 1]);
      dy = WithSign(flag >> 1,
          (in[triplet_index + 2] << 8) + in[triplet_index + 3]);
    }
    triplet_index += n_data_bytes;
    // Possible overflow but coordinate values are not security sensitive
    x += dx;
    y += dy;
    result->push_back(Point());
    Point& back = result->back();
    back.x = static_cast<int16_t>(x);
    back.y = static_cast<int16_t>(y);
    back.on_curve = on_curve;
  }
  *in_bytes_consumed = triplet_index;
  return true;
}

// This function stores just the point data. On entry, dst points to the
// beginning of a simple glyph. Returns true on success.
bool StorePoints(const std::vector<Point>& points,
    unsigned int n_contours, unsigned int instruction_length,
    uint8_t* dst, size_t dst_size, size_t* glyph_size) {
  // I believe that n_contours < 65536, in which case this is safe. However, a
  // comment and/or an assert would be good.
  unsigned int flag_offset = kEndPtsOfContoursOffset + 2 * n_contours + 2 +
    instruction_length;
  uint8_t last_flag = 0xff;
  uint8_t repeat_count = 0;
  int last_x = 0;
  int last_y = 0;
  unsigned int x_bytes = 0;
  unsigned int y_bytes = 0;

  for (size_t i = 0; i < points.size(); ++i) {
    const Point& point = points.at(i);
    uint8_t flag = point.on_curve ? kGlyfOnCurve : 0;
    int dx = point.x - last_x;
    int dy = point.y - last_y;
    if (dx == 0) {
      flag |= kGlyfThisXIsSame;
    } else if (dx > -256 && dx < 256) {
      flag |= kGlyfXShort | (dx > 0 ? kGlyfThisXIsSame : 0);
      x_bytes += 1;
    } else {
      x_bytes += 2;
    }
    if (dy == 0) {
      flag |= kGlyfThisYIsSame;
    } else if (dy > -256 && dy < 256) {
      flag |= kGlyfYShort | (dy > 0 ? kGlyfThisYIsSame : 0);
      y_bytes += 1;
    } else {
      y_bytes += 2;
    }

    if (flag == last_flag && repeat_count != 255) {
      dst[flag_offset - 1] |= kGlyfRepeat;
      repeat_count++;
    } else {
      if (repeat_count != 0) {
        if (flag_offset >= dst_size) {
          return OTS_FAILURE();
        }
        dst[flag_offset++] = repeat_count;
      }
      if (flag_offset >= dst_size) {
        return OTS_FAILURE();
      }
      dst[flag_offset++] = flag;
      repeat_count = 0;
    }
    last_x = point.x;
    last_y = point.y;
    last_flag = flag;
  }

  if (repeat_count != 0) {
    if (flag_offset >= dst_size) {
      return OTS_FAILURE();
    }
    dst[flag_offset++] = repeat_count;
  }
  unsigned int xy_bytes = x_bytes + y_bytes;
  if (xy_bytes < x_bytes ||
      flag_offset + xy_bytes < flag_offset ||
      flag_offset + xy_bytes > dst_size) {
    return OTS_FAILURE();
  }

  int x_offset = flag_offset;
  int y_offset = flag_offset + x_bytes;
  last_x = 0;
  last_y = 0;
  for (size_t i = 0; i < points.size(); ++i) {
    int dx = points.at(i).x - last_x;
    if (dx == 0) {
      // pass
    } else if (dx > -256 && dx < 256) {
      dst[x_offset++] = static_cast<uint8_t>(std::abs(dx));
    } else {
      // will always fit for valid input, but overflow is harmless
      x_offset = StoreU16(dst, x_offset, static_cast<uint16_t>(dx));
    }
    last_x += dx;
    int dy = points.at(i).y - last_y;
    if (dy == 0) {
      // pass
    } else if (dy > -256 && dy < 256) {
      dst[y_offset++] = static_cast<uint8_t>(std::abs(dy));
    } else {
      y_offset = StoreU16(dst, y_offset, static_cast<uint16_t>(dy));
    }
    last_y += dy;
  }
  *glyph_size = y_offset;
  return true;
}

// Compute the bounding box of the coordinates, and store into a glyf buffer.
// A precondition is that there are at least 10 bytes available.
void ComputeBbox(const std::vector<Point>& points, uint8_t* dst) {
  int16_t x_min = 0;
  int16_t y_min = 0;
  int16_t x_max = 0;
  int16_t y_max = 0;

  for (size_t i = 0; i < points.size(); ++i) {
    int16_t x = points.at(i).x;
    int16_t y = points.at(i).y;
    if (i == 0 || x < x_min) x_min = x;
    if (i == 0 || x > x_max) x_max = x;
    if (i == 0 || y < y_min) y_min = y;
    if (i == 0 || y > y_max) y_max = y;
  }
  size_t offset = 2;
  offset = StoreU16(dst, offset, x_min);
  offset = StoreU16(dst, offset, y_min);
  offset = StoreU16(dst, offset, x_max);
  offset = StoreU16(dst, offset, y_max);
}

// Process entire bbox stream. This is done as a separate pass to allow for
// composite bbox computations (an optional more aggressive transform).
bool ProcessBboxStream(ots::Buffer* bbox_stream, unsigned int n_glyphs,
    const std::vector<uint32_t>& loca_values, uint8_t* glyf_buf,
    size_t glyf_buf_length) {
  const uint8_t* buf = bbox_stream->buffer();
  if (n_glyphs >= 65536 || loca_values.size() != n_glyphs + 1) {
    return OTS_FAILURE();
  }
  // Safe because n_glyphs is bounded
  unsigned int bitmap_length = ((n_glyphs + 31) >> 5) << 2;
  if (!bbox_stream->Skip(bitmap_length)) {
    return OTS_FAILURE();
  }
  for (unsigned int i = 0; i < n_glyphs; ++i) {
    if (buf[i >> 3] & (0x80 >> (i & 7))) {
      uint32_t loca_offset = loca_values.at(i);
      if (loca_values.at(i + 1) - loca_offset < kEndPtsOfContoursOffset) {
        return OTS_FAILURE();
      }
      if (glyf_buf_length < 2 + 10 ||
          loca_offset > glyf_buf_length - 2 - 10) {
        return OTS_FAILURE();
      }
      if (!bbox_stream->Read(glyf_buf + loca_offset + 2, 8)) {
        return OTS_FAILURE();
      }
    }
  }
  return true;
}

bool ProcessComposite(ots::Buffer* composite_stream, uint8_t* dst,
    size_t dst_size, size_t* glyph_size, bool* have_instructions) {
  size_t start_offset = composite_stream->offset();
  bool we_have_instructions = false;

  uint16_t flags = FLAG_MORE_COMPONENTS;
  while (flags & FLAG_MORE_COMPONENTS) {
    if (!composite_stream->ReadU16(&flags)) {
      return OTS_FAILURE();
    }
    we_have_instructions |= (flags & FLAG_WE_HAVE_INSTRUCTIONS) != 0;
    size_t arg_size = 2;  // glyph index
    if (flags & FLAG_ARG_1_AND_2_ARE_WORDS) {
      arg_size += 4;
    } else {
      arg_size += 2;
    }
    if (flags & FLAG_WE_HAVE_A_SCALE) {
      arg_size += 2;
    } else if (flags & FLAG_WE_HAVE_AN_X_AND_Y_SCALE) {
      arg_size += 4;
    } else if (flags & FLAG_WE_HAVE_A_TWO_BY_TWO) {
      arg_size += 8;
    }
    if (!composite_stream->Skip(arg_size)) {
      return OTS_FAILURE();
    }
  }
  size_t composite_glyph_size = composite_stream->offset() - start_offset;
  if (composite_glyph_size + kCompositeGlyphBegin > dst_size) {
    return OTS_FAILURE();
  }
  StoreU16(dst, 0, 0xffff);  // nContours = -1 for composite glyph
  std::memcpy(dst + kCompositeGlyphBegin,
      composite_stream->buffer() + start_offset,
      composite_glyph_size);
  *glyph_size = kCompositeGlyphBegin + composite_glyph_size;
  *have_instructions = we_have_instructions;
  return true;
}

// Build TrueType loca table
bool StoreLoca(const std::vector<uint32_t>& loca_values, int index_format,
    uint8_t* dst, size_t dst_size) {
  const uint64_t loca_size = loca_values.size();
  const uint64_t offset_size = index_format ? 4 : 2;
  if ((loca_size << 2) >> 2 != loca_size) {
    return OTS_FAILURE();
  }
  // No integer overflow here (loca_size <= 2^16).
  if (offset_size * loca_size > dst_size) {
    return OTS_FAILURE();
  }
  size_t offset = 0;
  for (size_t i = 0; i < loca_values.size(); ++i) {
    uint32_t value = loca_values.at(i);
    if (index_format) {
      offset = StoreU32(dst, offset, value);
    } else {
      offset = StoreU16(dst, offset, static_cast<uint16_t>(value >> 1));
    }
  }
  return true;
}

// Reconstruct entire glyf table based on transformed original
bool ReconstructGlyf(ots::Font *font,
    const uint8_t* data, size_t data_size,
    uint8_t* dst, size_t dst_size,
    uint8_t* loca_buf, size_t loca_size) {
  static const int kNumSubStreams = 7;
  ots::Buffer buffer(data, data_size);
  uint32_t version;
  std::vector<std::pair<const uint8_t*, size_t> > substreams(kNumSubStreams);

  if (!buffer.ReadU32(&version)) {
    return OTS_FAILURE_MSG("Failed to read 'version' of transformed 'glyf' table");
  }
  uint16_t num_glyphs;
  if (!buffer.ReadU16(&num_glyphs)) {
    return OTS_FAILURE_MSG("Failed to read 'numGlyphs' from transformed 'glyf' table");
  }
  uint16_t index_format;
  if (!buffer.ReadU16(&index_format)) {
    return OTS_FAILURE_MSG("Failed to read 'indexFormat' from transformed 'glyf' table");
  }
  unsigned int offset = (2 + kNumSubStreams) * 4;
  if (offset > data_size) {
    return OTS_FAILURE_MSG("Size of transformed 'glyf' table is too small to fit its data");
  }
  // Invariant from here on: data_size >= offset
  for (int i = 0; i < kNumSubStreams; ++i) {
    uint32_t substream_size;
    if (!buffer.ReadU32(&substream_size)) {
      return OTS_FAILURE_MSG("Failed to read substream size %d of transformed 'glyf' table", i);
    }
    if (substream_size > data_size - offset) {
      return OTS_FAILURE_MSG("Size of substream %d of transformed 'glyf' table does not fit in table size");
    }
    substreams.at(i) = std::make_pair(data + offset, substream_size);
    offset += substream_size;
  }
  ots::Buffer n_contour_stream(substreams.at(0).first, substreams.at(0).second);
  ots::Buffer n_points_stream(substreams.at(1).first, substreams.at(1).second);
  ots::Buffer flag_stream(substreams.at(2).first, substreams.at(2).second);
  ots::Buffer glyph_stream(substreams.at(3).first, substreams.at(3).second);
  ots::Buffer composite_stream(substreams.at(4).first, substreams.at(4).second);
  ots::Buffer bbox_stream(substreams.at(5).first, substreams.at(5).second);
  ots::Buffer instruction_stream(substreams.at(6).first,
                                 substreams.at(6).second);

  std::vector<uint32_t> loca_values;
  loca_values.reserve(num_glyphs + 1);
  std::vector<uint16_t> n_points_vec;
  std::vector<Point> points;
  uint32_t loca_offset = 0;
  const uint8_t* bbox_bitmap = bbox_stream.buffer();
  for (unsigned int i = 0; i < num_glyphs; ++i) {
    size_t glyph_size = 0;
    uint16_t n_contours = 0;
    if (!n_contour_stream.ReadU16(&n_contours)) {
      return OTS_FAILURE_MSG("Filed to read 'numberOfContours' of glyph %d from transformed 'glyf' table", i);
    }
    uint8_t* glyf_dst = dst + loca_offset;
    size_t glyf_dst_size = dst_size - loca_offset;
    if (n_contours == 0xffff) {
      // composite glyph
      if (!(bbox_bitmap[i >> 3] & (0x80 >> (i & 7)))) {
        return OTS_FAILURE_MSG("Composite glyph %d without bbox", i);
      }
      bool have_instructions = false;
      uint16_t instruction_size = 0;
      if (!ProcessComposite(&composite_stream, glyf_dst, glyf_dst_size,
            &glyph_size, &have_instructions)) {
        return OTS_FAILURE_MSG("Filed to process composite glyph %d from transformed 'glyf' table", i);
      }
      if (have_instructions) {
        if (!Read255UShort(&glyph_stream, &instruction_size)) {
          return OTS_FAILURE_MSG("Failed to read 'instructionLength' of glyph %d from transformed 'glyf' table", i);
        }
        // No integer overflow here (instruction_size < 2^16).
        if (instruction_size + 2U > glyf_dst_size - glyph_size) {
          return OTS_FAILURE_MSG("'instructionLength' of glyph %d from transformed 'glyf' table does not fit in the destination glyph size", i);
        }
        StoreU16(glyf_dst, glyph_size, instruction_size);
        if (!instruction_stream.Read(glyf_dst + glyph_size + 2,
              instruction_size)) {
          return OTS_FAILURE_MSG("Filed to read instructions of glyph %d from transformed 'glyf' table", i);
        }
        glyph_size += instruction_size + 2;
      }
    } else if (n_contours > 0) {
      // simple glyph
      n_points_vec.clear();
      points.clear();
      uint32_t total_n_points = 0;
      uint16_t n_points_contour;
      for (uint32_t j = 0; j < n_contours; ++j) {
        if (!Read255UShort(&n_points_stream, &n_points_contour)) {
          return OTS_FAILURE_MSG("Filed to read number of points of contour %d of glyph %d from transformed 'glyf' table", j, i);
        }
        n_points_vec.push_back(n_points_contour);
        if (total_n_points + n_points_contour < total_n_points) {
          return OTS_FAILURE_MSG("Negative number of points of contour %d of glyph %d from transformed 'glyf' table", j, i);
        }
        total_n_points += n_points_contour;
      }
      uint32_t flag_size = total_n_points;
      if (flag_size > flag_stream.length() - flag_stream.offset()) {
        return OTS_FAILURE();
      }
      const uint8_t* flags_buf = flag_stream.buffer() + flag_stream.offset();
      const uint8_t* triplet_buf = glyph_stream.buffer() +
        glyph_stream.offset();
      size_t triplet_size = glyph_stream.length() - glyph_stream.offset();
      size_t triplet_bytes_consumed = 0;
      if (!TripletDecode(flags_buf, triplet_buf, triplet_size, total_n_points,
            &points, &triplet_bytes_consumed)) {
        return OTS_FAILURE();
      }
      const uint32_t header_and_endpts_contours_size =
          kEndPtsOfContoursOffset + 2 * n_contours;
      if (glyf_dst_size < header_and_endpts_contours_size) {
        return OTS_FAILURE();
      }
      StoreU16(glyf_dst, 0, n_contours);
      ComputeBbox(points, glyf_dst);
      size_t endpts_offset = kEndPtsOfContoursOffset;
      int end_point = -1;
      for (unsigned int contour_ix = 0; contour_ix < n_contours; ++contour_ix) {
        end_point += n_points_vec.at(contour_ix);
        if (end_point >= 65536) {
          return OTS_FAILURE();
        }
        endpts_offset = StoreU16(glyf_dst, endpts_offset, static_cast<uint16_t>(end_point));
      }
      if (!flag_stream.Skip(flag_size)) {
        return OTS_FAILURE();
      }
      if (!glyph_stream.Skip(triplet_bytes_consumed)) {
        return OTS_FAILURE();
      }
      uint16_t instruction_size;
      if (!Read255UShort(&glyph_stream, &instruction_size)) {
        return OTS_FAILURE();
      }
      // No integer overflow here (instruction_size < 2^16).
      if (glyf_dst_size - header_and_endpts_contours_size <
          instruction_size + 2U) {
        return OTS_FAILURE();
      }
      uint8_t* instruction_dst = glyf_dst + header_and_endpts_contours_size;
      StoreU16(instruction_dst, 0, instruction_size);
      if (!instruction_stream.Read(instruction_dst + 2, instruction_size)) {
        return OTS_FAILURE();
      }
      if (!StorePoints(points, n_contours, instruction_size,
            glyf_dst, glyf_dst_size, &glyph_size)) {
        return OTS_FAILURE_MSG("Failed to store points of glyph %d from the transformed 'glyf' table", i);
      }
    } else {
      glyph_size = 0;
    }
    loca_values.push_back(loca_offset);
    if (glyph_size + 3 < glyph_size) {
      return OTS_FAILURE();
    }
    glyph_size = ots::Round2(glyph_size);
    if (glyph_size > dst_size - loca_offset) {
      // This shouldn't happen, but this test defensively maintains the
      // invariant that loca_offset <= dst_size.
      return OTS_FAILURE();
    }
    loca_offset += glyph_size;
  }
  loca_values.push_back(loca_offset);
  assert(loca_values.size() == static_cast<size_t>(num_glyphs + 1));
  if (!ProcessBboxStream(&bbox_stream, num_glyphs, loca_values,
          dst, dst_size)) {
    return OTS_FAILURE_MSG("Filed to process 'bboxStream' from the transformed 'glyf' table");
  }
  return StoreLoca(loca_values, index_format, loca_buf, loca_size);
}

// This is linear search, but could be changed to binary because we
// do have a guarantee that the tables are sorted by tag. But the total
// cpu time is expected to be very small in any case.
const Table* FindTable(const std::vector<Table>& tables, uint32_t tag) {
  size_t n_tables = tables.size();
  for (size_t i = 0; i < n_tables; ++i) {
    if (tables.at(i).tag == tag) {
      return &tables.at(i);
    }
  }
  return NULL;
}

bool ReconstructTransformed(ots::Font *font,
    const std::vector<Table>& tables, uint32_t tag,
    const uint8_t* transformed_buf, size_t transformed_size,
    uint8_t* dst, size_t dst_length) {
  if (tag == OTS_TAG('g','l','y','f')) {
    const Table* glyf_table = FindTable(tables, tag);
    const Table* loca_table = FindTable(tables, OTS_TAG('l','o','c','a'));
    if (glyf_table == NULL || loca_table == NULL) {
      return OTS_FAILURE();
    }
    if (static_cast<uint64_t>(glyf_table->dst_offset) + glyf_table->dst_length >
        dst_length) {
      return OTS_FAILURE();
    }
    if (static_cast<uint64_t>(loca_table->dst_offset) + loca_table->dst_length >
        dst_length) {
      return OTS_FAILURE();
    }
    return ReconstructGlyf(font, transformed_buf, transformed_size,
        dst + glyf_table->dst_offset, glyf_table->dst_length,
        dst + loca_table->dst_offset, loca_table->dst_length);
  } else if (tag == OTS_TAG('l','o','c','a')) {
    // processing was already done by glyf table, but validate
    if (!FindTable(tables, OTS_TAG('g','l','y','f'))) {
      return OTS_FAILURE();
    }
  } else {
    // transform for the tag is not known
    return OTS_FAILURE();
  }
  return true;
}

uint32_t ComputeChecksum(const uint8_t* buf, size_t size) {
  uint32_t checksum = 0;
  for (size_t i = 0; i < size; i += 4) {
    // We assume the addition is mod 2^32, which is valid because unsigned
    checksum += (buf[i] << 24) | (buf[i + 1] << 16) |
      (buf[i + 2] << 8) | buf[i + 3];
  }
  return checksum;
}

bool FixChecksums(const std::vector<Table>& tables, uint8_t* dst) {
  const Table* head_table = FindTable(tables, OTS_TAG('h','e','a','d'));
  if (head_table == NULL ||
      head_table->dst_length < kCheckSumAdjustmentOffset + 4) {
    return OTS_FAILURE();
  }
  size_t adjustment_offset = head_table->dst_offset + kCheckSumAdjustmentOffset;
  if (adjustment_offset < head_table->dst_offset) {
    return OTS_FAILURE();
  }
  StoreU32(dst, adjustment_offset, 0);
  size_t n_tables = tables.size();
  uint32_t file_checksum = 0;
  for (size_t i = 0; i < n_tables; ++i) {
    const Table* table = &tables.at(i);
    size_t table_length = table->dst_length;
    uint8_t* table_data = dst + table->dst_offset;
    uint32_t checksum = ComputeChecksum(table_data, table_length);
    StoreU32(dst, kSfntHeaderSize + i * kSfntEntrySize + 4, checksum);
    file_checksum += checksum;  // The addition is mod 2^32
  }
  file_checksum += ComputeChecksum(dst,
      kSfntHeaderSize + kSfntEntrySize * n_tables);
  uint32_t checksum_adjustment = 0xb1b0afba - file_checksum;
  StoreU32(dst, adjustment_offset, checksum_adjustment);
  return true;
}

bool ReadTableDirectory(ots::Font *font,
    ots::Buffer* buffer, std::vector<Table>* tables,
    size_t num_tables) {
  for (size_t i = 0; i < num_tables; ++i) {
    Table* table = &tables->at(i);
    uint8_t flag_byte;
    if (!buffer->ReadU8(&flag_byte)) {
      return OTS_FAILURE_MSG("Failed to read the flags of table directory entry %d", i);
    }
    uint32_t tag;
    if ((flag_byte & 0x3f) == 0x3f) {
      if (!buffer->ReadU32(&tag)) {
        return OTS_FAILURE_MSG("Failed to read the tag of table directory entry %d", i);
      }
    } else {
      tag = kKnownTags[flag_byte & 0x3f];
    }
    // Bits 6 and 7 are reserved and must be 0.
    if ((flag_byte & 0xc0) != 0) {
      return OTS_FAILURE_MSG("Bits 6 and 7 are not 0 for table directory entry %d", i);
    }
    uint32_t flags = 0;
    // Always transform the glyf and loca tables
    if (tag == OTS_TAG('g','l','y','f') ||
        tag == OTS_TAG('l','o','c','a')) {
      flags |= kWoff2FlagsTransform;
    }
    uint32_t dst_length;
    if (!ReadBase128(buffer, &dst_length)) {
      return OTS_FAILURE_MSG("Failed to read 'origLength' for table '%c%c%c%c'", OTS_UNTAG(tag));
    }
    uint32_t transform_length = dst_length;
    if ((flags & kWoff2FlagsTransform) != 0) {
      if (!ReadBase128(buffer, &transform_length)) {
        return OTS_FAILURE_MSG("Failed to read 'transformLength' for table '%c%c%c%c'", OTS_UNTAG(tag));
      }

      if (tag == OTS_TAG('l','o','c','a') && transform_length != 0) {
        return OTS_FAILURE_MSG("The 'transformLength' of 'loca' table must be zero: %d", transform_length);
      }
    }
    // Disallow huge numbers (> 1GB) for sanity.
    if (transform_length > 1024 * 1024 * 1024 ||
        dst_length > 1024 * 1024 * 1024) {
      return OTS_FAILURE_MSG("'origLength' or 'transformLength' > 1GB");
    }
    table->tag = tag;
    table->flags = flags;
    table->transform_length = transform_length;
    table->dst_length = dst_length;
  }
  return true;
}

}  // namespace

namespace ots {

size_t ComputeWOFF2FinalSize(const uint8_t* data, size_t length) {
  ots::Buffer file(data, length);
  uint32_t total_length;

  if (!file.Skip(16) ||
      !file.ReadU32(&total_length)) {
    return 0;
  }
  return total_length;
}

bool ConvertWOFF2ToSFNT(ots::Font *font,
                        uint8_t* result, size_t result_length,
                        const uint8_t* data, size_t length) {
  static const uint32_t kWoff2Signature = 0x774f4632;  // "wOF2"
  ots::Buffer buffer(data, length);

  uint32_t signature;
  uint32_t flavor = 0;
  if (!buffer.ReadU32(&signature) || signature != kWoff2Signature ||
      !buffer.ReadU32(&flavor)) {
    return OTS_FAILURE_MSG("Failed to read 'signature' or 'flavor', or not WOFF2 signature");
  }

  if (!IsValidVersionTag(flavor)) {
    return OTS_FAILURE_MSG("Invalid 'flavor'");
  }

  uint32_t reported_length;
  if (!buffer.ReadU32(&reported_length) || length != reported_length) {
    return OTS_FAILURE_MSG("Failed to read 'length' or it does not match the actual file size");
  }
  uint16_t num_tables;
  if (!buffer.ReadU16(&num_tables) || !num_tables) {
    return OTS_FAILURE_MSG("Failed to read 'numTables'");
  }

  uint16_t reserved_value;
  if (!buffer.ReadU16(&reserved_value)) {
    return OTS_FAILURE_MSG("Failed to read 'reserved' field");
  }

  // We don't care about these fields of the header:
  //   uint32_t total_sfnt_size, the caller already passes it as result_length
  if (!buffer.Skip(4)) {
    return OTS_FAILURE_MSG("Failed to read 'totalSfntSize'");
  }
  uint32_t compressed_length;
  if (!buffer.ReadU32(&compressed_length)) {
    return OTS_FAILURE_MSG("Failed to read 'totalCompressedSize'");
  }
  if (compressed_length > std::numeric_limits<uint32_t>::max()) {
    return OTS_FAILURE();
  }

  // We don't care about these fields of the header:
  //   uint16_t major_version, minor_version
  if (!buffer.Skip(2 * 2)) {
    return OTS_FAILURE_MSG("Failed to read 'majorVersion' or 'minorVersion'");
  }

  // Checks metadata block size.
  uint32_t meta_offset;
  uint32_t meta_length;
  uint32_t meta_length_orig;
  if (!buffer.ReadU32(&meta_offset) ||
      !buffer.ReadU32(&meta_length) ||
      !buffer.ReadU32(&meta_length_orig)) {
    return OTS_FAILURE_MSG("Failed to read header metadata block fields");
  }
  if (meta_offset) {
    if (meta_offset >= length || length - meta_offset < meta_length) {
      return OTS_FAILURE_MSG("Invalid metadata block offset or length");
    }
  }

  // Checks private data block size.
  uint32_t priv_offset;
  uint32_t priv_length;
  if (!buffer.ReadU32(&priv_offset) ||
      !buffer.ReadU32(&priv_length)) {
    return OTS_FAILURE_MSG("Failed to read header private block fields");
  }
  if (priv_offset) {
    if (priv_offset >= length || length - priv_offset < priv_length) {
      return OTS_FAILURE_MSG("Invalid private block offset or length");
    }
  }

  std::vector<Table> tables(num_tables);
  if (!ReadTableDirectory(font, &buffer, &tables, num_tables)) {
    return OTS_FAILURE_MSG("Failed to read table directory");
  }
  uint64_t compressed_offset = buffer.offset();
  if (compressed_offset > std::numeric_limits<uint32_t>::max()) {
    return OTS_FAILURE();
  }
  uint64_t dst_offset = kSfntHeaderSize +
      kSfntEntrySize * static_cast<uint64_t>(num_tables);
  for (uint16_t i = 0; i < num_tables; ++i) {
    Table* table = &tables.at(i);
    table->dst_offset = static_cast<uint32_t>(dst_offset);
    dst_offset += table->dst_length;
    if (dst_offset > std::numeric_limits<uint32_t>::max()) {
      return OTS_FAILURE();
    }
    dst_offset = ots::Round4(dst_offset);
  }

  uint64_t block_end = ots::Round4(compressed_offset + compressed_length);
  if (block_end > length || dst_offset != result_length) {
    return OTS_FAILURE_MSG("Uncompressed sfnt size mismatch");
  }

  const uint32_t sfnt_header_and_table_directory_size = 12 + 16 * num_tables;
  if (sfnt_header_and_table_directory_size > result_length) {
    return OTS_FAILURE();
  }

  if (meta_offset) {
    if (block_end != meta_offset) {
      return OTS_FAILURE_MSG("Invalid metadata block offset");
    }
    block_end = ots::Round4(static_cast<uint64_t>(meta_offset) +
                            static_cast<uint64_t>(meta_length));
    if (block_end > std::numeric_limits<uint32_t>::max()) {
      return OTS_FAILURE_MSG("Invalid metadata block length");
    }
  }

  if (priv_offset) {
    if (block_end != priv_offset) {
      return OTS_FAILURE_MSG("Invalid private block offset");
    }
    block_end = ots::Round4(static_cast<uint64_t>(priv_offset) +
                            static_cast<uint64_t>(priv_length));
    if (block_end > std::numeric_limits<uint32_t>::max()) {
      return OTS_FAILURE_MSG("Invalid private block length");
    }
  }

  if (block_end != ots::Round4(length)) {
    return OTS_FAILURE_MSG("File length mismatch (trailing junk?)");
  }

  // Start building the font
  size_t offset = 0;
  offset = StoreU32(result, offset, flavor);
  offset = StoreU16(result, offset, num_tables);
  uint8_t max_pow2 = 0;
  while (1u << (max_pow2 + 1) <= num_tables) {
    max_pow2++;
  }
  const uint16_t output_search_range = (1u << max_pow2) << 4;
  offset = StoreU16(result, offset, output_search_range);
  offset = StoreU16(result, offset, max_pow2);
  offset = StoreU16(result, offset, (num_tables << 4) - output_search_range);

  // sort tags in the table directory in ascending alphabetical order
  std::vector<Table> sorted_tables(tables);
  std::sort(sorted_tables.begin(), sorted_tables.end());

  for (uint16_t i = 0; i < num_tables; ++i) {
    const Table* table = &sorted_tables.at(i);
    offset = StoreU32(result, offset, table->tag);
    offset = StoreU32(result, offset, 0);  // checksum, to fill in later
    offset = StoreU32(result, offset, table->dst_offset);
    offset = StoreU32(result, offset, table->dst_length);
  }
  std::vector<uint8_t> uncompressed_buf;
  const uint8_t* transform_buf = NULL;
  uint64_t total_size = 0;

  for (uint16_t i = 0; i < num_tables; ++i) {
    total_size += tables.at(i).transform_length;
    if (total_size > std::numeric_limits<uint32_t>::max()) {
      return OTS_FAILURE();
    }
  }
  // Enforce same 30M limit on uncompressed tables as OTS
  if (total_size > 30 * 1024 * 1024) {
    return OTS_FAILURE();
  }
  size_t uncompressed_size = static_cast<size_t>(total_size);
  uncompressed_buf.resize(uncompressed_size);
  const uint8_t* compressed_buf = data + compressed_offset;
  if (!BrotliDecompressBuffer(compressed_length, compressed_buf,
                              &uncompressed_size, &uncompressed_buf[0])) {
    return OTS_FAILURE_MSG("Failed to uncompress font data");
  }
  if (uncompressed_size != static_cast<size_t>(total_size)) {
    return OTS_FAILURE_MSG("Decompressed font data size does not match the sum of 'origLength' and 'transformLength'");
  }
  transform_buf = &uncompressed_buf[0];

  for (uint16_t i = 0; i < num_tables; ++i) {
    const Table* table = &tables.at(i);
    uint32_t flags = table->flags;
    size_t transform_length = table->transform_length;

    if ((flags & kWoff2FlagsTransform) == 0) {
      if (transform_length != table->dst_length) {
        return OTS_FAILURE();
      }
      if (static_cast<uint64_t>(table->dst_offset) + transform_length >
          result_length) {
        return OTS_FAILURE();
      }
      std::memcpy(result + table->dst_offset, transform_buf,
          transform_length);
    } else {
      if (!ReconstructTransformed(font, tables, table->tag,
            transform_buf, transform_length, result, result_length)) {
        return OTS_FAILURE_MSG("Failed to reconstruct '%c%c%c%c' table", OTS_UNTAG(table->tag));
      }
    }

    transform_buf += transform_length;
    if (transform_buf > &uncompressed_buf[0] + uncompressed_buf.size()) {
      return OTS_FAILURE();
    }
  }

  return FixChecksums(sorted_tables, result);
}

}  // namespace ots

#undef TABLE_NAME