DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (fddffdeab170)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifdef XP_WIN
// Include Windows headers required for enabling high precision timers.
#include "windows.h"
#include "mmsystem.h"
#endif

#include <algorithm>
#include <stdint.h>

#include "gfx2DGlue.h"

#include "mediasink/DecodedAudioDataSink.h"
#include "mediasink/AudioSinkWrapper.h"
#include "mediasink/VideoSink.h"
#include "mediasink/DecodedStream.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/Logging.h"
#include "mozilla/mozalloc.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/Preferences.h"
#include "mozilla/SharedThreadPool.h"
#include "mozilla/TaskQueue.h"

#include "nsComponentManagerUtils.h"
#include "nsContentUtils.h"
#include "nsIEventTarget.h"
#include "nsITimer.h"
#include "nsPrintfCString.h"
#include "nsTArray.h"
#include "nsDeque.h"
#include "prenv.h"

#include "AudioSegment.h"
#include "DOMMediaStream.h"
#include "ImageContainer.h"
#include "MediaDecoder.h"
#include "MediaDecoderReader.h"
#include "MediaDecoderStateMachine.h"
#include "MediaShutdownManager.h"
#include "MediaTimer.h"
#include "TimeUnits.h"
#include "VideoSegment.h"
#include "VideoUtils.h"

namespace mozilla {

using namespace mozilla::dom;
using namespace mozilla::layers;
using namespace mozilla::media;

#define NS_DispatchToMainThread(...) CompileError_UseAbstractThreadDispatchInstead

// avoid redefined macro in unified build
#undef LOG
#undef DECODER_LOG
#undef VERBOSE_LOG

#define LOG(m, l, x, ...) \
  MOZ_LOG(m, l, ("Decoder=%p " x, mDecoder.get(), ##__VA_ARGS__))
#define DECODER_LOG(x, ...) \
  LOG(gMediaDecoderLog, LogLevel::Debug, x, ##__VA_ARGS__)
#define VERBOSE_LOG(x, ...) \
  LOG(gMediaDecoderLog, LogLevel::Verbose, x, ##__VA_ARGS__)
#define SAMPLE_LOG(x, ...) \
  LOG(gMediaSampleLog, LogLevel::Debug, x, ##__VA_ARGS__)

// Somehow MSVC doesn't correctly delete the comma before ##__VA_ARGS__
// when __VA_ARGS__ expands to nothing. This is a workaround for it.
#define DECODER_WARN_HELPER(a, b) NS_WARNING b
#define DECODER_WARN(x, ...) \
  DECODER_WARN_HELPER(0, (nsPrintfCString("Decoder=%p " x, mDecoder.get(), ##__VA_ARGS__).get()))

// Certain constants get stored as member variables and then adjusted by various
// scale factors on a per-decoder basis. We want to make sure to avoid using these
// constants directly, so we put them in a namespace.
namespace detail {

// If audio queue has less than this many usecs of decoded audio, we won't risk
// trying to decode the video, we'll skip decoding video up to the next
// keyframe. We may increase this value for an individual decoder if we
// encounter video frames which take a long time to decode.
static const uint32_t LOW_AUDIO_USECS = 300000;

// If more than this many usecs of decoded audio is queued, we'll hold off
// decoding more audio. If we increase the low audio threshold (see
// LOW_AUDIO_USECS above) we'll also increase this value to ensure it's not
// less than the low audio threshold.
const int64_t AMPLE_AUDIO_USECS = 1000000;

} // namespace detail

// When we're only playing audio and we don't have a video stream, we divide
// AMPLE_AUDIO_USECS and LOW_AUDIO_USECS by the following value. This reduces
// the amount of decoded audio we buffer, reducing our memory usage. We only
// need to decode far ahead when we're decoding video using software decoding,
// as otherwise a long video decode could cause an audio underrun.
const int64_t NO_VIDEO_AMPLE_AUDIO_DIVISOR = 8;

// If we have fewer than LOW_VIDEO_FRAMES decoded frames, and
// we're not "prerolling video", we'll skip the video up to the next keyframe
// which is at or after the current playback position.
static const uint32_t LOW_VIDEO_FRAMES = 2;

// Threshold in usecs that used to check if we are low on decoded video.
// If the last video frame's end time |mDecodedVideoEndTime| is more than
// |LOW_VIDEO_THRESHOLD_USECS*mPlaybackRate| after the current clock in
// Advanceframe(), the video decode is lagging, and we skip to next keyframe.
static const int32_t LOW_VIDEO_THRESHOLD_USECS = 60000;

// Arbitrary "frame duration" when playing only audio.
static const int AUDIO_DURATION_USECS = 40000;

// If we increase our "low audio threshold" (see LOW_AUDIO_USECS above), we
// use this as a factor in all our calculations. Increasing this will cause
// us to be more likely to increase our low audio threshold, and to
// increase it by more.
static const int THRESHOLD_FACTOR = 2;

namespace detail {

// If we have less than this much undecoded data available, we'll consider
// ourselves to be running low on undecoded data. We determine how much
// undecoded data we have remaining using the reader's GetBuffered()
// implementation.
static const int64_t LOW_DATA_THRESHOLD_USECS = 5000000;

// LOW_DATA_THRESHOLD_USECS needs to be greater than AMPLE_AUDIO_USECS, otherwise
// the skip-to-keyframe logic can activate when we're running low on data.
static_assert(LOW_DATA_THRESHOLD_USECS > AMPLE_AUDIO_USECS,
              "LOW_DATA_THRESHOLD_USECS is too small");

} // namespace detail

// Amount of excess usecs of data to add in to the "should we buffer" calculation.
static const uint32_t EXHAUSTED_DATA_MARGIN_USECS = 100000;

// If we enter buffering within QUICK_BUFFER_THRESHOLD_USECS seconds of starting
// decoding, we'll enter "quick buffering" mode, which exits a lot sooner than
// normal buffering mode. This exists so that if the decode-ahead exhausts the
// downloaded data while decode/playback is just starting up (for example
// after a seek while the media is still playing, or when playing a media
// as soon as it's load started), we won't necessarily stop for 30s and wait
// for buffering. We may actually be able to playback in this case, so exit
// buffering early and try to play. If it turns out we can't play, we'll fall
// back to buffering normally.
static const uint32_t QUICK_BUFFER_THRESHOLD_USECS = 2000000;

namespace detail {

// If we're quick buffering, we'll remain in buffering mode while we have less than
// QUICK_BUFFERING_LOW_DATA_USECS of decoded data available.
static const uint32_t QUICK_BUFFERING_LOW_DATA_USECS = 1000000;

// If QUICK_BUFFERING_LOW_DATA_USECS is > AMPLE_AUDIO_USECS, we won't exit
// quick buffering in a timely fashion, as the decode pauses when it
// reaches AMPLE_AUDIO_USECS decoded data, and thus we'll never reach
// QUICK_BUFFERING_LOW_DATA_USECS.
static_assert(QUICK_BUFFERING_LOW_DATA_USECS <= AMPLE_AUDIO_USECS,
              "QUICK_BUFFERING_LOW_DATA_USECS is too large");

} // namespace detail

static TimeDuration UsecsToDuration(int64_t aUsecs) {
  return TimeDuration::FromMicroseconds(aUsecs);
}

static int64_t DurationToUsecs(TimeDuration aDuration) {
  return static_cast<int64_t>(aDuration.ToSeconds() * USECS_PER_S);
}

static const uint32_t MIN_VIDEO_QUEUE_SIZE = 3;
static const uint32_t MAX_VIDEO_QUEUE_SIZE = 10;
static const uint32_t VIDEO_QUEUE_SEND_TO_COMPOSITOR_SIZE = 9999;

static uint32_t sVideoQueueDefaultSize = MAX_VIDEO_QUEUE_SIZE;
static uint32_t sVideoQueueHWAccelSize = MIN_VIDEO_QUEUE_SIZE;
static uint32_t sVideoQueueSendToCompositorSize = VIDEO_QUEUE_SEND_TO_COMPOSITOR_SIZE;

static void InitVideoQueuePrefs() {
  MOZ_ASSERT(NS_IsMainThread());
  static bool sPrefInit = false;
  if (!sPrefInit) {
    sPrefInit = true;
    sVideoQueueDefaultSize = Preferences::GetUint(
      "media.video-queue.default-size", MAX_VIDEO_QUEUE_SIZE);
    sVideoQueueHWAccelSize = Preferences::GetUint(
      "media.video-queue.hw-accel-size", MIN_VIDEO_QUEUE_SIZE);
    sVideoQueueSendToCompositorSize = Preferences::GetUint(
      "media.video-queue.send-to-compositor-size", VIDEO_QUEUE_SEND_TO_COMPOSITOR_SIZE);
  }
}

MediaDecoderStateMachine::MediaDecoderStateMachine(MediaDecoder* aDecoder,
                                                   MediaDecoderReader* aReader,
                                                   bool aRealTime) :
  mDecoder(aDecoder),
  mTaskQueue(new TaskQueue(GetMediaThreadPool(MediaThreadType::PLAYBACK),
                           /* aSupportsTailDispatch = */ true)),
  mWatchManager(this, mTaskQueue),
  mRealTime(aRealTime),
  mDispatchedStateMachine(false),
  mDelayedScheduler(mTaskQueue),
  mState(DECODER_STATE_DECODING_NONE, "MediaDecoderStateMachine::mState"),
  mCurrentFrameID(0),
  mObservedDuration(TimeUnit(), "MediaDecoderStateMachine::mObservedDuration"),
  mFragmentEndTime(-1),
  mReader(aReader),
  mDecodedAudioEndTime(-1),
  mDecodedVideoEndTime(-1),
  mPlaybackRate(1.0),
  mLowAudioThresholdUsecs(detail::LOW_AUDIO_USECS),
  mAmpleAudioThresholdUsecs(detail::AMPLE_AUDIO_USECS),
  mQuickBufferingLowDataThresholdUsecs(detail::QUICK_BUFFERING_LOW_DATA_USECS),
  mIsAudioPrerolling(false),
  mIsVideoPrerolling(false),
  mAudioCaptured(false, "MediaDecoderStateMachine::mAudioCaptured"),
  mAudioCompleted(false, "MediaDecoderStateMachine::mAudioCompleted"),
  mNotifyMetadataBeforeFirstFrame(false),
  mDispatchedEventToDecode(false),
  mQuickBuffering(false),
  mMinimizePreroll(false),
  mDecodeThreadWaiting(false),
  mDropAudioUntilNextDiscontinuity(false),
  mDropVideoUntilNextDiscontinuity(false),
  mDecodeToSeekTarget(false),
  mCurrentTimeBeforeSeek(0),
  mCorruptFrames(60),
  mDecodingFirstFrame(true),
  mSentLoadedMetadataEvent(false),
  mSentFirstFrameLoadedEvent(false, "MediaDecoderStateMachine::mSentFirstFrameLoadedEvent"),
  mSentPlaybackEndedEvent(false),
  mStreamSink(new DecodedStream(mTaskQueue, mAudioQueue, mVideoQueue)),
  mResource(aDecoder->GetResource()),
  mAudioOffloading(false),
  mBuffered(mTaskQueue, TimeIntervals(),
            "MediaDecoderStateMachine::mBuffered (Mirror)"),
  mEstimatedDuration(mTaskQueue, NullableTimeUnit(),
                    "MediaDecoderStateMachine::mEstimatedDuration (Mirror)"),
  mExplicitDuration(mTaskQueue, Maybe<double>(),
                    "MediaDecoderStateMachine::mExplicitDuration (Mirror)"),
  mPlayState(mTaskQueue, MediaDecoder::PLAY_STATE_LOADING,
             "MediaDecoderStateMachine::mPlayState (Mirror)"),
  mNextPlayState(mTaskQueue, MediaDecoder::PLAY_STATE_PAUSED,
                 "MediaDecoderStateMachine::mNextPlayState (Mirror)"),
  mLogicallySeeking(mTaskQueue, false,
                    "MediaDecoderStateMachine::mLogicallySeeking (Mirror)"),
  mVolume(mTaskQueue, 1.0, "MediaDecoderStateMachine::mVolume (Mirror)"),
  mLogicalPlaybackRate(mTaskQueue, 1.0,
                       "MediaDecoderStateMachine::mLogicalPlaybackRate (Mirror)"),
  mPreservesPitch(mTaskQueue, true,
                  "MediaDecoderStateMachine::mPreservesPitch (Mirror)"),
  mSameOriginMedia(mTaskQueue, false,
                   "MediaDecoderStateMachine::mSameOriginMedia (Mirror)"),
  mPlaybackBytesPerSecond(mTaskQueue, 0.0,
                          "MediaDecoderStateMachine::mPlaybackBytesPerSecond (Mirror)"),
  mPlaybackRateReliable(mTaskQueue, true,
                        "MediaDecoderStateMachine::mPlaybackRateReliable (Mirror)"),
  mDecoderPosition(mTaskQueue, 0,
                   "MediaDecoderStateMachine::mDecoderPosition (Mirror)"),
  mMediaSeekable(mTaskQueue, true,
                 "MediaDecoderStateMachine::mMediaSeekable (Mirror)"),
  mDuration(mTaskQueue, NullableTimeUnit(),
            "MediaDecoderStateMachine::mDuration (Canonical"),
  mIsShutdown(mTaskQueue, false,
              "MediaDecoderStateMachine::mIsShutdown (Canonical)"),
  mNextFrameStatus(mTaskQueue, MediaDecoderOwner::NEXT_FRAME_UNINITIALIZED,
                   "MediaDecoderStateMachine::mNextFrameStatus (Canonical)"),
  mCurrentPosition(mTaskQueue, 0,
                   "MediaDecoderStateMachine::mCurrentPosition (Canonical)"),
  mPlaybackOffset(mTaskQueue, 0,
                  "MediaDecoderStateMachine::mPlaybackOffset (Canonical)")
{
  MOZ_COUNT_CTOR(MediaDecoderStateMachine);
  NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");

  // Dispatch initialization that needs to happen on that task queue.
  nsCOMPtr<nsIRunnable> r = NS_NewRunnableMethod(this, &MediaDecoderStateMachine::InitializationTask);
  mTaskQueue->Dispatch(r.forget());

  InitVideoQueuePrefs();

  mBufferingWait = IsRealTime() ? 0 : 15;
  mLowDataThresholdUsecs = IsRealTime() ? 0 : detail::LOW_DATA_THRESHOLD_USECS;

#ifdef XP_WIN
  // Ensure high precision timers are enabled on Windows, otherwise the state
  // machine isn't woken up at reliable intervals to set the next frame,
  // and we drop frames while painting. Note that multiple calls to this
  // function per-process is OK, provided each call is matched by a corresponding
  // timeEndPeriod() call.
  timeBeginPeriod(1);
#endif

  mAudioQueueListener = AudioQueue().PopEvent().Connect(
    mTaskQueue, this, &MediaDecoderStateMachine::OnAudioPopped);
  mVideoQueueListener = VideoQueue().PopEvent().Connect(
    mTaskQueue, this, &MediaDecoderStateMachine::OnVideoPopped);

  mMetadataManager.Connect(mReader->TimedMetadataEvent(), OwnerThread());

  mMediaSink = CreateMediaSink(mAudioCaptured);

#ifdef MOZ_EME
  mCDMProxyPromise.Begin(mDecoder->RequestCDMProxy()->Then(
    OwnerThread(), __func__, this,
    &MediaDecoderStateMachine::OnCDMProxyReady,
    &MediaDecoderStateMachine::OnCDMProxyNotReady));
#endif
}

MediaDecoderStateMachine::~MediaDecoderStateMachine()
{
  MOZ_ASSERT(NS_IsMainThread(), "Should be on main thread.");
  MOZ_COUNT_DTOR(MediaDecoderStateMachine);

  mReader = nullptr;

#ifdef XP_WIN
  timeEndPeriod(1);
#endif
}

void
MediaDecoderStateMachine::InitializationTask()
{
  MOZ_ASSERT(OnTaskQueue());

  // Connect mirrors.
  mBuffered.Connect(mReader->CanonicalBuffered());
  mEstimatedDuration.Connect(mDecoder->CanonicalEstimatedDuration());
  mExplicitDuration.Connect(mDecoder->CanonicalExplicitDuration());
  mPlayState.Connect(mDecoder->CanonicalPlayState());
  mNextPlayState.Connect(mDecoder->CanonicalNextPlayState());
  mLogicallySeeking.Connect(mDecoder->CanonicalLogicallySeeking());
  mVolume.Connect(mDecoder->CanonicalVolume());
  mLogicalPlaybackRate.Connect(mDecoder->CanonicalPlaybackRate());
  mPreservesPitch.Connect(mDecoder->CanonicalPreservesPitch());
  mSameOriginMedia.Connect(mDecoder->CanonicalSameOriginMedia());
  mPlaybackBytesPerSecond.Connect(mDecoder->CanonicalPlaybackBytesPerSecond());
  mPlaybackRateReliable.Connect(mDecoder->CanonicalPlaybackRateReliable());
  mDecoderPosition.Connect(mDecoder->CanonicalDecoderPosition());
  mMediaSeekable.Connect(mDecoder->CanonicalMediaSeekable());

  // Initialize watchers.
  mWatchManager.Watch(mBuffered, &MediaDecoderStateMachine::BufferedRangeUpdated);
  mWatchManager.Watch(mState, &MediaDecoderStateMachine::UpdateNextFrameStatus);
  mWatchManager.Watch(mAudioCompleted, &MediaDecoderStateMachine::UpdateNextFrameStatus);
  mWatchManager.Watch(mVolume, &MediaDecoderStateMachine::VolumeChanged);
  mWatchManager.Watch(mLogicalPlaybackRate, &MediaDecoderStateMachine::LogicalPlaybackRateChanged);
  mWatchManager.Watch(mPreservesPitch, &MediaDecoderStateMachine::PreservesPitchChanged);
  mWatchManager.Watch(mEstimatedDuration, &MediaDecoderStateMachine::RecomputeDuration);
  mWatchManager.Watch(mExplicitDuration, &MediaDecoderStateMachine::RecomputeDuration);
  mWatchManager.Watch(mObservedDuration, &MediaDecoderStateMachine::RecomputeDuration);
  mWatchManager.Watch(mPlayState, &MediaDecoderStateMachine::PlayStateChanged);
  mWatchManager.Watch(mLogicallySeeking, &MediaDecoderStateMachine::LogicallySeekingChanged);
  mWatchManager.Watch(mSameOriginMedia, &MediaDecoderStateMachine::SameOriginMediaChanged);
  mWatchManager.Watch(mSentFirstFrameLoadedEvent, &MediaDecoderStateMachine::AdjustAudioThresholds);
  mWatchManager.Watch(mAudioCaptured, &MediaDecoderStateMachine::AdjustAudioThresholds);

  // Propagate mSameOriginMedia to mDecodedStream.
  SameOriginMediaChanged();
}

media::MediaSink*
MediaDecoderStateMachine::CreateAudioSink()
{
  RefPtr<MediaDecoderStateMachine> self = this;
  auto audioSinkCreator = [self] () {
    MOZ_ASSERT(self->OnTaskQueue());
    return new DecodedAudioDataSink(
      self->mAudioQueue, self->GetMediaTime(),
      self->mInfo.mAudio, self->mDecoder->GetAudioChannel());
  };
  return new AudioSinkWrapper(mTaskQueue, audioSinkCreator);
}

already_AddRefed<media::MediaSink>
MediaDecoderStateMachine::CreateMediaSink(bool aAudioCaptured)
{
  // TODO: We can't really create a new DecodedStream until OutputStreamManager
  //       is extracted. It is tricky that the implementation of DecodedStream
  //       happens to allow reuse after shutdown without creating a new one.
  RefPtr<media::MediaSink> audioSink = aAudioCaptured ?
    mStreamSink : CreateAudioSink();

  RefPtr<media::MediaSink> mediaSink =
    new VideoSink(mTaskQueue, audioSink, mVideoQueue,
                  mDecoder->GetVideoFrameContainer(), mRealTime,
                  mDecoder->GetFrameStatistics(), AUDIO_DURATION_USECS,
                  sVideoQueueSendToCompositorSize);
  return mediaSink.forget();
}

bool MediaDecoderStateMachine::HasFutureAudio()
{
  MOZ_ASSERT(OnTaskQueue());
  NS_ASSERTION(HasAudio(), "Should only call HasFutureAudio() when we have audio");
  // We've got audio ready to play if:
  // 1. We've not completed playback of audio, and
  // 2. we either have more than the threshold of decoded audio available, or
  //    we've completely decoded all audio (but not finished playing it yet
  //    as per 1).
  return !mAudioCompleted &&
         (AudioDecodedUsecs() >
            mLowAudioThresholdUsecs * mPlaybackRate ||
          AudioQueue().IsFinished());
}

bool MediaDecoderStateMachine::HaveNextFrameData()
{
  MOZ_ASSERT(OnTaskQueue());
  return (!HasAudio() || HasFutureAudio()) &&
         (!HasVideo() || VideoQueue().GetSize() > 1);
}

int64_t
MediaDecoderStateMachine::GetDecodedAudioDuration()
{
  MOZ_ASSERT(OnTaskQueue());
  if (mMediaSink->IsStarted()) {
    // |mDecodedAudioEndTime == -1| means no decoded audio at all so the
    // returned duration is 0.
    return mDecodedAudioEndTime != -1 ? mDecodedAudioEndTime - GetClock() : 0;
  }
  // MediaSink not started. All audio samples are in the queue.
  return AudioQueue().Duration();
}

void MediaDecoderStateMachine::DiscardStreamData()
{
  MOZ_ASSERT(OnTaskQueue());

  const auto clockTime = GetClock();
  while (true) {
    const MediaData* a = AudioQueue().PeekFront();

    // If we discard audio samples fed to the stream immediately, we will
    // keep decoding audio samples till the end and consume a lot of memory.
    // Therefore we only discard those behind the stream clock to throttle
    // the decoding speed.
    // Note we don't discard a sample when |a->mTime == clockTime| because that
    // will discard the 1st sample when clockTime is still 0.
    if (a && a->mTime < clockTime) {
      RefPtr<MediaData> releaseMe = AudioQueue().PopFront();
      continue;
    }
    break;
  }
}

bool MediaDecoderStateMachine::HaveEnoughDecodedAudio(int64_t aAmpleAudioUSecs)
{
  MOZ_ASSERT(OnTaskQueue());

  if (AudioQueue().GetSize() == 0 ||
      GetDecodedAudioDuration() < aAmpleAudioUSecs) {
    return false;
  }

  // MDSM will ensure buffering level is high enough for playback speed at 1x
  // at which the DecodedStream is playing.
  return true;
}

bool MediaDecoderStateMachine::HaveEnoughDecodedVideo()
{
  MOZ_ASSERT(OnTaskQueue());

  if (VideoQueue().GetSize() - 1 < GetAmpleVideoFrames() * mPlaybackRate) {
    return false;
  }

  return true;
}

bool
MediaDecoderStateMachine::NeedToDecodeVideo()
{
  MOZ_ASSERT(OnTaskQueue());
  SAMPLE_LOG("NeedToDecodeVideo() isDec=%d decToTar=%d minPrl=%d seek=%d enufVid=%d",
             IsVideoDecoding(), mDecodeToSeekTarget, mMinimizePreroll,
             mState == DECODER_STATE_SEEKING,
             HaveEnoughDecodedVideo());
  return IsVideoDecoding() &&
         ((mState == DECODER_STATE_SEEKING && mDecodeToSeekTarget) ||
          (IsDecodingFirstFrame() &&
           IsVideoDecoding() && VideoQueue().GetSize() == 0) ||
          (!mMinimizePreroll && !HaveEnoughDecodedVideo()));
}

bool
MediaDecoderStateMachine::NeedToSkipToNextKeyframe()
{
  MOZ_ASSERT(OnTaskQueue());
  if (IsDecodingFirstFrame()) {
    return false;
  }
  MOZ_ASSERT(mState == DECODER_STATE_DECODING ||
             mState == DECODER_STATE_BUFFERING ||
             mState == DECODER_STATE_SEEKING);

  // Since GetClock() can only be called after starting MediaSink, we return
  // false quickly if it is not started because we won't fall behind playback
  // when not consuming media data.
  if (!mMediaSink->IsStarted()) {
    return false;
  }

  // We are in seeking or buffering states, don't skip frame.
  if (!IsVideoDecoding() || mState == DECODER_STATE_BUFFERING ||
      mState == DECODER_STATE_SEEKING) {
    return false;
  }

  // Don't skip frame for video-only decoded stream because the clock time of
  // the stream relies on the video frame.
  if (mAudioCaptured && !HasAudio()) {
    return false;
  }

  // We'll skip the video decode to the next keyframe if we're low on
  // audio, or if we're low on video, provided we're not running low on
  // data to decode. If we're running low on downloaded data to decode,
  // we won't start keyframe skipping, as we'll be pausing playback to buffer
  // soon anyway and we'll want to be able to display frames immediately
  // after buffering finishes. We ignore the low audio calculations for
  // readers that are async, as since their audio decode runs on a different
  // task queue it should never run low and skipping won't help their decode.
  bool isLowOnDecodedAudio = !mReader->IsAsync() &&
                             !mIsAudioPrerolling && IsAudioDecoding() &&
                             (GetDecodedAudioDuration() <
                              mLowAudioThresholdUsecs * mPlaybackRate);
  bool isLowOnDecodedVideo = !mIsVideoPrerolling &&
                             ((GetClock() - mDecodedVideoEndTime) * mPlaybackRate >
                              LOW_VIDEO_THRESHOLD_USECS);
  bool lowUndecoded = HasLowUndecodedData();

  if ((isLowOnDecodedAudio || isLowOnDecodedVideo) && !lowUndecoded) {
    DECODER_LOG("Skipping video decode to the next keyframe lowAudio=%d lowVideo=%d lowUndecoded=%d async=%d",
                isLowOnDecodedAudio, isLowOnDecodedVideo, lowUndecoded, mReader->IsAsync());
    return true;
  }

  return false;
}

bool
MediaDecoderStateMachine::NeedToDecodeAudio()
{
  MOZ_ASSERT(OnTaskQueue());
  SAMPLE_LOG("NeedToDecodeAudio() isDec=%d decToTar=%d minPrl=%d seek=%d enufAud=%d",
             IsAudioDecoding(), mDecodeToSeekTarget, mMinimizePreroll,
             mState == DECODER_STATE_SEEKING,
             HaveEnoughDecodedAudio(mAmpleAudioThresholdUsecs * mPlaybackRate));

  return IsAudioDecoding() &&
         ((mState == DECODER_STATE_SEEKING && mDecodeToSeekTarget) ||
          (IsDecodingFirstFrame() &&
           IsAudioDecoding() && AudioQueue().GetSize() == 0) ||
          (!mMinimizePreroll &&
          !HaveEnoughDecodedAudio(mAmpleAudioThresholdUsecs * mPlaybackRate) &&
          (mState != DECODER_STATE_SEEKING || mDecodeToSeekTarget)));
}

bool
MediaDecoderStateMachine::IsAudioSeekComplete()
{
  MOZ_ASSERT(OnTaskQueue());
  SAMPLE_LOG("IsAudioSeekComplete() curTarVal=%d mAudDis=%d aqFin=%d aqSz=%d",
    mCurrentSeek.Exists(), mDropAudioUntilNextDiscontinuity, AudioQueue().IsFinished(), AudioQueue().GetSize());
  return
    !HasAudio() ||
    (mCurrentSeek.Exists() &&
     !mDropAudioUntilNextDiscontinuity &&
     (AudioQueue().IsFinished() || AudioQueue().GetSize() > 0));
}

bool
MediaDecoderStateMachine::IsVideoSeekComplete()
{
  MOZ_ASSERT(OnTaskQueue());
  SAMPLE_LOG("IsVideoSeekComplete() curTarVal=%d mVidDis=%d vqFin=%d vqSz=%d",
    mCurrentSeek.Exists(), mDropVideoUntilNextDiscontinuity, VideoQueue().IsFinished(), VideoQueue().GetSize());
  return
    !HasVideo() ||
    (mCurrentSeek.Exists() &&
     !mDropVideoUntilNextDiscontinuity &&
     (VideoQueue().IsFinished() || VideoQueue().GetSize() > 0));
}

void
MediaDecoderStateMachine::OnAudioDecoded(MediaData* aAudioSample)
{
  MOZ_ASSERT(OnTaskQueue());
  RefPtr<MediaData> audio(aAudioSample);
  MOZ_ASSERT(audio);
  mAudioDataRequest.Complete();
  aAudioSample->AdjustForStartTime(StartTime());
  mDecodedAudioEndTime = audio->GetEndTime();

  SAMPLE_LOG("OnAudioDecoded [%lld,%lld] disc=%d",
             (audio ? audio->mTime : -1),
             (audio ? audio->GetEndTime() : -1),
             (audio ? audio->mDiscontinuity : 0));

  switch (mState) {
    case DECODER_STATE_BUFFERING: {
      // If we're buffering, this may be the sample we need to stop buffering.
      // Save it and schedule the state machine.
      Push(audio, MediaData::AUDIO_DATA);
      ScheduleStateMachine();
      return;
    }

    case DECODER_STATE_DECODING: {
      Push(audio, MediaData::AUDIO_DATA);
      if (MaybeFinishDecodeFirstFrame()) {
        return;
      }
      if (mIsAudioPrerolling && DonePrerollingAudio()) {
        StopPrerollingAudio();
      }
      return;
    }

    case DECODER_STATE_SEEKING: {
      if (!mCurrentSeek.Exists()) {
        // We've received a sample from a previous decode. Discard it.
        return;
      }
      if (audio->mDiscontinuity) {
        mDropAudioUntilNextDiscontinuity = false;
      }
      if (!mDropAudioUntilNextDiscontinuity) {
        // We must be after the discontinuity; we're receiving samples
        // at or after the seek target.
        if (mCurrentSeek.mTarget.mType == SeekTarget::PrevSyncPoint &&
            mCurrentSeek.mTarget.mTime > mCurrentTimeBeforeSeek &&
            audio->mTime < mCurrentTimeBeforeSeek) {
          // We are doing a fastSeek, but we ended up *before* the previous
          // playback position. This is surprising UX, so switch to an accurate
          // seek and decode to the seek target. This is not conformant to the
          // spec, fastSeek should always be fast, but until we get the time to
          // change all Readers to seek to the keyframe after the currentTime
          // in this case, we'll just decode forward. Bug 1026330.
          mCurrentSeek.mTarget.mType = SeekTarget::Accurate;
        }
        if (mCurrentSeek.mTarget.mType == SeekTarget::PrevSyncPoint) {
          // Non-precise seek; we can stop the seek at the first sample.
          Push(audio, MediaData::AUDIO_DATA);
        } else {
          // We're doing an accurate seek. We must discard
          // MediaData up to the one containing exact seek target.
          if (NS_FAILED(DropAudioUpToSeekTarget(audio))) {
            DecodeError();
            return;
          }
        }
      }
      CheckIfSeekComplete();
      return;
    }
    default: {
      // Ignore other cases.
      return;
    }
  }
}

void
MediaDecoderStateMachine::Push(MediaData* aSample, MediaData::Type aSampleType)
{
  MOZ_ASSERT(OnTaskQueue());
  MOZ_ASSERT(aSample);

  if (aSample->mType == MediaData::AUDIO_DATA) {
    // TODO: Send aSample to MSG and recalculate readystate before pushing,
    // otherwise AdvanceFrame may pop the sample before we have a chance
    // to reach playing.
    AudioQueue().Push(aSample);
  } else if (aSample->mType == MediaData::VIDEO_DATA) {
    // TODO: Send aSample to MSG and recalculate readystate before pushing,
    // otherwise AdvanceFrame may pop the sample before we have a chance
    // to reach playing.
    aSample->As<VideoData>()->mFrameID = ++mCurrentFrameID;
    VideoQueue().Push(aSample);
  } else {
    // TODO: Handle MediaRawData, determine which queue should be pushed.
  }
  UpdateNextFrameStatus();
  DispatchDecodeTasksIfNeeded();
}

void
MediaDecoderStateMachine::PushFront(MediaData* aSample, MediaData::Type aSampleType)
{
  MOZ_ASSERT(OnTaskQueue());
  MOZ_ASSERT(aSample);
  if (aSample->mType == MediaData::AUDIO_DATA) {
    AudioQueue().PushFront(aSample);
  } else if (aSample->mType == MediaData::VIDEO_DATA) {
    aSample->As<VideoData>()->mFrameID = ++mCurrentFrameID;
    VideoQueue().PushFront(aSample);
  } else {
    // TODO: Handle MediaRawData, determine which queue should be pushed.
  }
  UpdateNextFrameStatus();
}

void
MediaDecoderStateMachine::OnAudioPopped(const RefPtr<MediaData>& aSample)
{
  MOZ_ASSERT(OnTaskQueue());
  mPlaybackOffset = std::max(mPlaybackOffset.Ref(), aSample->mOffset);
  UpdateNextFrameStatus();
  DispatchAudioDecodeTaskIfNeeded();
  MaybeStartBuffering();
}

void
MediaDecoderStateMachine::OnVideoPopped(const RefPtr<MediaData>& aSample)
{
  MOZ_ASSERT(OnTaskQueue());
  mPlaybackOffset = std::max(mPlaybackOffset.Ref(), aSample->mOffset);
  UpdateNextFrameStatus();
  DispatchVideoDecodeTaskIfNeeded();
  MaybeStartBuffering();
}

void
MediaDecoderStateMachine::OnNotDecoded(MediaData::Type aType,
                                       MediaDecoderReader::NotDecodedReason aReason)
{
  MOZ_ASSERT(OnTaskQueue());
  SAMPLE_LOG("OnNotDecoded (aType=%u, aReason=%u)", aType, aReason);
  bool isAudio = aType == MediaData::AUDIO_DATA;
  MOZ_ASSERT_IF(!isAudio, aType == MediaData::VIDEO_DATA);

  if (isAudio) {
    mAudioDataRequest.Complete();
  } else {
    mVideoDataRequest.Complete();
  }
  if (IsShutdown()) {
    // Already shutdown;
    return;
  }

  // If this is a decode error, delegate to the generic error path.
  if (aReason == MediaDecoderReader::DECODE_ERROR) {
    DecodeError();
    return;
  }

  // If the decoder is waiting for data, we tell it to call us back when the
  // data arrives.
  if (aReason == MediaDecoderReader::WAITING_FOR_DATA) {
    MOZ_ASSERT(mReader->IsWaitForDataSupported(),
               "Readers that send WAITING_FOR_DATA need to implement WaitForData");
    RefPtr<MediaDecoderStateMachine> self = this;
    WaitRequestRef(aType).Begin(InvokeAsync(DecodeTaskQueue(), mReader.get(), __func__,
                                            &MediaDecoderReader::WaitForData, aType)
      ->Then(OwnerThread(), __func__,
             [self] (MediaData::Type aType) -> void {
               self->WaitRequestRef(aType).Complete();
               self->DispatchDecodeTasksIfNeeded();
             },
             [self] (WaitForDataRejectValue aRejection) -> void {
               self->WaitRequestRef(aRejection.mType).Complete();
             }));

    return;
  }

  if (aReason == MediaDecoderReader::CANCELED) {
    DispatchDecodeTasksIfNeeded();
    return;
  }

  // This is an EOS. Finish off the queue, and then handle things based on our
  // state.
  MOZ_ASSERT(aReason == MediaDecoderReader::END_OF_STREAM);
  if (!isAudio && mState == DECODER_STATE_SEEKING &&
      mCurrentSeek.Exists() && mFirstVideoFrameAfterSeek) {
    // Null sample. Hit end of stream. If we have decoded a frame,
    // insert it into the queue so that we have something to display.
    // We make sure to do this before invoking VideoQueue().Finish()
    // below.
    Push(mFirstVideoFrameAfterSeek, MediaData::VIDEO_DATA);
    mFirstVideoFrameAfterSeek = nullptr;
  }
  if (isAudio) {
    AudioQueue().Finish();
    StopPrerollingAudio();
  } else {
    VideoQueue().Finish();
    StopPrerollingVideo();
  }
  switch (mState) {
    case DECODER_STATE_BUFFERING:
    case DECODER_STATE_DECODING: {
      if (MaybeFinishDecodeFirstFrame()) {
        return;
      }
      CheckIfDecodeComplete();
      return;
    }
    case DECODER_STATE_SEEKING: {
      if (!mCurrentSeek.Exists()) {
        // We've received a sample from a previous decode. Discard it.
        return;
      }

      if (isAudio) {
        mDropAudioUntilNextDiscontinuity = false;
      } else {
        mDropVideoUntilNextDiscontinuity = false;
      }

      CheckIfSeekComplete();
      return;
    }
    default: {
      return;
    }
  }
}

bool
MediaDecoderStateMachine::MaybeFinishDecodeFirstFrame()
{
  MOZ_ASSERT(OnTaskQueue());
  if (!IsDecodingFirstFrame() ||
      (IsAudioDecoding() && AudioQueue().GetSize() == 0) ||
      (IsVideoDecoding() && VideoQueue().GetSize() == 0)) {
    return false;
  }
  FinishDecodeFirstFrame();
  if (!mQueuedSeek.Exists()) {
    return false;
  }

  // We can now complete the pending seek.
  mPendingSeek.Steal(mQueuedSeek);
  SetState(DECODER_STATE_SEEKING);
  ScheduleStateMachine();
  return true;
}

void
MediaDecoderStateMachine::OnVideoDecoded(MediaData* aVideoSample)
{
  MOZ_ASSERT(OnTaskQueue());
  RefPtr<MediaData> video(aVideoSample);
  MOZ_ASSERT(video);
  mVideoDataRequest.Complete();
  aVideoSample->AdjustForStartTime(StartTime());
  mDecodedVideoEndTime = video ? video->GetEndTime() : mDecodedVideoEndTime;

  SAMPLE_LOG("OnVideoDecoded [%lld,%lld] disc=%d",
             (video ? video->mTime : -1),
             (video ? video->GetEndTime() : -1),
             (video ? video->mDiscontinuity : 0));

  // Check frame validity here for every decoded frame in order to have a
  // better chance to make the decision of turning off HW acceleration.
  CheckFrameValidity(aVideoSample->As<VideoData>());

  switch (mState) {
    case DECODER_STATE_BUFFERING: {
      // If we're buffering, this may be the sample we need to stop buffering.
      // Save it and schedule the state machine.
      Push(video, MediaData::VIDEO_DATA);
      ScheduleStateMachine();
      return;
    }

    case DECODER_STATE_DECODING: {
      Push(video, MediaData::VIDEO_DATA);
      if (MaybeFinishDecodeFirstFrame()) {
        return;
      }
      if (mIsVideoPrerolling && DonePrerollingVideo()) {
        StopPrerollingVideo();
      }

      // Schedule the state machine to send stream data as soon as possible if
      // the VideoQueue() is empty or contains one frame before the Push().
      //
      // The state machine threads requires a frame in VideoQueue() that is `in
      // the future` to gather precise timing information. The head of
      // VideoQueue() is always `in the past`.
      //
      // Schedule the state machine as soon as possible to render the video
      // frame or delay the state machine thread accurately.
      if (VideoQueue().GetSize() <= 2) {
        ScheduleStateMachine();
      }

      // For non async readers, if the requested video sample was slow to
      // arrive, increase the amount of audio we buffer to ensure that we
      // don't run out of audio. This is unnecessary for async readers,
      // since they decode audio and video on different threads so they
      // are unlikely to run out of decoded audio.
      if (mReader->IsAsync()) {
        return;
      }
      TimeDuration decodeTime = TimeStamp::Now() - mVideoDecodeStartTime;
      if (!IsDecodingFirstFrame() &&
          THRESHOLD_FACTOR * DurationToUsecs(decodeTime) > mLowAudioThresholdUsecs &&
          !HasLowUndecodedData())
      {
        mLowAudioThresholdUsecs =
          std::min(THRESHOLD_FACTOR * DurationToUsecs(decodeTime), mAmpleAudioThresholdUsecs);
        mAmpleAudioThresholdUsecs = std::max(THRESHOLD_FACTOR * mLowAudioThresholdUsecs,
                                              mAmpleAudioThresholdUsecs);
        DECODER_LOG("Slow video decode, set mLowAudioThresholdUsecs=%lld mAmpleAudioThresholdUsecs=%lld",
                    mLowAudioThresholdUsecs, mAmpleAudioThresholdUsecs);
      }
      return;
    }
    case DECODER_STATE_SEEKING: {
      if (!mCurrentSeek.Exists()) {
        // We've received a sample from a previous decode. Discard it.
        return;
      }
      if (mDropVideoUntilNextDiscontinuity) {
        if (video->mDiscontinuity) {
          mDropVideoUntilNextDiscontinuity = false;
        }
      }
      if (!mDropVideoUntilNextDiscontinuity) {
        // We must be after the discontinuity; we're receiving samples
        // at or after the seek target.
        if (mCurrentSeek.mTarget.mType == SeekTarget::PrevSyncPoint &&
            mCurrentSeek.mTarget.mTime > mCurrentTimeBeforeSeek &&
            video->mTime < mCurrentTimeBeforeSeek) {
          // We are doing a fastSeek, but we ended up *before* the previous
          // playback position. This is surprising UX, so switch to an accurate
          // seek and decode to the seek target. This is not conformant to the
          // spec, fastSeek should always be fast, but until we get the time to
          // change all Readers to seek to the keyframe after the currentTime
          // in this case, we'll just decode forward. Bug 1026330.
          mCurrentSeek.mTarget.mType = SeekTarget::Accurate;
        }
        if (mCurrentSeek.mTarget.mType == SeekTarget::PrevSyncPoint ||
            mPendingSeek.Exists()) {
          // Non-precise seek; or a pending seek exists ; we can stop the seek
          // at the first sample.
          Push(video, MediaData::VIDEO_DATA);
        } else {
          // We're doing an accurate seek. We still need to discard
          // MediaData up to the one containing exact seek target.
          if (NS_FAILED(DropVideoUpToSeekTarget(video))) {
            DecodeError();
            return;
          }
        }
      }
      CheckIfSeekComplete();
      return;
    }
    default: {
      // Ignore other cases.
      return;
    }
  }
}

void
MediaDecoderStateMachine::CheckIfSeekComplete()
{
  MOZ_ASSERT(OnTaskQueue());
  MOZ_ASSERT(mState == DECODER_STATE_SEEKING);

  const bool videoSeekComplete = IsVideoSeekComplete();
  if (HasVideo() && !videoSeekComplete) {
    // We haven't reached the target. Ensure we have requested another sample.
    if (NS_FAILED(EnsureVideoDecodeTaskQueued())) {
      DECODER_WARN("Failed to request video during seek");
      DecodeError();
    }
  }

  const bool audioSeekComplete = IsAudioSeekComplete();
  if (HasAudio() && !audioSeekComplete) {
    // We haven't reached the target. Ensure we have requested another sample.
    if (NS_FAILED(EnsureAudioDecodeTaskQueued())) {
      DECODER_WARN("Failed to request audio during seek");
      DecodeError();
    }
  }

  SAMPLE_LOG("CheckIfSeekComplete() audioSeekComplete=%d videoSeekComplete=%d",
             audioSeekComplete, videoSeekComplete);

  if (audioSeekComplete && videoSeekComplete) {
    mDecodeToSeekTarget = false;
    SeekCompleted();
  }
}

bool
MediaDecoderStateMachine::IsAudioDecoding()
{
  MOZ_ASSERT(OnTaskQueue());
  return HasAudio() && !AudioQueue().IsFinished();
}

bool
MediaDecoderStateMachine::IsVideoDecoding()
{
  MOZ_ASSERT(OnTaskQueue());
  return HasVideo() && !VideoQueue().IsFinished();
}

void
MediaDecoderStateMachine::CheckIfDecodeComplete()
{
  MOZ_ASSERT(OnTaskQueue());

  if (IsShutdown() ||
      mState == DECODER_STATE_SEEKING ||
      mState == DECODER_STATE_COMPLETED) {
    // Don't change our state if we've already been shutdown, or we're seeking,
    // since we don't want to abort the shutdown or seek processes.
    return;
  }
  if (!IsVideoDecoding() && !IsAudioDecoding()) {
    // We've finished decoding all active streams,
    // so move to COMPLETED state.
    SetState(DECODER_STATE_COMPLETED);
    DispatchDecodeTasksIfNeeded();
    ScheduleStateMachine();
  }
  DECODER_LOG("CheckIfDecodeComplete %scompleted",
              ((mState == DECODER_STATE_COMPLETED) ? "" : "NOT "));
}

bool MediaDecoderStateMachine::IsPlaying() const
{
  MOZ_ASSERT(OnTaskQueue());
  return mMediaSink->IsPlaying();
}

nsresult MediaDecoderStateMachine::Init()
{
  MOZ_ASSERT(NS_IsMainThread());
  nsresult rv = mReader->Init();
  NS_ENSURE_SUCCESS(rv, rv);
  ScheduleStateMachineCrossThread();
  return NS_OK;
}

void MediaDecoderStateMachine::StopPlayback()
{
  MOZ_ASSERT(OnTaskQueue());
  DECODER_LOG("StopPlayback()");

  mDecoder->DispatchPlaybackStopped();

  if (IsPlaying()) {
    mMediaSink->SetPlaying(false);
    MOZ_ASSERT(!IsPlaying());
  }

  DispatchDecodeTasksIfNeeded();
}

void MediaDecoderStateMachine::MaybeStartPlayback()
{
  MOZ_ASSERT(OnTaskQueue());
  MOZ_ASSERT(mState == DECODER_STATE_DECODING ||
             mState == DECODER_STATE_COMPLETED);

  if (IsPlaying()) {
    // Logging this case is really spammy - don't do it.
    return;
  }

  bool playStatePermits = mPlayState == MediaDecoder::PLAY_STATE_PLAYING;
  if (!playStatePermits || mIsAudioPrerolling ||
      mIsVideoPrerolling || mAudioOffloading) {
    DECODER_LOG("Not starting playback [playStatePermits: %d, "
                "mIsAudioPrerolling: %d, mIsVideoPrerolling: %d, "
                "mAudioOffloading: %d]",
                (int)playStatePermits, (int)mIsAudioPrerolling,
                (int)mIsVideoPrerolling, (int)mAudioOffloading);
    return;
  }

  DECODER_LOG("MaybeStartPlayback() starting playback");
  mDecoder->DispatchPlaybackStarted();
  StartMediaSink();

  if (!IsPlaying()) {
    mMediaSink->SetPlaying(true);
    MOZ_ASSERT(IsPlaying());
  }

  DispatchDecodeTasksIfNeeded();
}

void
MediaDecoderStateMachine::MaybeStartBuffering()
{
  MOZ_ASSERT(OnTaskQueue());

  if (mState == DECODER_STATE_DECODING &&
      mPlayState == MediaDecoder::PLAY_STATE_PLAYING &&
      mResource->IsExpectingMoreData()) {
    bool shouldBuffer;
    if (mReader->UseBufferingHeuristics()) {
      shouldBuffer = HasLowDecodedData(EXHAUSTED_DATA_MARGIN_USECS) &&
                     (JustExitedQuickBuffering() || HasLowUndecodedData());
    } else {
      MOZ_ASSERT(mReader->IsWaitForDataSupported());
      shouldBuffer = (OutOfDecodedAudio() && mAudioWaitRequest.Exists()) ||
                     (OutOfDecodedVideo() && mVideoWaitRequest.Exists());
    }
    if (shouldBuffer) {
      StartBuffering();
      // Don't go straight back to the state machine loop since that might
      // cause us to start decoding again and we could flip-flop between
      // decoding and quick-buffering.
      ScheduleStateMachineIn(USECS_PER_S);
    }
  }
}

void MediaDecoderStateMachine::UpdatePlaybackPositionInternal(int64_t aTime)
{
  MOZ_ASSERT(OnTaskQueue());
  SAMPLE_LOG("UpdatePlaybackPositionInternal(%lld)", aTime);

  mCurrentPosition = aTime;
  NS_ASSERTION(mCurrentPosition >= 0, "CurrentTime should be positive!");
  mObservedDuration = std::max(mObservedDuration.Ref(),
                               TimeUnit::FromMicroseconds(mCurrentPosition.Ref()));
}

void MediaDecoderStateMachine::UpdatePlaybackPosition(int64_t aTime)
{
  MOZ_ASSERT(OnTaskQueue());
  UpdatePlaybackPositionInternal(aTime);

  bool fragmentEnded = mFragmentEndTime >= 0 && GetMediaTime() >= mFragmentEndTime;
  mMetadataManager.DispatchMetadataIfNeeded(TimeUnit::FromMicroseconds(aTime));

  if (fragmentEnded) {
    StopPlayback();
  }
}

static const char* const gMachineStateStr[] = {
  "NONE",
  "DECODING_METADATA",
  "WAIT_FOR_CDM",
  "DORMANT",
  "DECODING",
  "SEEKING",
  "BUFFERING",
  "COMPLETED",
  "SHUTDOWN",
  "ERROR"
};

void MediaDecoderStateMachine::SetState(State aState)
{
  MOZ_ASSERT(OnTaskQueue());
  if (mState == aState) {
    return;
  }
  DECODER_LOG("Change machine state from %s to %s",
              gMachineStateStr[mState], gMachineStateStr[aState]);

  mState = aState;

  mIsShutdown = mState == DECODER_STATE_ERROR || mState == DECODER_STATE_SHUTDOWN;

  // Clear state-scoped state.
  mSentPlaybackEndedEvent = false;
}

void MediaDecoderStateMachine::VolumeChanged()
{
  MOZ_ASSERT(OnTaskQueue());
  mMediaSink->SetVolume(mVolume);
}

void MediaDecoderStateMachine::RecomputeDuration()
{
  MOZ_ASSERT(OnTaskQueue());

  TimeUnit duration;
  if (mExplicitDuration.Ref().isSome()) {
    double d = mExplicitDuration.Ref().ref();
    if (IsNaN(d)) {
      // We have an explicit duration (which means that we shouldn't look at
      // any other duration sources), but the duration isn't ready yet.
      return;
    }
    // We don't fire duration changed for this case because it should have
    // already been fired on the main thread when the explicit duration was set.
    duration = TimeUnit::FromSeconds(d);
  } else if (mEstimatedDuration.Ref().isSome()) {
    duration = mEstimatedDuration.Ref().ref();
  } else if (mInfo.mMetadataDuration.isSome()) {
    duration = mInfo.mMetadataDuration.ref();
  } else {
    return;
  }

  if (duration < mObservedDuration.Ref()) {
    duration = mObservedDuration;
  }

  MOZ_ASSERT(duration.ToMicroseconds() >= 0);
  mDuration = Some(duration);
}

void
MediaDecoderStateMachine::DispatchSetDormant(bool aDormant)
{
  nsCOMPtr<nsIRunnable> r = NS_NewRunnableMethodWithArg<bool>(
    this, &MediaDecoderStateMachine::SetDormant, aDormant);
  OwnerThread()->Dispatch(r.forget());
}

void
MediaDecoderStateMachine::SetDormant(bool aDormant)
{
  MOZ_ASSERT(OnTaskQueue());

  if (IsShutdown()) {
    return;
  }

  if (!mReader) {
    return;
  }

  if (mMetadataRequest.Exists()) {
    if (mPendingDormant && mPendingDormant.ref() != aDormant && !aDormant) {
      // We already have a dormant request pending; the new request would have
      // resumed from dormant, we can just cancel any pending dormant requests.
      mPendingDormant.reset();
    } else {
      mPendingDormant = Some(aDormant);
    }
    return;
  }
  mPendingDormant.reset();

  DECODER_LOG("SetDormant=%d", aDormant);

  if (aDormant) {
    if (mState == DECODER_STATE_SEEKING) {
      if (mQueuedSeek.Exists()) {
        // Keep latest seek target
      } else if (mPendingSeek.Exists()) {
        mQueuedSeek.Steal(mPendingSeek);
      } else if (mCurrentSeek.Exists()) {
        mQueuedSeek.Steal(mCurrentSeek);
      } else {
        mQueuedSeek.mTarget = SeekTarget(mCurrentPosition,
                                         SeekTarget::Accurate,
                                         MediaDecoderEventVisibility::Suppressed);
        // XXXbholley - Nobody is listening to this promise. Do we need to pass it
        // back to MediaDecoder when we come out of dormant?
        RefPtr<MediaDecoder::SeekPromise> unused = mQueuedSeek.mPromise.Ensure(__func__);
      }
    } else {
      mQueuedSeek.mTarget = SeekTarget(mCurrentPosition,
                                       SeekTarget::Accurate,
                                       MediaDecoderEventVisibility::Suppressed);
      // XXXbholley - Nobody is listening to this promise. Do we need to pass it
      // back to MediaDecoder when we come out of dormant?
      RefPtr<MediaDecoder::SeekPromise> unused = mQueuedSeek.mPromise.Ensure(__func__);
    }
    mPendingSeek.RejectIfExists(__func__);
    mCurrentSeek.RejectIfExists(__func__);
    SetState(DECODER_STATE_DORMANT);
    if (IsPlaying()) {
      StopPlayback();
    }

    Reset();

    // Note that we do not wait for the decode task queue to go idle before
    // queuing the ReleaseMediaResources task - instead, we disconnect promises,
    // reset state, and put a ResetDecode in the decode task queue. Any tasks
    // that run after ResetDecode are supposed to run with a clean slate. We rely
    // on that in other places (i.e. seeking), so it seems reasonable to rely on
    // it here as well.
    nsCOMPtr<nsIRunnable> r = NS_NewRunnableMethod(mReader, &MediaDecoderReader::ReleaseMediaResources);
    DecodeTaskQueue()->Dispatch(r.forget());
  } else if ((aDormant != true) && (mState == DECODER_STATE_DORMANT)) {
    ScheduleStateMachine();
    mDecodingFirstFrame = true;
    SetState(DECODER_STATE_DECODING_NONE);
  }
}

void MediaDecoderStateMachine::Shutdown()
{
  MOZ_ASSERT(OnTaskQueue());

  // Once we've entered the shutdown state here there's no going back.
  // Change state before issuing shutdown request to threads so those
  // threads can start exiting cleanly during the Shutdown call.
  ScheduleStateMachine();
  SetState(DECODER_STATE_SHUTDOWN);

  mQueuedSeek.RejectIfExists(__func__);
  mPendingSeek.RejectIfExists(__func__);
  mCurrentSeek.RejectIfExists(__func__);

#ifdef MOZ_EME
  mCDMProxyPromise.DisconnectIfExists();
#endif

  if (IsPlaying()) {
    StopPlayback();
  }

  Reset();

  mMediaSink->Shutdown();

  // Shut down our start time rendezvous.
  if (mStartTimeRendezvous) {
    mStartTimeRendezvous->Destroy();
  }

  // Put a task in the decode queue to shutdown the reader.
  // the queue to spin down.
  InvokeAsync(DecodeTaskQueue(), mReader.get(), __func__, &MediaDecoderReader::Shutdown)
    ->Then(OwnerThread(), __func__, this,
           &MediaDecoderStateMachine::FinishShutdown,
           &MediaDecoderStateMachine::FinishShutdown);
  DECODER_LOG("Shutdown started");
}

void MediaDecoderStateMachine::StartDecoding()
{
  MOZ_ASSERT(OnTaskQueue());
  if (mState == DECODER_STATE_DECODING && !mDecodingFirstFrame) {
    return;
  }
  SetState(DECODER_STATE_DECODING);

  if (mDecodingFirstFrame &&
      (IsRealTime() || mSentFirstFrameLoadedEvent)) {
    if (IsRealTime()) {
      FinishDecodeFirstFrame();
    } else {
      // We're resuming from dormant state, so we don't need to request
      // the first samples in order to determine the media start time,
      // we have the start time from last time we loaded.
      // FinishDecodeFirstFrame will be launched upon completion of the seek when
      // we have data ready to play.
      MOZ_ASSERT(mQueuedSeek.Exists() && mSentFirstFrameLoadedEvent,
                 "Return from dormant must have queued seek");
    }
    if (mQueuedSeek.Exists()) {
      mPendingSeek.Steal(mQueuedSeek);
      SetState(DECODER_STATE_SEEKING);
      ScheduleStateMachine();
      return;
    }
  }

  mDecodeStartTime = TimeStamp::Now();

  CheckIfDecodeComplete();
  if (mState == DECODER_STATE_COMPLETED) {
    return;
  }

  // Reset other state to pristine values before starting decode.
  mIsAudioPrerolling = !DonePrerollingAudio();
  mIsVideoPrerolling = !DonePrerollingVideo();

  // Ensure that we've got tasks enqueued to decode data if we need to.
  DispatchDecodeTasksIfNeeded();

  ScheduleStateMachine();
}

void MediaDecoderStateMachine::PlayStateChanged()
{
  MOZ_ASSERT(OnTaskQueue());

  // This method used to be a Play() method invoked by MediaDecoder when the
  // play state became PLAY_STATE_PLAYING. As such, it doesn't have any work to
  // do for other state changes. That could change.
  if (mPlayState != MediaDecoder::PLAY_STATE_PLAYING) {
    return;
  }

  // Once we start playing, we don't want to minimize our prerolling, as we
  // assume the user is likely to want to keep playing in future. This needs to
  // happen before we invoke StartDecoding().
  if (mMinimizePreroll) {
    mMinimizePreroll = false;
    DispatchDecodeTasksIfNeeded();
  }

  // Some state transitions still happen synchronously on the main thread. So
  // if the main thread invokes Play() and then Seek(), the seek will initiate
  // synchronously on the main thread, and the asynchronous PlayInternal task
  // will arrive when it's no longer valid. The proper thing to do is to move
  // all state transitions to the state machine task queue, but for now we just
  // make sure that none of the possible main-thread state transitions (Seek(),
  // SetDormant(), and Shutdown()) have not occurred.
  if (mState != DECODER_STATE_DECODING && mState != DECODER_STATE_BUFFERING &&
      mState != DECODER_STATE_COMPLETED)
  {
    DECODER_LOG("Unexpected state - Bailing out of PlayInternal()");
    return;
  }

  // When asked to play, switch to decoding state only if
  // we are currently buffering. In other cases, we'll start playing anyway
  // when the state machine notices the decoder's state change to PLAYING.
  if (mState == DECODER_STATE_BUFFERING) {
    StartDecoding();
  }

  ScheduleStateMachine();
}

void MediaDecoderStateMachine::LogicallySeekingChanged()
{
  MOZ_ASSERT(OnTaskQueue());
  ScheduleStateMachine();
}

void MediaDecoderStateMachine::SameOriginMediaChanged()
{
  MOZ_ASSERT(OnTaskQueue());
  mStreamSink->SetSameOrigin(mSameOriginMedia);
}

void MediaDecoderStateMachine::BufferedRangeUpdated()
{
  MOZ_ASSERT(OnTaskQueue());

  // While playing an unseekable stream of unknown duration, mObservedDuration
  // is updated (in AdvanceFrame()) as we play. But if data is being downloaded
  // faster than played, mObserved won't reflect the end of playable data
  // since we haven't played the frame at the end of buffered data. So update
  // mObservedDuration here as new data is downloaded to prevent such a lag.
  if (!mBuffered.Ref().IsInvalid()) {
    bool exists;
    media::TimeUnit end{mBuffered.Ref().GetEnd(&exists)};
    if (exists) {
      mObservedDuration = std::max(mObservedDuration.Ref(), end);
    }
  }
}

RefPtr<MediaDecoder::SeekPromise>
MediaDecoderStateMachine::Seek(SeekTarget aTarget)
{
  MOZ_ASSERT(OnTaskQueue());

  if (IsShutdown()) {
    return MediaDecoder::SeekPromise::CreateAndReject(/* aIgnored = */ true, __func__);
  }

  // We need to be able to seek both at a transport level and at a media level
  // to seek.
  if (!mMediaSeekable) {
    DECODER_WARN("Seek() function should not be called on a non-seekable state machine");
    return MediaDecoder::SeekPromise::CreateAndReject(/* aIgnored = */ true, __func__);
  }

  NS_ASSERTION(mState > DECODER_STATE_DECODING_METADATA,
               "We should have got duration already");

  if (mState < DECODER_STATE_DECODING ||
      (IsDecodingFirstFrame() && !mReader->ForceZeroStartTime())) {
    DECODER_LOG("Seek() Not Enough Data to continue at this stage, queuing seek");
    mQueuedSeek.RejectIfExists(__func__);
    mQueuedSeek.mTarget = aTarget;
    return mQueuedSeek.mPromise.Ensure(__func__);
  }
  mQueuedSeek.RejectIfExists(__func__);
  mPendingSeek.RejectIfExists(__func__);
  mPendingSeek.mTarget = aTarget;

  DECODER_LOG("Changed state to SEEKING (to %lld)", mPendingSeek.mTarget.mTime);
  SetState(DECODER_STATE_SEEKING);
  ScheduleStateMachine();

  return mPendingSeek.mPromise.Ensure(__func__);
}

RefPtr<MediaDecoder::SeekPromise>
MediaDecoderStateMachine::InvokeSeek(SeekTarget aTarget)
{
  return InvokeAsync(OwnerThread(), this, __func__,
                     &MediaDecoderStateMachine::Seek, aTarget);
}

void MediaDecoderStateMachine::StopMediaSink()
{
  MOZ_ASSERT(OnTaskQueue());
  if (mMediaSink->IsStarted()) {
    DECODER_LOG("Stop MediaSink");
    mMediaSink->Stop();
    mMediaSinkAudioPromise.DisconnectIfExists();
    mMediaSinkVideoPromise.DisconnectIfExists();
  }
}

void
MediaDecoderStateMachine::DispatchDecodeTasksIfNeeded()
{
  MOZ_ASSERT(OnTaskQueue());

  if (mState != DECODER_STATE_DECODING &&
      mState != DECODER_STATE_BUFFERING &&
      mState != DECODER_STATE_SEEKING) {
    return;
  }

  // NeedToDecodeAudio() can go from false to true while we hold the
  // monitor, but it can't go from true to false. This can happen because
  // NeedToDecodeAudio() takes into account the amount of decoded audio
  // that's been written to the AudioStream but not played yet. So if we
  // were calling NeedToDecodeAudio() twice and we thread-context switch
  // between the calls, audio can play, which can affect the return value
  // of NeedToDecodeAudio() giving inconsistent results. So we cache the
  // value returned by NeedToDecodeAudio(), and make decisions
  // based on the cached value. If NeedToDecodeAudio() has
  // returned false, and then subsequently returns true and we're not
  // playing, it will probably be OK since we don't need to consume data
  // anyway.

  const bool needToDecodeAudio = NeedToDecodeAudio();
  const bool needToDecodeVideo = NeedToDecodeVideo();

  // If we're in completed state, we should not need to decode anything else.
  MOZ_ASSERT(mState != DECODER_STATE_COMPLETED ||
             (!needToDecodeAudio && !needToDecodeVideo));

  bool needIdle = !IsLogicallyPlaying() &&
                  mState != DECODER_STATE_SEEKING &&
                  !needToDecodeAudio &&
                  !needToDecodeVideo &&
                  !IsPlaying();

  SAMPLE_LOG("DispatchDecodeTasksIfNeeded needAudio=%d audioStatus=%s needVideo=%d videoStatus=%s needIdle=%d",
             needToDecodeAudio, AudioRequestStatus(),
             needToDecodeVideo, VideoRequestStatus(),
             needIdle);

  if (needToDecodeAudio) {
    EnsureAudioDecodeTaskQueued();
  }
  if (needToDecodeVideo) {
    EnsureVideoDecodeTaskQueued();
  }

  if (needIdle) {
    DECODER_LOG("Dispatching SetIdle() audioQueue=%lld videoQueue=%lld",
                GetDecodedAudioDuration(),
                VideoQueue().Duration());
    nsCOMPtr<nsIRunnable> task = NS_NewRunnableMethod(mReader, &MediaDecoderReader::SetIdle);
    DecodeTaskQueue()->Dispatch(task.forget());
  }
}

void
MediaDecoderStateMachine::InitiateSeek()
{
  MOZ_ASSERT(OnTaskQueue());

  mCurrentSeek.RejectIfExists(__func__);
  mCurrentSeek.Steal(mPendingSeek);

  // Bound the seek time to be inside the media range.
  int64_t end = Duration().ToMicroseconds();
  NS_ASSERTION(end != -1, "Should know end time by now");
  int64_t seekTime = mCurrentSeek.mTarget.mTime;
  seekTime = std::min(seekTime, end);
  seekTime = std::max(int64_t(0), seekTime);
  NS_ASSERTION(seekTime >= 0 && seekTime <= end,
               "Can only seek in range [0,duration]");
  mCurrentSeek.mTarget.mTime = seekTime;

  mDropAudioUntilNextDiscontinuity = HasAudio();
  mDropVideoUntilNextDiscontinuity = HasVideo();
  mCurrentTimeBeforeSeek = GetMediaTime();

  // Stop playback now to ensure that while we're outside the monitor
  // dispatching SeekingStarted, playback doesn't advance and mess with
  // mCurrentPosition that we've setting to seekTime here.
  StopPlayback();
  UpdatePlaybackPositionInternal(mCurrentSeek.mTarget.mTime);

  nsCOMPtr<nsIRunnable> startEvent =
      NS_NewRunnableMethodWithArg<MediaDecoderEventVisibility>(
        mDecoder,
        &MediaDecoder::SeekingStarted,
        mCurrentSeek.mTarget.mEventVisibility);
  AbstractThread::MainThread()->Dispatch(startEvent.forget());

  // Reset our state machine and decoding pipeline before seeking.
  Reset();

  // Do the seek.
  RefPtr<MediaDecoderStateMachine> self = this;
  mSeekRequest.Begin(InvokeAsync(DecodeTaskQueue(), mReader.get(), __func__,
                                 &MediaDecoderReader::Seek, mCurrentSeek.mTarget.mTime,
                                 Duration().ToMicroseconds())
    ->Then(OwnerThread(), __func__,
           [self] (int64_t) -> void {
             self->mSeekRequest.Complete();
             // We must decode the first samples of active streams, so we can determine
             // the new stream time. So dispatch tasks to do that.
             self->mDecodeToSeekTarget = true;
             self->DispatchDecodeTasksIfNeeded();
           }, [self] (nsresult aResult) -> void {
             self->mSeekRequest.Complete();
             MOZ_ASSERT(NS_FAILED(aResult), "Cancels should also disconnect mSeekRequest");
             self->DecodeError();
           }));
}

nsresult
MediaDecoderStateMachine::DispatchAudioDecodeTaskIfNeeded()
{
  MOZ_ASSERT(OnTaskQueue());

  if (IsShutdown()) {
    return NS_ERROR_FAILURE;
  }

  if (NeedToDecodeAudio()) {
    return EnsureAudioDecodeTaskQueued();
  }

  return NS_OK;
}

nsresult
MediaDecoderStateMachine::EnsureAudioDecodeTaskQueued()
{
  MOZ_ASSERT(OnTaskQueue());

  SAMPLE_LOG("EnsureAudioDecodeTaskQueued isDecoding=%d status=%s",
              IsAudioDecoding(), AudioRequestStatus());

  if (mState != DECODER_STATE_DECODING &&
      mState != DECODER_STATE_BUFFERING &&
      mState != DECODER_STATE_SEEKING) {
    return NS_OK;
  }

  if (!IsAudioDecoding() || mAudioDataRequest.Exists() ||
      mAudioWaitRequest.Exists() || mSeekRequest.Exists()) {
    return NS_OK;
  }

  RequestAudioData();
  return NS_OK;
}

void
MediaDecoderStateMachine::RequestAudioData()
{
  MOZ_ASSERT(OnTaskQueue());

  SAMPLE_LOG("Queueing audio task - queued=%i, decoder-queued=%o",
             AudioQueue().GetSize(), mReader->SizeOfAudioQueueInFrames());

  if (mSentFirstFrameLoadedEvent) {
    mAudioDataRequest.Begin(InvokeAsync(DecodeTaskQueue(), mReader.get(),
                                        __func__, &MediaDecoderReader::RequestAudioData)
      ->Then(OwnerThread(), __func__, this,
             &MediaDecoderStateMachine::OnAudioDecoded,
             &MediaDecoderStateMachine::OnAudioNotDecoded));
  } else {
    mAudioDataRequest.Begin(
      InvokeAsync(DecodeTaskQueue(), mReader.get(), __func__,
                  &MediaDecoderReader::RequestAudioData)
      ->Then(OwnerThread(), __func__, mStartTimeRendezvous.get(),
             &StartTimeRendezvous::ProcessFirstSample<AudioDataPromise, MediaData::AUDIO_DATA>,
             &StartTimeRendezvous::FirstSampleRejected<MediaData::AUDIO_DATA>)
      ->CompletionPromise()
      ->Then(OwnerThread(), __func__, this,
             &MediaDecoderStateMachine::OnAudioDecoded,
             &MediaDecoderStateMachine::OnAudioNotDecoded)
    );
  }
}

nsresult
MediaDecoderStateMachine::DispatchVideoDecodeTaskIfNeeded()
{
  MOZ_ASSERT(OnTaskQueue());

  if (IsShutdown()) {
    return NS_ERROR_FAILURE;
  }

  if (NeedToDecodeVideo()) {
    return EnsureVideoDecodeTaskQueued();
  }

  return NS_OK;
}

nsresult
MediaDecoderStateMachine::EnsureVideoDecodeTaskQueued()
{
  MOZ_ASSERT(OnTaskQueue());

  SAMPLE_LOG("EnsureVideoDecodeTaskQueued isDecoding=%d status=%s",
             IsVideoDecoding(), VideoRequestStatus());

  if (mState != DECODER_STATE_DECODING &&
      mState != DECODER_STATE_BUFFERING &&
      mState != DECODER_STATE_SEEKING) {
    return NS_OK;
  }

  if (!IsVideoDecoding() || mVideoDataRequest.Exists() ||
      mVideoWaitRequest.Exists() || mSeekRequest.Exists()) {
    return NS_OK;
  }

  RequestVideoData();
  return NS_OK;
}

void
MediaDecoderStateMachine::RequestVideoData()
{
  MOZ_ASSERT(OnTaskQueue());

  // Time the video decode, so that if it's slow, we can increase our low
  // audio threshold to reduce the chance of an audio underrun while we're
  // waiting for a video decode to complete.
  mVideoDecodeStartTime = TimeStamp::Now();

  bool skipToNextKeyFrame = mSentFirstFrameLoadedEvent &&
    NeedToSkipToNextKeyframe();
  int64_t currentTime = mState == DECODER_STATE_SEEKING ? 0 : GetMediaTime();

  SAMPLE_LOG("Queueing video task - queued=%i, decoder-queued=%o, skip=%i, time=%lld",
             VideoQueue().GetSize(), mReader->SizeOfVideoQueueInFrames(), skipToNextKeyFrame,
             currentTime);

  if (mSentFirstFrameLoadedEvent) {
    mVideoDataRequest.Begin(
      InvokeAsync(DecodeTaskQueue(), mReader.get(), __func__,
                  &MediaDecoderReader::RequestVideoData,
                  skipToNextKeyFrame, currentTime)
      ->Then(OwnerThread(), __func__, this,
             &MediaDecoderStateMachine::OnVideoDecoded,
             &MediaDecoderStateMachine::OnVideoNotDecoded));
  } else {
    mVideoDataRequest.Begin(
      InvokeAsync(DecodeTaskQueue(), mReader.get(), __func__,
                  &MediaDecoderReader::RequestVideoData,
                  skipToNextKeyFrame, currentTime)
      ->Then(OwnerThread(), __func__, mStartTimeRendezvous.get(),
             &StartTimeRendezvous::ProcessFirstSample<VideoDataPromise, MediaData::VIDEO_DATA>,
             &StartTimeRendezvous::FirstSampleRejected<MediaData::VIDEO_DATA>)
      ->CompletionPromise()
      ->Then(OwnerThread(), __func__, this,
             &MediaDecoderStateMachine::OnVideoDecoded,
             &MediaDecoderStateMachine::OnVideoNotDecoded));
  }
}

void
MediaDecoderStateMachine::StartMediaSink()
{
  MOZ_ASSERT(OnTaskQueue());
  if (!mMediaSink->IsStarted()) {
    mAudioCompleted = false;
    mMediaSink->Start(GetMediaTime(), mInfo);

    auto videoPromise = mMediaSink->OnEnded(TrackInfo::kVideoTrack);
    auto audioPromise = mMediaSink->OnEnded(TrackInfo::kAudioTrack);

    if (audioPromise) {
      mMediaSinkAudioPromise.Begin(audioPromise->Then(
        OwnerThread(), __func__, this,
        &MediaDecoderStateMachine::OnMediaSinkAudioComplete,
        &MediaDecoderStateMachine::OnMediaSinkAudioError));
    }
    if (videoPromise) {
      mMediaSinkVideoPromise.Begin(videoPromise->Then(
        OwnerThread(), __func__, this,
        &MediaDecoderStateMachine::OnMediaSinkVideoComplete,
        &MediaDecoderStateMachine::OnMediaSinkVideoError));
    }
  }
}

int64_t MediaDecoderStateMachine::AudioDecodedUsecs()
{
  MOZ_ASSERT(OnTaskQueue());
  NS_ASSERTION(HasAudio(),
               "Should only call AudioDecodedUsecs() when we have audio");
  // The amount of audio we have decoded is the amount of audio data we've
  // already decoded and pushed to the hardware, plus the amount of audio
  // data waiting to be pushed to the hardware.
  int64_t pushed = mMediaSink->IsStarted() ? (AudioEndTime() - GetMediaTime()) : 0;
  return pushed + AudioQueue().Duration();
}

bool MediaDecoderStateMachine::HasLowDecodedData(int64_t aAudioUsecs)
{
  MOZ_ASSERT(OnTaskQueue());
  MOZ_ASSERT(mReader->UseBufferingHeuristics());
  // We consider ourselves low on decoded data if we're low on audio,
  // provided we've not decoded to the end of the audio stream, or
  // if we're low on video frames, provided
  // we've not decoded to the end of the video stream.
  return ((IsAudioDecoding() && AudioDecodedUsecs() < aAudioUsecs) ||
         (IsVideoDecoding() &&
          static_cast<uint32_t>(VideoQueue().GetSize()) < LOW_VIDEO_FRAMES));
}

bool MediaDecoderStateMachine::OutOfDecodedAudio()
{
    MOZ_ASSERT(OnTaskQueue());
    return IsAudioDecoding() && !AudioQueue().IsFinished() &&
           AudioQueue().GetSize() == 0 &&
           !mMediaSink->HasUnplayedFrames(TrackInfo::kAudioTrack);
}

bool MediaDecoderStateMachine::HasLowUndecodedData()
{
  MOZ_ASSERT(OnTaskQueue());
  return HasLowUndecodedData(mLowDataThresholdUsecs);
}

bool MediaDecoderStateMachine::HasLowUndecodedData(int64_t aUsecs)
{
  MOZ_ASSERT(OnTaskQueue());
  NS_ASSERTION(mState >= DECODER_STATE_DECODING && !IsDecodingFirstFrame(),
               "Must have loaded first frame for mBuffered to be valid");

  // If we don't have a duration, mBuffered is probably not going to have
  // a useful buffered range. Return false here so that we don't get stuck in
  // buffering mode for live streams.
  if (Duration().IsInfinite()) {
    return false;
  }

  if (mBuffered.Ref().IsInvalid()) {
    return false;
  }

  int64_t endOfDecodedVideoData = INT64_MAX;
  if (HasVideo() && !VideoQueue().AtEndOfStream()) {
    endOfDecodedVideoData = VideoQueue().Peek() ? VideoQueue().Peek()->GetEndTime() : VideoEndTime();
  }
  int64_t endOfDecodedAudioData = INT64_MAX;
  if (HasAudio() && !AudioQueue().AtEndOfStream()) {
    // mDecodedAudioEndTime could be -1 when no audio samples are decoded.
    // But that is fine since we consider ourself as low in decoded data when
    // we don't have any decoded audio samples at all.
    endOfDecodedAudioData = mDecodedAudioEndTime;
  }
  int64_t endOfDecodedData = std::min(endOfDecodedVideoData, endOfDecodedAudioData);
  if (Duration().ToMicroseconds() < endOfDecodedData) {
    // Our duration is not up to date. No point buffering.
    return false;
  }
  media::TimeInterval interval(media::TimeUnit::FromMicroseconds(endOfDecodedData),
                               media::TimeUnit::FromMicroseconds(std::min(endOfDecodedData + aUsecs, Duration().ToMicroseconds())));
  return endOfDecodedData != INT64_MAX && !mBuffered.Ref().Contains(interval);
}

void
MediaDecoderStateMachine::DecodeError()
{
  MOZ_ASSERT(OnTaskQueue());

  if (IsShutdown()) {
    // Already shutdown.
    return;
  }

  // Change state to error, which will cause the state machine to wait until
  // the MediaDecoder shuts it down.
  SetState(DECODER_STATE_ERROR);
  ScheduleStateMachine();
  DECODER_WARN("Decode error, changed state to ERROR");

  // MediaDecoder::DecodeError notifies the owner, and then shuts down the state
  // machine.
  nsCOMPtr<nsIRunnable> event =
    NS_NewRunnableMethod(mDecoder, &MediaDecoder::DecodeError);
  AbstractThread::MainThread()->Dispatch(event.forget());
}

void
MediaDecoderStateMachine::OnMetadataRead(MetadataHolder* aMetadata)
{
  MOZ_ASSERT(OnTaskQueue());
  MOZ_ASSERT(mState == DECODER_STATE_DECODING_METADATA);
  mMetadataRequest.Complete();

  if (mPendingDormant) {
    SetDormant(mPendingDormant.ref());
    return;
  }

  // Set mode to PLAYBACK after reading metadata.
  mResource->SetReadMode(MediaCacheStream::MODE_PLAYBACK);
  mDecoder->DispatchSetMediaSeekable(mReader->IsMediaSeekable());
  mInfo = aMetadata->mInfo;
  mMetadataTags = aMetadata->mTags.forget();
  RefPtr<MediaDecoderStateMachine> self = this;

  // Set up the start time rendezvous if it doesn't already exist (which is
  // generally the case, unless we're coming out of dormant mode).
  if (!mStartTimeRendezvous) {
    mStartTimeRendezvous = new StartTimeRendezvous(OwnerThread(), HasAudio(), HasVideo(),
                                                   mReader->ForceZeroStartTime() || IsRealTime());

    mStartTimeRendezvous->AwaitStartTime()->Then(OwnerThread(), __func__,
      [self] () -> void {
        NS_ENSURE_TRUE_VOID(!self->IsShutdown());
        self->mReader->DispatchSetStartTime(self->StartTime());
      },
      [] () -> void { NS_WARNING("Setting start time on reader failed"); }
    );
  }

  if (mInfo.mMetadataDuration.isSome()) {
    RecomputeDuration();
  } else if (mInfo.mUnadjustedMetadataEndTime.isSome()) {
    mStartTimeRendezvous->AwaitStartTime()->Then(OwnerThread(), __func__,
      [self] () -> void {
        NS_ENSURE_TRUE_VOID(!self->IsShutdown());
        TimeUnit unadjusted = self->mInfo.mUnadjustedMetadataEndTime.ref();
        TimeUnit adjustment = TimeUnit::FromMicroseconds(self->StartTime());
        self->mInfo.mMetadataDuration.emplace(unadjusted - adjustment);
        self->RecomputeDuration();
      }, [] () -> void { NS_WARNING("Adjusting metadata end time failed"); }
    );
  }

  if (HasVideo()) {
    DECODER_LOG("Video decode isAsync=%d HWAccel=%d videoQueueSize=%d",
                mReader->IsAsync(),
                mReader->VideoIsHardwareAccelerated(),
                GetAmpleVideoFrames());
  }

  // In general, we wait until we know the duration before notifying the decoder.
  // However, we notify  unconditionally in this case without waiting for the start
  // time, since the caller might be waiting on metadataloaded to be fired before
  // feeding in the CDM, which we need to decode the first frame (and
  // thus get the metadata). We could fix this if we could compute the start
  // time by demuxing without necessaring decoding.
  bool waitingForCDM =
#ifdef MOZ_EME
    mInfo.IsEncrypted() && !mCDMProxy;
#else
    false;
#endif
  mNotifyMetadataBeforeFirstFrame = mDuration.Ref().isSome() || waitingForCDM;
  if (mNotifyMetadataBeforeFirstFrame) {
    EnqueueLoadedMetadataEvent();
  }

  if (waitingForCDM) {
    // Metadata parsing was successful but we're still waiting for CDM caps
    // to become available so that we can build the correct decryptor/decoder.
    SetState(DECODER_STATE_WAIT_FOR_CDM);
    return;
  }

  StartDecoding();

  ScheduleStateMachine();
}

void
MediaDecoderStateMachine::OnMetadataNotRead(ReadMetadataFailureReason aReason)
{
  MOZ_ASSERT(OnTaskQueue());
  MOZ_ASSERT(mState == DECODER_STATE_DECODING_METADATA);
  mMetadataRequest.Complete();
  DECODER_WARN("Decode metadata failed, shutting down decoder");
  DecodeError();
}

void
MediaDecoderStateMachine::EnqueueLoadedMetadataEvent()
{
  MOZ_ASSERT(OnTaskQueue());
  nsAutoPtr<MediaInfo> info(new MediaInfo());
  *info = mInfo;
  MediaDecoderEventVisibility visibility = mSentLoadedMetadataEvent?
                                    MediaDecoderEventVisibility::Suppressed :
                                    MediaDecoderEventVisibility::Observable;
  nsCOMPtr<nsIRunnable> metadataLoadedEvent =
    new MetadataEventRunner(mDecoder, info, mMetadataTags, visibility);
  AbstractThread::MainThread()->Dispatch(metadataLoadedEvent.forget());
  mSentLoadedMetadataEvent = true;
}

void
MediaDecoderStateMachine::EnqueueFirstFrameLoadedEvent()
{
  MOZ_ASSERT(OnTaskQueue());
  nsAutoPtr<MediaInfo> info(new MediaInfo());
  *info = mInfo;
  MediaDecoderEventVisibility visibility = mSentFirstFrameLoadedEvent?
                                    MediaDecoderEventVisibility::Suppressed :
                                    MediaDecoderEventVisibility::Observable;
  nsCOMPtr<nsIRunnable> event =
    new FirstFrameLoadedEventRunner(mDecoder, info, visibility);
  AbstractThread::MainThread()->Dispatch(event.forget());
  mSentFirstFrameLoadedEvent = true;
}

bool
MediaDecoderStateMachine::IsDecodingFirstFrame()
{
  return mState == DECODER_STATE_DECODING && mDecodingFirstFrame;
}

void
MediaDecoderStateMachine::AdjustAudioThresholds()
{
  MOZ_ASSERT(OnTaskQueue());

  // Experiments show that we need to buffer more if audio is captured to avoid
  // audio glitch. See bug 1188643 comment 16 for the details.
  int64_t divisor = mAudioCaptured ? NO_VIDEO_AMPLE_AUDIO_DIVISOR / 2
                                   : NO_VIDEO_AMPLE_AUDIO_DIVISOR;

  // We're playing audio only. We don't need to worry about slow video
  // decodes causing audio underruns, so don't buffer so much audio in
  // order to reduce memory usage.
  if (HasAudio() && !HasVideo() && mSentFirstFrameLoadedEvent) {
    mAmpleAudioThresholdUsecs = detail::AMPLE_AUDIO_USECS / divisor;
    mLowAudioThresholdUsecs = detail::LOW_AUDIO_USECS / divisor;
    mQuickBufferingLowDataThresholdUsecs =
      detail::QUICK_BUFFERING_LOW_DATA_USECS / divisor;

    // Check if we need to stop audio prerolling for thresholds changed.
    if (mIsAudioPrerolling && DonePrerollingAudio()) {
      StopPrerollingAudio();
    }
  }
}

void
MediaDecoderStateMachine::FinishDecodeFirstFrame()
{
  MOZ_ASSERT(OnTaskQueue());
  DECODER_LOG("FinishDecodeFirstFrame");

  if (!IsRealTime() && !mSentFirstFrameLoadedEvent) {
    mMediaSink->Redraw();
  }

  // If we don't know the duration by this point, we assume infinity, per spec.
  if (mDuration.Ref().isNothing()) {
    mDuration = Some(TimeUnit::FromInfinity());
  }

  DECODER_LOG("Media duration %lld, "
              "transportSeekable=%d, mediaSeekable=%d",
              Duration().ToMicroseconds(), mResource->IsTransportSeekable(), mMediaSeekable.Ref());

  // Get potentially updated metadata
  mReader->ReadUpdatedMetadata(&mInfo);

  if (!mNotifyMetadataBeforeFirstFrame) {
    // If we didn't have duration and/or start time before, we should now.
    EnqueueLoadedMetadataEvent();
  }
  EnqueueFirstFrameLoadedEvent();

  mDecodingFirstFrame = false;
}

void
MediaDecoderStateMachine::SeekCompleted()
{
  MOZ_ASSERT(OnTaskQueue());
  MOZ_ASSERT(mState == DECODER_STATE_SEEKING);

  int64_t seekTime = mCurrentSeek.mTarget.mTime;
  int64_t newCurrentTime = seekTime;

  // Setup timestamp state.
  RefPtr<MediaData> video = VideoQueue().PeekFront();
  if (seekTime == Duration().ToMicroseconds()) {
    newCurrentTime = seekTime;
  } else if (HasAudio()) {
    MediaData* audio = AudioQueue().PeekFront();
    // Though we adjust the newCurrentTime in audio-based, and supplemented
    // by video. For better UX, should NOT bind the slide position to
    // the first audio data timestamp directly.
    // While seeking to a position where there's only either audio or video, or
    // seeking to a position lies before audio or video, we need to check if
    // seekTime is bounded in suitable duration. See Bug 1112438.
    int64_t videoStart = video ? video->mTime : seekTime;
    int64_t audioStart = audio ? audio->mTime : seekTime;
    newCurrentTime = std::min(audioStart, videoStart);
  } else {
    newCurrentTime = video ? video->mTime : seekTime;
  }

  if (mDecodingFirstFrame) {
    // We were resuming from dormant, or initiated a seek early.
    // We can fire loadeddata now.
    FinishDecodeFirstFrame();
  }

  // Change state to DECODING or COMPLETED now. SeekingStopped will
  // call MediaDecoderStateMachine::Seek to reset our state to SEEKING
  // if we need to seek again.

  bool isLiveStream = mResource->IsLiveStream();
  if (mPendingSeek.Exists()) {
    // A new seek target came in while we were processing the old one. No rest
    // for the seeking.
    DECODER_LOG("A new seek came along while we were finishing the old one - staying in SEEKING");
    SetState(DECODER_STATE_SEEKING);
  } else if (GetMediaTime() == Duration().ToMicroseconds() && !isLiveStream) {
    // Seeked to end of media, move to COMPLETED state. Note we don't do
    // this when playing a live stream, since the end of media will advance
    // once we download more data!
    DECODER_LOG("Changed state from SEEKING (to %lld) to COMPLETED", seekTime);
    // Explicitly set our state so we don't decode further, and so
    // we report playback ended to the media element.
    SetState(DECODER_STATE_COMPLETED);
    DispatchDecodeTasksIfNeeded();
  } else {
    DECODER_LOG("Changed state from SEEKING (to %lld) to DECODING", seekTime);
    StartDecoding();
  }

  // Ensure timestamps are up to date.
  UpdatePlaybackPositionInternal(newCurrentTime);

  // Try to decode another frame to detect if we're at the end...
  DECODER_LOG("Seek completed, mCurrentPosition=%lld", mCurrentPosition.Ref());

  // Reset quick buffering status. This ensures that if we began the
  // seek while quick-buffering, we won't bypass quick buffering mode
  // if we need to buffer after the seek.
  mQuickBuffering = false;

  mCurrentSeek.Resolve(mState == DECODER_STATE_COMPLETED, __func__);
  ScheduleStateMachine();

  if (video) {
    mMediaSink->Redraw();
    nsCOMPtr<nsIRunnable> event =
      NS_NewRunnableMethod(mDecoder, &MediaDecoder::Invalidate);
    AbstractThread::MainThread()->Dispatch(event.forget());
  }
}

class DecoderDisposer
{
public:
  NS_INLINE_DECL_THREADSAFE_REFCOUNTING(DecoderDisposer)
  DecoderDisposer(MediaDecoder* aDecoder, MediaDecoderStateMachine* aStateMachine)
    : mDecoder(aDecoder), mStateMachine(aStateMachine) {}

  void OnTaskQueueShutdown()
  {
    MOZ_ASSERT(NS_IsMainThread());
    MOZ_ASSERT(mStateMachine);
    MOZ_ASSERT(mDecoder);
    mStateMachine->BreakCycles();
    mDecoder->BreakCycles();
    mStateMachine = nullptr;
    mDecoder = nullptr;
  }

private:
  virtual ~DecoderDisposer() {}
  RefPtr<MediaDecoder> mDecoder;
  RefPtr<MediaDecoderStateMachine> mStateMachine;
};

void
MediaDecoderStateMachine::DispatchShutdown()
{
  mStreamSink->BeginShutdown();
  nsCOMPtr<nsIRunnable> runnable =
    NS_NewRunnableMethod(this, &MediaDecoderStateMachine::Shutdown);
  OwnerThread()->Dispatch(runnable.forget());
}

void
MediaDecoderStateMachine::FinishShutdown()
{
  MOZ_ASSERT(OnTaskQueue());

  // The reader's listeners hold references to the state machine,
  // creating a cycle which keeps the state machine and its shared
  // thread pools alive. So break it here.

  // Prevent dangling pointers by disconnecting the listeners.
  mAudioQueueListener.Disconnect();
  mVideoQueueListener.Disconnect();
  mMetadataManager.Disconnect();

  // Disconnect canonicals and mirrors before shutting down our task queue.
  mBuffered.DisconnectIfConnected();
  mEstimatedDuration.DisconnectIfConnected();
  mExplicitDuration.DisconnectIfConnected();
  mPlayState.DisconnectIfConnected();
  mNextPlayState.DisconnectIfConnected();
  mLogicallySeeking.DisconnectIfConnected();
  mVolume.DisconnectIfConnected();
  mLogicalPlaybackRate.DisconnectIfConnected();
  mPreservesPitch.DisconnectIfConnected();
  mSameOriginMedia.DisconnectIfConnected();
  mPlaybackBytesPerSecond.DisconnectIfConnected();
  mPlaybackRateReliable.DisconnectIfConnected();
  mDecoderPosition.DisconnectIfConnected();
  mMediaSeekable.DisconnectIfConnected();

  mDuration.DisconnectAll();
  mIsShutdown.DisconnectAll();
  mNextFrameStatus.DisconnectAll();
  mCurrentPosition.DisconnectAll();
  mPlaybackOffset.DisconnectAll();

  // Shut down the watch manager before shutting down our task queue.
  mWatchManager.Shutdown();

  MOZ_ASSERT(mState == DECODER_STATE_SHUTDOWN,
             "How did we escape from the shutdown state?");
  // We must daisy-chain these events to destroy the decoder. We must
  // destroy the decoder on the main thread, but we can't destroy the
  // decoder while this thread holds the decoder monitor. We can't
  // dispatch an event to the main thread to destroy the decoder from
  // here, as the event may run before the dispatch returns, and we
  // hold the decoder monitor here. We also want to guarantee that the
  // state machine is destroyed on the main thread, and so the
  // event runner running this function (which holds a reference to the
  // state machine) needs to finish and be released in order to allow
  // that. So we dispatch an event to run after this event runner has
  // finished and released its monitor/references. That event then will
  // dispatch an event to the main thread to release the decoder and
  // state machine.
  DECODER_LOG("Shutting down state machine task queue");
  RefPtr<DecoderDisposer> disposer = new DecoderDisposer(mDecoder, this);
  OwnerThread()->BeginShutdown()->Then(AbstractThread::MainThread(), __func__,
                                       disposer.get(),
                                       &DecoderDisposer::OnTaskQueueShutdown,
                                       &DecoderDisposer::OnTaskQueueShutdown);
}

nsresult MediaDecoderStateMachine::RunStateMachine()
{
  MOZ_ASSERT(OnTaskQueue());

  mDelayedScheduler.Reset(); // Must happen on state machine task queue.
  mDispatchedStateMachine = false;

  MediaResource* resource = mResource;
  NS_ENSURE_TRUE(resource, NS_ERROR_NULL_POINTER);

  switch (mState) {
    case DECODER_STATE_ERROR:
    case DECODER_STATE_SHUTDOWN:
    case DECODER_STATE_DORMANT:
    case DECODER_STATE_WAIT_FOR_CDM:
      return NS_OK;

    case DECODER_STATE_DECODING_NONE: {
      SetState(DECODER_STATE_DECODING_METADATA);
      ScheduleStateMachine();
      return NS_OK;
    }

    case DECODER_STATE_DECODING_METADATA: {
      if (!mMetadataRequest.Exists()) {
        DECODER_LOG("Dispatching AsyncReadMetadata");
        // Set mode to METADATA since we are about to read metadata.
        mResource->SetReadMode(MediaCacheStream::MODE_METADATA);
        mMetadataRequest.Begin(InvokeAsync(DecodeTaskQueue(), mReader.get(), __func__,
                                           &MediaDecoderReader::AsyncReadMetadata)
          ->Then(OwnerThread(), __func__, this,
                 &MediaDecoderStateMachine::OnMetadataRead,
                 &MediaDecoderStateMachine::OnMetadataNotRead));

      }
      return NS_OK;
    }

    case DECODER_STATE_DECODING: {
      if (IsDecodingFirstFrame()) {
        // We haven't completed decoding our first frames, we can't start
        // playback yet.
        return NS_OK;
      }
      if (mPlayState != MediaDecoder::PLAY_STATE_PLAYING && IsPlaying())
      {
        // We're playing, but the element/decoder is in paused state. Stop
        // playing!
        StopPlayback();
      }

      // Start playback if necessary so that the clock can be properly queried.
      MaybeStartPlayback();

      UpdatePlaybackPositionPeriodically();
      NS_ASSERTION(!IsPlaying() ||
                   mLogicallySeeking ||
                   IsStateMachineScheduled(),
                   "Must have timer scheduled");
      return NS_OK;
    }

    case DECODER_STATE_BUFFERING: {
      TimeStamp now = TimeStamp::Now();
      NS_ASSERTION(!mBufferingStart.IsNull(), "Must know buffering start time.");

      // With buffering heuristics we will remain in the buffering state if
      // we've not decoded enough data to begin playback, or if we've not
      // downloaded a reasonable amount of data inside our buffering time.
      if (mReader->UseBufferingHeuristics()) {
        TimeDuration elapsed = now - mBufferingStart;
        bool isLiveStream = resource->IsLiveStream();
        if ((isLiveStream || !CanPlayThrough()) &&
              elapsed < TimeDuration::FromSeconds(mBufferingWait * mPlaybackRate) &&
              (mQuickBuffering ? HasLowDecodedData(mQuickBufferingLowDataThresholdUsecs)
                               : HasLowUndecodedData(mBufferingWait * USECS_PER_S)) &&
              mResource->IsExpectingMoreData())
        {
          DECODER_LOG("Buffering: wait %ds, timeout in %.3lfs %s",
                      mBufferingWait, mBufferingWait - elapsed.ToSeconds(),
                      (mQuickBuffering ? "(quick exit)" : ""));
          ScheduleStateMachineIn(USECS_PER_S);
          return NS_OK;
        }
      } else if (OutOfDecodedAudio() || OutOfDecodedVideo()) {
        MOZ_ASSERT(mReader->IsWaitForDataSupported(),
                   "Don't yet have a strategy for non-heuristic + non-WaitForData");
        DispatchDecodeTasksIfNeeded();
        MOZ_ASSERT_IF(!mMinimizePreroll && OutOfDecodedAudio(), mAudioDataRequest.Exists() || mAudioWaitRequest.Exists());
        MOZ_ASSERT_IF(!mMinimizePreroll && OutOfDecodedVideo(), mVideoDataRequest.Exists() || mVideoWaitRequest.Exists());
        DECODER_LOG("In buffering mode, waiting to be notified: outOfAudio: %d, "
                    "mAudioStatus: %s, outOfVideo: %d, mVideoStatus: %s",
                    OutOfDecodedAudio(), AudioRequestStatus(),
                    OutOfDecodedVideo(), VideoRequestStatus());
        return NS_OK;
      }

      DECODER_LOG("Changed state from BUFFERING to DECODING");
      DECODER_LOG("Buffered for %.3lfs", (now - mBufferingStart).ToSeconds());
      StartDecoding();

      NS_ASSERTION(IsStateMachineScheduled(), "Must have timer scheduled");
      return NS_OK;
    }

    case DECODER_STATE_SEEKING: {
      if (mPendingSeek.Exists()) {
        InitiateSeek();
      }
      return NS_OK;
    }

    case DECODER_STATE_COMPLETED: {
      if (mPlayState != MediaDecoder::PLAY_STATE_PLAYING && IsPlaying()) {
        StopPlayback();
      }
      // Play the remaining media. We want to run AdvanceFrame() at least
      // once to ensure the current playback position is advanced to the
      // end of the media, and so that we update the readyState.
      if (VideoQueue().GetSize() > 1 ||
          (HasAudio() && !mAudioCompleted) ||
          (mAudioCaptured && !mStreamSink->IsFinished()))
      {
        // Start playback if necessary to play the remaining media.
        MaybeStartPlayback();
        UpdatePlaybackPositionPeriodically();
        NS_ASSERTION(!IsPlaying() ||
                     mLogicallySeeking ||
                     IsStateMachineScheduled(),
                     "Must have timer scheduled");
        return NS_OK;
      }

      // StopPlayback in order to reset the IsPlaying() state so audio
      // is restarted correctly.
      StopPlayback();

      if (mState != DECODER_STATE_COMPLETED) {
        // While we're presenting a frame we can change state. Whatever changed
        // our state should have scheduled another state machine run.
        NS_ASSERTION(IsStateMachineScheduled(), "Must have timer scheduled");
        return NS_OK;
      }

      if (mPlayState == MediaDecoder::PLAY_STATE_PLAYING &&
          !mSentPlaybackEndedEvent)
      {
        int64_t clockTime = std::max(AudioEndTime(), VideoEndTime());
        clockTime = std::max(int64_t(0), std::max(clockTime, Duration().ToMicroseconds()));
        UpdatePlaybackPosition(clockTime);

        nsCOMPtr<nsIRunnable> event =
          NS_NewRunnableMethod(mDecoder, &MediaDecoder::PlaybackEnded);
        AbstractThread::MainThread()->Dispatch(event.forget());

        mSentPlaybackEndedEvent = true;

        // MediaSink::GetEndTime() must be called before stopping playback.
        StopMediaSink();
      }

      return NS_OK;
    }
  }

  return NS_OK;
}

void
MediaDecoderStateMachine::Reset()
{
  MOZ_ASSERT(OnTaskQueue());
  DECODER_LOG("MediaDecoderStateMachine::Reset");

  // We should be resetting because we're seeking, shutting down, or entering
  // dormant state. We could also be in the process of going dormant, and have
  // just switched to exiting dormant before we finished entering dormant,
  // hence the DECODING_NONE case below.
  MOZ_ASSERT(IsShutdown() ||
             mState == DECODER_STATE_SEEKING ||
             mState == DECODER_STATE_DORMANT ||
             mState == DECODER_STATE_DECODING_NONE);

  // Stop the audio thread. Otherwise, MediaSink might be accessing AudioQueue
  // outside of the decoder monitor while we are clearing the queue and causes
  // crash for no samples to be popped.
  StopMediaSink();

  mDecodedVideoEndTime = -1;
  mDecodedAudioEndTime = -1;
  mAudioCompleted = false;
  AudioQueue().Reset();
  VideoQueue().Reset();
  mFirstVideoFrameAfterSeek = nullptr;
  mDropAudioUntilNextDiscontinuity = true;
  mDropVideoUntilNextDiscontinuity = true;
  mDecodeToSeekTarget = false;

  mMetadataRequest.DisconnectIfExists();
  mAudioDataRequest.DisconnectIfExists();
  mAudioWaitRequest.DisconnectIfExists();
  mVideoDataRequest.DisconnectIfExists();
  mVideoWaitRequest.DisconnectIfExists();
  mSeekRequest.DisconnectIfExists();

  mPlaybackOffset = 0;

  nsCOMPtr<nsIRunnable> resetTask =
    NS_NewRunnableMethod(mReader, &MediaDecoderReader::ResetDecode);
  DecodeTaskQueue()->Dispatch(resetTask.forget());
}

void
MediaDecoderStateMachine::CheckFrameValidity(VideoData* aData)
{
  MOZ_ASSERT(OnTaskQueue());

  // Update corrupt-frames statistics
  if (aData->mImage && !aData->mImage->IsValid()) {
    FrameStatistics& frameStats = mDecoder->GetFrameStatistics();
    frameStats.NotifyCorruptFrame();
    // If more than 10% of the last 30 frames have been corrupted, then try disabling
    // hardware acceleration. We use 10 as the corrupt value because RollingMean<>
    // only supports integer types.
    mCorruptFrames.insert(10);
    if (mReader->VideoIsHardwareAccelerated() &&
        frameStats.GetPresentedFrames() > 60 &&
        mCorruptFrames.mean() >= 2 /* 20% */) {
        nsCOMPtr<nsIRunnable> task =
          NS_NewRunnableMethod(mReader, &MediaDecoderReader::DisableHardwareAcceleration);
        DecodeTaskQueue()->Dispatch(task.forget());
        mCorruptFrames.clear();
      gfxCriticalNote << "Too many dropped/corrupted frames, disabling DXVA";
    }
  } else {
    mCorruptFrames.insert(0);
  }
}

int64_t
MediaDecoderStateMachine::GetClock(TimeStamp* aTimeStamp) const
{
  MOZ_ASSERT(OnTaskQueue());
  int64_t clockTime = mMediaSink->GetPosition(aTimeStamp);
  NS_ASSERTION(GetMediaTime() <= clockTime, "Clock should go forwards.");
  return clockTime;
}

void
MediaDecoderStateMachine::UpdatePlaybackPositionPeriodically()
{
  MOZ_ASSERT(OnTaskQueue());

  if (!IsPlaying() || mLogicallySeeking) {
    return;
  }

  if (mAudioCaptured) {
    DiscardStreamData();
  }

  // Cap the current time to the larger of the audio and video end time.
  // This ensures that if we're running off the system clock, we don't
  // advance the clock to after the media end time.
  if (VideoEndTime() != -1 || AudioEndTime() != -1) {

    const int64_t clockTime = GetClock();
    // Skip frames up to the frame at the playback position, and figure out
    // the time remaining until it's time to display the next frame and drop
    // the current frame.
    NS_ASSERTION(clockTime >= 0, "Should have positive clock time.");

    // These will be non -1 if we've displayed a video frame, or played an audio frame.
    int64_t t = std::min(clockTime, std::max(VideoEndTime(), AudioEndTime()));
    // FIXME: Bug 1091422 - chained ogg files hit this assertion.
    //MOZ_ASSERT(t >= GetMediaTime());
    if (t > GetMediaTime()) {
      UpdatePlaybackPosition(t);
    }
  }
  // Note we have to update playback position before releasing the monitor.
  // Otherwise, MediaDecoder::AddOutputStream could kick in when we are outside
  // the monitor and get a staled value from GetCurrentTimeUs() which hits the
  // assertion in GetClock().

  int64_t delay = std::max<int64_t>(1, AUDIO_DURATION_USECS / mPlaybackRate);
  ScheduleStateMachineIn(delay);
}

nsresult
MediaDecoderStateMachine::DropVideoUpToSeekTarget(MediaData* aSample)
{
  MOZ_ASSERT(OnTaskQueue());
  RefPtr<VideoData> video(aSample->As<VideoData>());
  MOZ_ASSERT(video);
  DECODER_LOG("DropVideoUpToSeekTarget() frame [%lld, %lld]",
              video->mTime, video->GetEndTime());
  MOZ_ASSERT(mCurrentSeek.Exists());
  const int64_t target = mCurrentSeek.mTarget.mTime;

  // If the frame end time is less than the seek target, we won't want
  // to display this frame after the seek, so discard it.
  if (target >= video->GetEndTime()) {
    DECODER_LOG("DropVideoUpToSeekTarget() pop video frame [%lld, %lld] target=%lld",
                video->mTime, video->GetEndTime(), target);
    mFirstVideoFrameAfterSeek = video;
  } else {
    if (target >= video->mTime && video->GetEndTime() >= target) {
      // The seek target lies inside this frame's time slice. Adjust the frame's
      // start time to match the seek target. We do this by replacing the
      // first frame with a shallow copy which has the new timestamp.
      RefPtr<VideoData> temp = VideoData::ShallowCopyUpdateTimestamp(video, target);
      video = temp;
    }
    mFirstVideoFrameAfterSeek = nullptr;

    DECODER_LOG("DropVideoUpToSeekTarget() found video frame [%lld, %lld] containing target=%lld",
                video->mTime, video->GetEndTime(), target);

    PushFront(video, MediaData::VIDEO_DATA);
  }

  return NS_OK;
}

nsresult
MediaDecoderStateMachine::DropAudioUpToSeekTarget(MediaData* aSample)
{
  MOZ_ASSERT(OnTaskQueue());
  RefPtr<AudioData> audio(aSample->As<AudioData>());
  MOZ_ASSERT(audio &&
             mCurrentSeek.Exists() &&
             mCurrentSeek.mTarget.mType == SeekTarget::Accurate);

  CheckedInt64 sampleDuration =
    FramesToUsecs(audio->mFrames, mInfo.mAudio.mRate);
  if (!sampleDuration.isValid()) {
    return NS_ERROR_FAILURE;
  }

  if (audio->mTime + sampleDuration.value() <= mCurrentSeek.mTarget.mTime) {
    // Our seek target lies after the frames in this AudioData. Don't
    // push it onto the audio queue, and keep decoding forwards.
    return NS_OK;
  }

  if (audio->mTime > mCurrentSeek.mTarget.mTime) {
    // The seek target doesn't lie in the audio block just after the last
    // audio frames we've seen which were before the seek target. This
    // could have been the first audio data we've seen after seek, i.e. the
    // seek terminated after the seek target in the audio stream. Just
    // abort the audio decode-to-target, the state machine will play
    // silence to cover the gap. Typically this happens in poorly muxed
    // files.
    DECODER_WARN("Audio not synced after seek, maybe a poorly muxed file?");
    Push(audio, MediaData::AUDIO_DATA);
    return NS_OK;
  }

  // The seek target lies somewhere in this AudioData's frames, strip off
  // any frames which lie before the seek target, so we'll begin playback
  // exactly at the seek target.
  NS_ASSERTION(mCurrentSeek.mTarget.mTime >= audio->mTime,
               "Target must at or be after data start.");
  NS_ASSERTION(mCurrentSeek.mTarget.mTime < audio->mTime + sampleDuration.value(),
               "Data must end after target.");

  CheckedInt64 framesToPrune =
    UsecsToFrames(mCurrentSeek.mTarget.mTime - audio->mTime, mInfo.mAudio.mRate);
  if (!framesToPrune.isValid()) {
    return NS_ERROR_FAILURE;
  }
  if (framesToPrune.value() > audio->mFrames) {
    // We've messed up somehow. Don't try to trim frames, the |frames|
    // variable below will overflow.
    DECODER_WARN("Can't prune more frames that we have!");
    return NS_ERROR_FAILURE;
  }
  uint32_t frames = audio->mFrames - static_cast<uint32_t>(framesToPrune.value());
  uint32_t channels = audio->mChannels;
  nsAutoArrayPtr<AudioDataValue> audioData(new AudioDataValue[frames * channels]);
  memcpy(audioData.get(),
         audio->mAudioData.get() + (framesToPrune.value() * channels),
         frames * channels * sizeof(AudioDataValue));
  CheckedInt64 duration = FramesToUsecs(frames, mInfo.mAudio.mRate);
  if (!duration.isValid()) {
    return NS_ERROR_FAILURE;
  }
  RefPtr<AudioData> data(new AudioData(audio->mOffset,
                                         mCurrentSeek.mTarget.mTime,
                                         duration.value(),
                                         frames,
                                         audioData.forget(),
                                         channels,
                                         audio->mRate));
  PushFront(data, MediaData::AUDIO_DATA);

  return NS_OK;
}

void MediaDecoderStateMachine::UpdateNextFrameStatus()
{
  MOZ_ASSERT(OnTaskQueue());

  MediaDecoderOwner::NextFrameStatus status;
  const char* statusString;
  if (mState <= DECODER_STATE_WAIT_FOR_CDM || IsDecodingFirstFrame()) {
    status = MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE;
    statusString = "NEXT_FRAME_UNAVAILABLE";
  } else if (IsBuffering()) {
    status = MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE_BUFFERING;
    statusString = "NEXT_FRAME_UNAVAILABLE_BUFFERING";
  } else if (IsSeeking()) {
    status = MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE_SEEKING;
    statusString = "NEXT_FRAME_UNAVAILABLE_SEEKING";
  } else if (HaveNextFrameData()) {
    status = MediaDecoderOwner::NEXT_FRAME_AVAILABLE;
    statusString = "NEXT_FRAME_AVAILABLE";
  } else {
    status = MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE;
    statusString = "NEXT_FRAME_UNAVAILABLE";
  }

  if (status != mNextFrameStatus) {
    DECODER_LOG("Changed mNextFrameStatus to %s", statusString);
  }

  mNextFrameStatus = status;
}

bool MediaDecoderStateMachine::JustExitedQuickBuffering()
{
  MOZ_ASSERT(OnTaskQueue());
  return !mDecodeStartTime.IsNull() &&
    mQuickBuffering &&
    (TimeStamp::Now() - mDecodeStartTime) < TimeDuration::FromMicroseconds(QUICK_BUFFER_THRESHOLD_USECS);
}

bool
MediaDecoderStateMachine::CanPlayThrough()
{
  MOZ_ASSERT(OnTaskQueue());
  return IsRealTime() || GetStatistics().CanPlayThrough();
}

MediaStatistics
MediaDecoderStateMachine::GetStatistics()
{
  MOZ_ASSERT(OnTaskQueue());
  MediaStatistics result;
  result.mDownloadRate = mResource->GetDownloadRate(&result.mDownloadRateReliable);
  result.mDownloadPosition = mResource->GetCachedDataEnd(mDecoderPosition);
  result.mTotalBytes = mResource->GetLength();
  result.mPlaybackRate = mPlaybackBytesPerSecond;
  result.mPlaybackRateReliable = mPlaybackRateReliable;
  result.mDecoderPosition = mDecoderPosition;
  result.mPlaybackPosition = mPlaybackOffset;
  return result;
}

void MediaDecoderStateMachine::StartBuffering()
{
  MOZ_ASSERT(OnTaskQueue());

  if (mState != DECODER_STATE_DECODING) {
    // We only move into BUFFERING state if we're actually decoding.
    // If we're currently doing something else, we don't need to buffer,
    // and more importantly, we shouldn't overwrite mState to interrupt
    // the current operation, as that could leave us in an inconsistent
    // state!
    return;
  }

  if (IsPlaying()) {
    StopPlayback();
  }

  TimeDuration decodeDuration = TimeStamp::Now() - mDecodeStartTime;
  // Go into quick buffering mode provided we've not just left buffering using
  // a "quick exit". This stops us flip-flopping between playing and buffering
  // when the download speed is similar to the decode speed.
  mQuickBuffering =
    !JustExitedQuickBuffering() &&
    decodeDuration < UsecsToDuration(QUICK_BUFFER_THRESHOLD_USECS);
  mBufferingStart = TimeStamp::Now();

  SetState(DECODER_STATE_BUFFERING);
  DECODER_LOG("Changed state from DECODING to BUFFERING, decoded for %.3lfs",
              decodeDuration.ToSeconds());
  MediaStatistics stats = GetStatistics();
  DECODER_LOG("Playback rate: %.1lfKB/s%s download rate: %.1lfKB/s%s",
              stats.mPlaybackRate/1024, stats.mPlaybackRateReliable ? "" : " (unreliable)",
              stats.mDownloadRate/1024, stats.mDownloadRateReliable ? "" : " (unreliable)");
}

void
MediaDecoderStateMachine::ScheduleStateMachine()
{
  MOZ_ASSERT(OnTaskQueue());
  if (mDispatchedStateMachine) {
    return;
  }
  mDispatchedStateMachine = true;

  nsCOMPtr<nsIRunnable> task =
    NS_NewRunnableMethod(this, &MediaDecoderStateMachine::RunStateMachine);
  OwnerThread()->Dispatch(task.forget());
}

void
MediaDecoderStateMachine::ScheduleStateMachineIn(int64_t aMicroseconds)
{
  MOZ_ASSERT(OnTaskQueue());          // mDelayedScheduler.Ensure() may Disconnect()
                                      // the promise, which must happen on the state
                                      // machine task queue.
  MOZ_ASSERT(aMicroseconds > 0);
  if (mDispatchedStateMachine) {
    return;
  }

  // Real-time weirdness.
  if (IsRealTime()) {
    aMicroseconds = std::min(aMicroseconds, int64_t(40000));
  }

  TimeStamp now = TimeStamp::Now();
  TimeStamp target = now + TimeDuration::FromMicroseconds(aMicroseconds);

  SAMPLE_LOG("Scheduling state machine for %lf ms from now", (target - now).ToMilliseconds());

  RefPtr<MediaDecoderStateMachine> self = this;
  mDelayedScheduler.Ensure(target, [self] () {
    self->OnDelayedSchedule();
  }, [self] () {
    self->NotReached();
  });
}

bool MediaDecoderStateMachine::OnTaskQueue() const
{
  return OwnerThread()->IsCurrentThreadIn();
}

bool MediaDecoderStateMachine::IsStateMachineScheduled() const
{
  MOZ_ASSERT(OnTaskQueue());
  return mDispatchedStateMachine || mDelayedScheduler.IsScheduled();
}

void
MediaDecoderStateMachine::LogicalPlaybackRateChanged()
{
  MOZ_ASSERT(OnTaskQueue());

  if (mLogicalPlaybackRate == 0) {
    // This case is handled in MediaDecoder by pausing playback.
    return;
  }

  mPlaybackRate = mLogicalPlaybackRate;
  mMediaSink->SetPlaybackRate(mPlaybackRate);

  ScheduleStateMachine();
}

void MediaDecoderStateMachine::PreservesPitchChanged()
{
  MOZ_ASSERT(OnTaskQueue());
  mMediaSink->SetPreservesPitch(mPreservesPitch);
}

bool MediaDecoderStateMachine::IsShutdown()
{
  MOZ_ASSERT(OnTaskQueue());
  return mIsShutdown;
}

int64_t
MediaDecoderStateMachine::AudioEndTime() const
{
  MOZ_ASSERT(OnTaskQueue());
  if (mMediaSink->IsStarted()) {
    return mMediaSink->GetEndTime(TrackInfo::kAudioTrack);
  }
  MOZ_ASSERT(!HasAudio());
  return -1;
}

int64_t
MediaDecoderStateMachine::VideoEndTime() const
{
  MOZ_ASSERT(OnTaskQueue());
  if (mMediaSink->IsStarted()) {
    return mMediaSink->GetEndTime(TrackInfo::kVideoTrack);
  }
  return -1;
}

void
MediaDecoderStateMachine::OnMediaSinkVideoComplete()
{
  MOZ_ASSERT(OnTaskQueue());
  VERBOSE_LOG("[%s]", __func__);

  mMediaSinkVideoPromise.Complete();
  ScheduleStateMachine();
}

void
MediaDecoderStateMachine::OnMediaSinkVideoError()
{
  MOZ_ASSERT(OnTaskQueue());
  VERBOSE_LOG("[%s]", __func__);

  mMediaSinkVideoPromise.Complete();
  if (HasAudio()) {
    return;
  }
  DecodeError();
}

void MediaDecoderStateMachine::OnMediaSinkAudioComplete()
{
  MOZ_ASSERT(OnTaskQueue());
  VERBOSE_LOG("[%s]", __func__);

  mMediaSinkAudioPromise.Complete();
  // Set true only when we have audio.
  mAudioCompleted = mInfo.HasAudio();
  // To notify PlaybackEnded as soon as possible.
  ScheduleStateMachine();
}

void MediaDecoderStateMachine::OnMediaSinkAudioError()
{
  MOZ_ASSERT(OnTaskQueue());
  VERBOSE_LOG("[%s]", __func__);

  mMediaSinkAudioPromise.Complete();
  // Set true only when we have audio.
  mAudioCompleted = mInfo.HasAudio();

  // Make the best effort to continue playback when there is video.
  if (HasVideo()) {
    return;
  }

  // Otherwise notify media decoder/element about this error for it makes
  // no sense to play an audio-only file without sound output.
  DecodeError();
}

#ifdef MOZ_EME
void
MediaDecoderStateMachine::OnCDMProxyReady(RefPtr<CDMProxy> aProxy)
{
  MOZ_ASSERT(OnTaskQueue());
  mCDMProxyPromise.Complete();
  mCDMProxy = aProxy;
  mReader->SetCDMProxy(aProxy);
  if (mState == DECODER_STATE_WAIT_FOR_CDM) {
    StartDecoding();
  }
}

void
MediaDecoderStateMachine::OnCDMProxyNotReady()
{
  MOZ_ASSERT(OnTaskQueue());
  mCDMProxyPromise.Complete();
}
#endif

void
MediaDecoderStateMachine::SetAudioCaptured(bool aCaptured)
{
  MOZ_ASSERT(OnTaskQueue());

  if (aCaptured == mAudioCaptured) {
    return;
  }

  // Backup current playback parameters.
  MediaSink::PlaybackParams params = mMediaSink->GetPlaybackParams();

  // Stop and shut down the existing sink.
  StopMediaSink();
  mMediaSink->Shutdown();

  // Create a new sink according to whether audio is captured.
  mMediaSink = CreateMediaSink(aCaptured);

  // Restore playback parameters.
  mMediaSink->SetPlaybackParams(params);

  // We don't need to call StartMediaSink() here because IsPlaying() is now
  // always in sync with the playing state of MediaSink. It will be started in
  // MaybeStartPlayback() in the next cycle if necessary.

  mAudioCaptured = aCaptured;
  ScheduleStateMachine();
}

uint32_t MediaDecoderStateMachine::GetAmpleVideoFrames() const
{
  MOZ_ASSERT(OnTaskQueue());
  return (mReader->IsAsync() && mReader->VideoIsHardwareAccelerated())
    ? std::max<uint32_t>(sVideoQueueHWAccelSize, MIN_VIDEO_QUEUE_SIZE)
    : std::max<uint32_t>(sVideoQueueDefaultSize, MIN_VIDEO_QUEUE_SIZE);
}

void MediaDecoderStateMachine::AddOutputStream(ProcessedMediaStream* aStream,
                                               bool aFinishWhenEnded)
{
  MOZ_ASSERT(NS_IsMainThread());
  DECODER_LOG("AddOutputStream aStream=%p!", aStream);
  mStreamSink->AddOutput(aStream, aFinishWhenEnded);
  nsCOMPtr<nsIRunnable> r = NS_NewRunnableMethodWithArg<bool>(
    this, &MediaDecoderStateMachine::SetAudioCaptured, true);
  OwnerThread()->Dispatch(r.forget());
}

void MediaDecoderStateMachine::RemoveOutputStream(MediaStream* aStream)
{
  MOZ_ASSERT(NS_IsMainThread());
  DECODER_LOG("RemoveOutputStream=%p!", aStream);
  mStreamSink->RemoveOutput(aStream);
  if (!mStreamSink->HasConsumers()) {
    nsCOMPtr<nsIRunnable> r = NS_NewRunnableMethodWithArg<bool>(
      this, &MediaDecoderStateMachine::SetAudioCaptured, false);
    OwnerThread()->Dispatch(r.forget());
  }
}

} // namespace mozilla

// avoid redefined macro in unified build
#undef LOG
#undef DECODER_LOG
#undef VERBOSE_LOG
#undef DECODER_WARN
#undef DECODER_WARN_HELPER

#undef NS_DispatchToMainThread