DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (fddffdeab170)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "mozilla/ReentrantMonitor.h"

#include "MediaCache.h"
#include "prio.h"
#include "nsContentUtils.h"
#include "nsThreadUtils.h"
#include "MediaResource.h"
#include "mozilla/Logging.h"
#include "mozilla/Preferences.h"
#include "FileBlockCache.h"
#include "nsAnonymousTemporaryFile.h"
#include "nsIObserverService.h"
#include "nsISeekableStream.h"
#include "nsIPrincipal.h"
#include "mozilla/Attributes.h"
#include "mozilla/Services.h"
#include <algorithm>

namespace mozilla {

PRLogModuleInfo* gMediaCacheLog;
#define CACHE_LOG(type, msg) MOZ_LOG(gMediaCacheLog, type, msg)

// Readahead blocks for non-seekable streams will be limited to this
// fraction of the cache space. We don't normally evict such blocks
// because replacing them requires a seek, but we need to make sure
// they don't monopolize the cache.
static const double NONSEEKABLE_READAHEAD_MAX = 0.5;

// Data N seconds before the current playback position is given the same priority
// as data REPLAY_PENALTY_FACTOR*N seconds ahead of the current playback
// position. REPLAY_PENALTY_FACTOR is greater than 1 to reflect that
// data in the past is less likely to be played again than data in the future.
// We want to give data just behind the current playback position reasonably
// high priority in case codecs need to retrieve that data (e.g. because
// tracks haven't been muxed well or are being decoded at uneven rates).
// 1/REPLAY_PENALTY_FACTOR as much data will be kept behind the
// current playback position as will be kept ahead of the current playback
// position.
static const uint32_t REPLAY_PENALTY_FACTOR = 3;

// When looking for a reusable block, scan forward this many blocks
// from the desired "best" block location to look for free blocks,
// before we resort to scanning the whole cache. The idea is to try to
// store runs of stream blocks close-to-consecutively in the cache if we
// can.
static const uint32_t FREE_BLOCK_SCAN_LIMIT = 16;

#ifdef DEBUG
// Turn this on to do very expensive cache state validation
// #define DEBUG_VERIFY_CACHE
#endif

// There is at most one media cache (although that could quite easily be
// relaxed if we wanted to manage multiple caches with independent
// size limits).
static MediaCache* gMediaCache;

class MediaCacheFlusher final : public nsIObserver,
                                public nsSupportsWeakReference
{
  MediaCacheFlusher() {}
  ~MediaCacheFlusher();
public:
  NS_DECL_ISUPPORTS
  NS_DECL_NSIOBSERVER

  static void Init();
};

static MediaCacheFlusher* gMediaCacheFlusher;

NS_IMPL_ISUPPORTS(MediaCacheFlusher, nsIObserver, nsISupportsWeakReference)

MediaCacheFlusher::~MediaCacheFlusher()
{
  gMediaCacheFlusher = nullptr;
}

void MediaCacheFlusher::Init()
{
  if (gMediaCacheFlusher) {
    return;
  }

  gMediaCacheFlusher = new MediaCacheFlusher();
  NS_ADDREF(gMediaCacheFlusher);

  nsCOMPtr<nsIObserverService> observerService =
    mozilla::services::GetObserverService();
  if (observerService) {
    observerService->AddObserver(gMediaCacheFlusher, "last-pb-context-exited", true);
    observerService->AddObserver(gMediaCacheFlusher, "network-clear-cache-stored-anywhere", true);
  }
}

class MediaCache {
public:
  friend class MediaCacheStream::BlockList;
  typedef MediaCacheStream::BlockList BlockList;
  static const int64_t BLOCK_SIZE = MediaCacheStream::BLOCK_SIZE;

  MediaCache() : mNextResourceID(1),
    mReentrantMonitor("MediaCache.mReentrantMonitor"),
    mUpdateQueued(false)
#ifdef DEBUG
    , mInUpdate(false)
#endif
  {
    MOZ_COUNT_CTOR(MediaCache);
  }
  ~MediaCache() {
    NS_ASSERTION(mStreams.IsEmpty(), "Stream(s) still open!");
    Truncate();
    NS_ASSERTION(mIndex.Length() == 0, "Blocks leaked?");
    if (mFileCache) {
      mFileCache->Close();
      mFileCache = nullptr;
    }
    MOZ_COUNT_DTOR(MediaCache);
  }

  // Main thread only. Creates the backing cache file. If this fails,
  // then the cache is still in a semi-valid state; mFD will be null,
  // so all I/O on the cache file will fail.
  nsresult Init();
  // Shut down the global cache if it's no longer needed. We shut down
  // the cache as soon as there are no streams. This means that during
  // normal operation we are likely to start up the cache and shut it down
  // many times, but that's OK since starting it up is cheap and
  // shutting it down cleans things up and releases disk space.
  static void MaybeShutdown();

  // Brutally flush the cache contents. Main thread only.
  static void Flush();
  void FlushInternal();

  // Cache-file access methods. These are the lowest-level cache methods.
  // mReentrantMonitor must be held; these can be called on any thread.
  // This can return partial reads.
  nsresult ReadCacheFile(int64_t aOffset, void* aData, int32_t aLength,
                         int32_t* aBytes);
  // This will fail if all aLength bytes are not read
  nsresult ReadCacheFileAllBytes(int64_t aOffset, void* aData, int32_t aLength);

  int64_t AllocateResourceID()
  {
    mReentrantMonitor.AssertCurrentThreadIn();
    return mNextResourceID++;
  }

  // mReentrantMonitor must be held, called on main thread.
  // These methods are used by the stream to set up and tear down streams,
  // and to handle reads and writes.
  // Add aStream to the list of streams.
  void OpenStream(MediaCacheStream* aStream);
  // Remove aStream from the list of streams.
  void ReleaseStream(MediaCacheStream* aStream);
  // Free all blocks belonging to aStream.
  void ReleaseStreamBlocks(MediaCacheStream* aStream);
  // Find a cache entry for this data, and write the data into it
  void AllocateAndWriteBlock(MediaCacheStream* aStream, const void* aData,
                             MediaCacheStream::ReadMode aMode);

  // mReentrantMonitor must be held; can be called on any thread
  // Notify the cache that a seek has been requested. Some blocks may
  // need to change their class between PLAYED_BLOCK and READAHEAD_BLOCK.
  // This does not trigger channel seeks directly, the next Update()
  // will do that if necessary. The caller will call QueueUpdate().
  void NoteSeek(MediaCacheStream* aStream, int64_t aOldOffset);
  // Notify the cache that a block has been read from. This is used
  // to update last-use times. The block may not actually have a
  // cache entry yet since Read can read data from a stream's
  // in-memory mPartialBlockBuffer while the block is only partly full,
  // and thus hasn't yet been committed to the cache. The caller will
  // call QueueUpdate().
  void NoteBlockUsage(MediaCacheStream* aStream, int32_t aBlockIndex,
                      MediaCacheStream::ReadMode aMode, TimeStamp aNow);
  // Mark aStream as having the block, adding it as an owner.
  void AddBlockOwnerAsReadahead(int32_t aBlockIndex, MediaCacheStream* aStream,
                                int32_t aStreamBlockIndex);

  // This queues a call to Update() on the main thread.
  void QueueUpdate();

  // Notify all streams for the resource ID that the suspended status changed
  // at the end of MediaCache::Update.
  void QueueSuspendedStatusUpdate(int64_t aResourceID);

  // Updates the cache state asynchronously on the main thread:
  // -- try to trim the cache back to its desired size, if necessary
  // -- suspend channels that are going to read data that's lower priority
  // than anything currently cached
  // -- resume channels that are going to read data that's higher priority
  // than something currently cached
  // -- seek channels that need to seek to a new location
  void Update();

#ifdef DEBUG_VERIFY_CACHE
  // Verify invariants, especially block list invariants
  void Verify();
#else
  void Verify() {}
#endif

  ReentrantMonitor& GetReentrantMonitor() { return mReentrantMonitor; }

  /**
   * An iterator that makes it easy to iterate through all streams that
   * have a given resource ID and are not closed.
   * Can be used on the main thread or while holding the media cache lock.
   */
  class ResourceStreamIterator {
  public:
    explicit ResourceStreamIterator(int64_t aResourceID) :
      mResourceID(aResourceID), mNext(0) {}
    MediaCacheStream* Next()
    {
      while (mNext < gMediaCache->mStreams.Length()) {
        MediaCacheStream* stream = gMediaCache->mStreams[mNext];
        ++mNext;
        if (stream->GetResourceID() == mResourceID && !stream->IsClosed())
          return stream;
      }
      return nullptr;
    }
  private:
    int64_t  mResourceID;
    uint32_t mNext;
  };

protected:
  // Find a free or reusable block and return its index. If there are no
  // free blocks and no reusable blocks, add a new block to the cache
  // and return it. Can return -1 on OOM.
  int32_t FindBlockForIncomingData(TimeStamp aNow, MediaCacheStream* aStream);
  // Find a reusable block --- a free block, if there is one, otherwise
  // the reusable block with the latest predicted-next-use, or -1 if
  // there aren't any freeable blocks. Only block indices less than
  // aMaxSearchBlockIndex are considered. If aForStream is non-null,
  // then aForStream and aForStreamBlock indicate what media data will
  // be placed; FindReusableBlock will favour returning free blocks
  // near other blocks for that point in the stream.
  int32_t FindReusableBlock(TimeStamp aNow,
                            MediaCacheStream* aForStream,
                            int32_t aForStreamBlock,
                            int32_t aMaxSearchBlockIndex);
  bool BlockIsReusable(int32_t aBlockIndex);
  // Given a list of blocks sorted with the most reusable blocks at the
  // end, find the last block whose stream is not pinned (if any)
  // and whose cache entry index is less than aBlockIndexLimit
  // and append it to aResult.
  void AppendMostReusableBlock(BlockList* aBlockList,
                               nsTArray<uint32_t>* aResult,
                               int32_t aBlockIndexLimit);

  enum BlockClass {
    // block belongs to mMetadataBlockList because data has been consumed
    // from it in "metadata mode" --- in particular blocks read during
    // Ogg seeks go into this class. These blocks may have played data
    // in them too.
    METADATA_BLOCK,
    // block belongs to mPlayedBlockList because its offset is
    // less than the stream's current reader position
    PLAYED_BLOCK,
    // block belongs to the stream's mReadaheadBlockList because its
    // offset is greater than or equal to the stream's current
    // reader position
    READAHEAD_BLOCK
  };

  struct BlockOwner {
    BlockOwner() : mStream(nullptr), mClass(READAHEAD_BLOCK) {}

    // The stream that owns this block, or null if the block is free.
    MediaCacheStream* mStream;
    // The block index in the stream. Valid only if mStream is non-null.
    uint32_t            mStreamBlock;
    // Time at which this block was last used. Valid only if
    // mClass is METADATA_BLOCK or PLAYED_BLOCK.
    TimeStamp           mLastUseTime;
    BlockClass          mClass;
  };

  struct Block {
    // Free blocks have an empty mOwners array
    nsTArray<BlockOwner> mOwners;
  };

  // Get the BlockList that the block should belong to given its
  // current owner
  BlockList* GetListForBlock(BlockOwner* aBlock);
  // Get the BlockOwner for the given block index and owning stream
  // (returns null if the stream does not own the block)
  BlockOwner* GetBlockOwner(int32_t aBlockIndex, MediaCacheStream* aStream);
  // Returns true iff the block is free
  bool IsBlockFree(int32_t aBlockIndex)
  { return mIndex[aBlockIndex].mOwners.IsEmpty(); }
  // Add the block to the free list and mark its streams as not having
  // the block in cache
  void FreeBlock(int32_t aBlock);
  // Mark aStream as not having the block, removing it as an owner. If
  // the block has no more owners it's added to the free list.
  void RemoveBlockOwner(int32_t aBlockIndex, MediaCacheStream* aStream);
  // Swap all metadata associated with the two blocks. The caller
  // is responsible for swapping up any cache file state.
  void SwapBlocks(int32_t aBlockIndex1, int32_t aBlockIndex2);
  // Insert the block into the readahead block list for the stream
  // at the right point in the list.
  void InsertReadaheadBlock(BlockOwner* aBlockOwner, int32_t aBlockIndex);

  // Guess the duration until block aBlock will be next used
  TimeDuration PredictNextUse(TimeStamp aNow, int32_t aBlock);
  // Guess the duration until the next incoming data on aStream will be used
  TimeDuration PredictNextUseForIncomingData(MediaCacheStream* aStream);

  // Truncate the file and index array if there are free blocks at the
  // end
  void Truncate();

  // This member is main-thread only. It's used to allocate unique
  // resource IDs to streams.
  int64_t                       mNextResourceID;

  // The monitor protects all the data members here. Also, off-main-thread
  // readers that need to block will Wait() on this monitor. When new
  // data becomes available in the cache, we NotifyAll() on this monitor.
  ReentrantMonitor         mReentrantMonitor;
  // This is only written while on the main thread and the monitor is held.
  // Thus, it can be safely read from the main thread or while holding the monitor.
  nsTArray<MediaCacheStream*> mStreams;
  // The Blocks describing the cache entries.
  nsTArray<Block> mIndex;
  // Writer which performs IO, asynchronously writing cache blocks.
  RefPtr<FileBlockCache> mFileCache;
  // The list of free blocks; they are not ordered.
  BlockList       mFreeBlocks;
  // True if an event to run Update() has been queued but not processed
  bool            mUpdateQueued;
#ifdef DEBUG
  bool            mInUpdate;
#endif
  // A list of resource IDs to notify about the change in suspended status.
  nsTArray<int64_t> mSuspendedStatusToNotify;
};

NS_IMETHODIMP
MediaCacheFlusher::Observe(nsISupports *aSubject, char const *aTopic, char16_t const *aData)
{
  if (strcmp(aTopic, "last-pb-context-exited") == 0) {
    MediaCache::Flush();
  }
  if (strcmp(aTopic, "network-clear-cache-stored-anywhere") == 0) {
    MediaCache::Flush();
  }
  return NS_OK;
}

MediaCacheStream::MediaCacheStream(ChannelMediaResource* aClient)
  : mClient(aClient),
    mInitialized(false),
    mHasHadUpdate(false),
    mClosed(false),
    mDidNotifyDataEnded(false),
    mResourceID(0),
    mIsTransportSeekable(false),
    mCacheSuspended(false),
    mChannelEnded(false),
    mChannelOffset(0),
    mStreamLength(-1),
    mStreamOffset(0),
    mPlaybackBytesPerSecond(10000),
    mPinCount(0),
    mCurrentMode(MODE_PLAYBACK),
    mMetadataInPartialBlockBuffer(false),
    mPartialBlockBuffer(new int64_t[BLOCK_SIZE/sizeof(int64_t)])
{
}

size_t MediaCacheStream::SizeOfExcludingThis(
                                MallocSizeOf aMallocSizeOf) const
{
  // Looks like these are not owned:
  // - mClient
  // - mPrincipal
  size_t size = mBlocks.ShallowSizeOfExcludingThis(aMallocSizeOf);
  size += mReadaheadBlocks.SizeOfExcludingThis(aMallocSizeOf);
  size += mMetadataBlocks.SizeOfExcludingThis(aMallocSizeOf);
  size += mPlayedBlocks.SizeOfExcludingThis(aMallocSizeOf);
  size += mPartialBlockBuffer.SizeOfExcludingThis(aMallocSizeOf);

  return size;
}

size_t MediaCacheStream::BlockList::SizeOfExcludingThis(
                                MallocSizeOf aMallocSizeOf) const
{
  return mEntries.ShallowSizeOfExcludingThis(aMallocSizeOf);
}

void MediaCacheStream::BlockList::AddFirstBlock(int32_t aBlock)
{
  NS_ASSERTION(!mEntries.GetEntry(aBlock), "Block already in list");
  Entry* entry = mEntries.PutEntry(aBlock);

  if (mFirstBlock < 0) {
    entry->mNextBlock = entry->mPrevBlock = aBlock;
  } else {
    entry->mNextBlock = mFirstBlock;
    entry->mPrevBlock = mEntries.GetEntry(mFirstBlock)->mPrevBlock;
    mEntries.GetEntry(entry->mNextBlock)->mPrevBlock = aBlock;
    mEntries.GetEntry(entry->mPrevBlock)->mNextBlock = aBlock;
  }
  mFirstBlock = aBlock;
  ++mCount;
}

void MediaCacheStream::BlockList::AddAfter(int32_t aBlock, int32_t aBefore)
{
  NS_ASSERTION(!mEntries.GetEntry(aBlock), "Block already in list");
  Entry* entry = mEntries.PutEntry(aBlock);

  Entry* addAfter = mEntries.GetEntry(aBefore);
  NS_ASSERTION(addAfter, "aBefore not in list");

  entry->mNextBlock = addAfter->mNextBlock;
  entry->mPrevBlock = aBefore;
  mEntries.GetEntry(entry->mNextBlock)->mPrevBlock = aBlock;
  mEntries.GetEntry(entry->mPrevBlock)->mNextBlock = aBlock;
  ++mCount;
}

void MediaCacheStream::BlockList::RemoveBlock(int32_t aBlock)
{
  Entry* entry = mEntries.GetEntry(aBlock);
  NS_ASSERTION(entry, "Block not in list");

  if (entry->mNextBlock == aBlock) {
    NS_ASSERTION(entry->mPrevBlock == aBlock, "Linked list inconsistency");
    NS_ASSERTION(mFirstBlock == aBlock, "Linked list inconsistency");
    mFirstBlock = -1;
  } else {
    if (mFirstBlock == aBlock) {
      mFirstBlock = entry->mNextBlock;
    }
    mEntries.GetEntry(entry->mNextBlock)->mPrevBlock = entry->mPrevBlock;
    mEntries.GetEntry(entry->mPrevBlock)->mNextBlock = entry->mNextBlock;
  }
  mEntries.RemoveEntry(entry);
  --mCount;
}

int32_t MediaCacheStream::BlockList::GetLastBlock() const
{
  if (mFirstBlock < 0)
    return -1;
  return mEntries.GetEntry(mFirstBlock)->mPrevBlock;
}

int32_t MediaCacheStream::BlockList::GetNextBlock(int32_t aBlock) const
{
  int32_t block = mEntries.GetEntry(aBlock)->mNextBlock;
  if (block == mFirstBlock)
    return -1;
  return block;
}

int32_t MediaCacheStream::BlockList::GetPrevBlock(int32_t aBlock) const
{
  if (aBlock == mFirstBlock)
    return -1;
  return mEntries.GetEntry(aBlock)->mPrevBlock;
}

#ifdef DEBUG
void MediaCacheStream::BlockList::Verify()
{
  int32_t count = 0;
  if (mFirstBlock >= 0) {
    int32_t block = mFirstBlock;
    do {
      Entry* entry = mEntries.GetEntry(block);
      NS_ASSERTION(mEntries.GetEntry(entry->mNextBlock)->mPrevBlock == block,
                   "Bad prev link");
      NS_ASSERTION(mEntries.GetEntry(entry->mPrevBlock)->mNextBlock == block,
                   "Bad next link");
      block = entry->mNextBlock;
      ++count;
    } while (block != mFirstBlock);
  }
  NS_ASSERTION(count == mCount, "Bad count");
}
#endif

static void UpdateSwappedBlockIndex(int32_t* aBlockIndex,
    int32_t aBlock1Index, int32_t aBlock2Index)
{
  int32_t index = *aBlockIndex;
  if (index == aBlock1Index) {
    *aBlockIndex = aBlock2Index;
  } else if (index == aBlock2Index) {
    *aBlockIndex = aBlock1Index;
  }
}

void
MediaCacheStream::BlockList::NotifyBlockSwapped(int32_t aBlockIndex1,
                                                  int32_t aBlockIndex2)
{
  Entry* e1 = mEntries.GetEntry(aBlockIndex1);
  Entry* e2 = mEntries.GetEntry(aBlockIndex2);
  int32_t e1Prev = -1, e1Next = -1, e2Prev = -1, e2Next = -1;

  // Fix mFirstBlock
  UpdateSwappedBlockIndex(&mFirstBlock, aBlockIndex1, aBlockIndex2);

  // Fix mNextBlock/mPrevBlock links. First capture previous/next links
  // so we don't get confused due to aliasing.
  if (e1) {
    e1Prev = e1->mPrevBlock;
    e1Next = e1->mNextBlock;
  }
  if (e2) {
    e2Prev = e2->mPrevBlock;
    e2Next = e2->mNextBlock;
  }
  // Update the entries.
  if (e1) {
    mEntries.GetEntry(e1Prev)->mNextBlock = aBlockIndex2;
    mEntries.GetEntry(e1Next)->mPrevBlock = aBlockIndex2;
  }
  if (e2) {
    mEntries.GetEntry(e2Prev)->mNextBlock = aBlockIndex1;
    mEntries.GetEntry(e2Next)->mPrevBlock = aBlockIndex1;
  }

  // Fix hashtable keys. First remove stale entries.
  if (e1) {
    e1Prev = e1->mPrevBlock;
    e1Next = e1->mNextBlock;
    mEntries.RemoveEntry(aBlockIndex1);
    // Refresh pointer after hashtable mutation.
    e2 = mEntries.GetEntry(aBlockIndex2);
  }
  if (e2) {
    e2Prev = e2->mPrevBlock;
    e2Next = e2->mNextBlock;
    mEntries.RemoveEntry(aBlockIndex2);
  }
  // Put new entries back.
  if (e1) {
    e1 = mEntries.PutEntry(aBlockIndex2);
    e1->mNextBlock = e1Next;
    e1->mPrevBlock = e1Prev;
  }
  if (e2) {
    e2 = mEntries.PutEntry(aBlockIndex1);
    e2->mNextBlock = e2Next;
    e2->mPrevBlock = e2Prev;
  }
}

nsresult
MediaCache::Init()
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");
  NS_ASSERTION(!mFileCache, "Cache file already open?");

  PRFileDesc* fileDesc = nullptr;
  nsresult rv = NS_OpenAnonymousTemporaryFile(&fileDesc);
  NS_ENSURE_SUCCESS(rv,rv);

  mFileCache = new FileBlockCache();
  rv = mFileCache->Open(fileDesc);
  NS_ENSURE_SUCCESS(rv,rv);

  if (!gMediaCacheLog) {
    gMediaCacheLog = PR_NewLogModule("MediaCache");
  }

  MediaCacheFlusher::Init();

  return NS_OK;
}

void
MediaCache::Flush()
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");

  if (!gMediaCache)
    return;

  gMediaCache->FlushInternal();
}

void
MediaCache::FlushInternal()
{
  ReentrantMonitorAutoEnter mon(mReentrantMonitor);

  for (uint32_t blockIndex = 0; blockIndex < mIndex.Length(); ++blockIndex) {
    FreeBlock(blockIndex);
  }

  // Truncate file, close it, and reopen
  Truncate();
  NS_ASSERTION(mIndex.Length() == 0, "Blocks leaked?");
  if (mFileCache) {
    mFileCache->Close();
    mFileCache = nullptr;
  }
  Init();
}

void
MediaCache::MaybeShutdown()
{
  NS_ASSERTION(NS_IsMainThread(),
               "MediaCache::MaybeShutdown called on non-main thread");
  if (!gMediaCache->mStreams.IsEmpty()) {
    // Don't shut down yet, streams are still alive
    return;
  }

  // Since we're on the main thread, no-one is going to add a new stream
  // while we shut down.
  // This function is static so we don't have to delete 'this'.
  delete gMediaCache;
  gMediaCache = nullptr;
  NS_IF_RELEASE(gMediaCacheFlusher);
}

static void
InitMediaCache()
{
  if (gMediaCache)
    return;

  gMediaCache = new MediaCache();
  if (!gMediaCache)
    return;

  nsresult rv = gMediaCache->Init();
  if (NS_FAILED(rv)) {
    delete gMediaCache;
    gMediaCache = nullptr;
  }
}

nsresult
MediaCache::ReadCacheFile(int64_t aOffset, void* aData, int32_t aLength,
                            int32_t* aBytes)
{
  mReentrantMonitor.AssertCurrentThreadIn();

  if (!mFileCache)
    return NS_ERROR_FAILURE;

  return mFileCache->Read(aOffset, reinterpret_cast<uint8_t*>(aData), aLength, aBytes);
}

nsresult
MediaCache::ReadCacheFileAllBytes(int64_t aOffset, void* aData, int32_t aLength)
{
  mReentrantMonitor.AssertCurrentThreadIn();

  int64_t offset = aOffset;
  int32_t count = aLength;
  // Cast to char* so we can do byte-wise pointer arithmetic
  char* data = static_cast<char*>(aData);
  while (count > 0) {
    int32_t bytes;
    nsresult rv = ReadCacheFile(offset, data, count, &bytes);
    if (NS_FAILED(rv))
      return rv;
    if (bytes == 0)
      return NS_ERROR_FAILURE;
    count -= bytes;
    data += bytes;
    offset += bytes;
  }
  return NS_OK;
}

static int32_t GetMaxBlocks()
{
  // We look up the cache size every time. This means dynamic changes
  // to the pref are applied.
  // Cache size is in KB
  int32_t cacheSize = Preferences::GetInt("media.cache_size", 500*1024);
  int64_t maxBlocks = static_cast<int64_t>(cacheSize)*1024/MediaCache::BLOCK_SIZE;
  maxBlocks = std::max<int64_t>(maxBlocks, 1);
  return int32_t(std::min<int64_t>(maxBlocks, INT32_MAX));
}

int32_t
MediaCache::FindBlockForIncomingData(TimeStamp aNow,
                                       MediaCacheStream* aStream)
{
  mReentrantMonitor.AssertCurrentThreadIn();

  int32_t blockIndex = FindReusableBlock(aNow, aStream,
      aStream->mChannelOffset/BLOCK_SIZE, INT32_MAX);

  if (blockIndex < 0 || !IsBlockFree(blockIndex)) {
    // The block returned is already allocated.
    // Don't reuse it if a) there's room to expand the cache or
    // b) the data we're going to store in the free block is not higher
    // priority than the data already stored in the free block.
    // The latter can lead us to go over the cache limit a bit.
    if ((mIndex.Length() < uint32_t(GetMaxBlocks()) || blockIndex < 0 ||
         PredictNextUseForIncomingData(aStream) >= PredictNextUse(aNow, blockIndex))) {
      blockIndex = mIndex.Length();
      if (!mIndex.AppendElement())
        return -1;
      mFreeBlocks.AddFirstBlock(blockIndex);
      return blockIndex;
    }
  }

  return blockIndex;
}

bool
MediaCache::BlockIsReusable(int32_t aBlockIndex)
{
  Block* block = &mIndex[aBlockIndex];
  for (uint32_t i = 0; i < block->mOwners.Length(); ++i) {
    MediaCacheStream* stream = block->mOwners[i].mStream;
    if (stream->mPinCount > 0 ||
        stream->mStreamOffset/BLOCK_SIZE == block->mOwners[i].mStreamBlock) {
      return false;
    }
  }
  return true;
}

void
MediaCache::AppendMostReusableBlock(BlockList* aBlockList,
                                      nsTArray<uint32_t>* aResult,
                                      int32_t aBlockIndexLimit)
{
  mReentrantMonitor.AssertCurrentThreadIn();

  int32_t blockIndex = aBlockList->GetLastBlock();
  if (blockIndex < 0)
    return;
  do {
    // Don't consider blocks for pinned streams, or blocks that are
    // beyond the specified limit, or a block that contains a stream's
    // current read position (such a block contains both played data
    // and readahead data)
    if (blockIndex < aBlockIndexLimit && BlockIsReusable(blockIndex)) {
      aResult->AppendElement(blockIndex);
      return;
    }
    blockIndex = aBlockList->GetPrevBlock(blockIndex);
  } while (blockIndex >= 0);
}

int32_t
MediaCache::FindReusableBlock(TimeStamp aNow,
                                MediaCacheStream* aForStream,
                                int32_t aForStreamBlock,
                                int32_t aMaxSearchBlockIndex)
{
  mReentrantMonitor.AssertCurrentThreadIn();

  uint32_t length = std::min(uint32_t(aMaxSearchBlockIndex), uint32_t(mIndex.Length()));

  if (aForStream && aForStreamBlock > 0 &&
      uint32_t(aForStreamBlock) <= aForStream->mBlocks.Length()) {
    int32_t prevCacheBlock = aForStream->mBlocks[aForStreamBlock - 1];
    if (prevCacheBlock >= 0) {
      uint32_t freeBlockScanEnd =
        std::min(length, prevCacheBlock + FREE_BLOCK_SCAN_LIMIT);
      for (uint32_t i = prevCacheBlock; i < freeBlockScanEnd; ++i) {
        if (IsBlockFree(i))
          return i;
      }
    }
  }

  if (!mFreeBlocks.IsEmpty()) {
    int32_t blockIndex = mFreeBlocks.GetFirstBlock();
    do {
      if (blockIndex < aMaxSearchBlockIndex)
        return blockIndex;
      blockIndex = mFreeBlocks.GetNextBlock(blockIndex);
    } while (blockIndex >= 0);
  }

  // Build a list of the blocks we should consider for the "latest
  // predicted time of next use". We can exploit the fact that the block
  // linked lists are ordered by increasing time of next use. This is
  // actually the whole point of having the linked lists.
  nsAutoTArray<uint32_t,8> candidates;
  for (uint32_t i = 0; i < mStreams.Length(); ++i) {
    MediaCacheStream* stream = mStreams[i];
    if (stream->mPinCount > 0) {
      // No point in even looking at this stream's blocks
      continue;
    }

    AppendMostReusableBlock(&stream->mMetadataBlocks, &candidates, length);
    AppendMostReusableBlock(&stream->mPlayedBlocks, &candidates, length);

    // Don't consider readahead blocks in non-seekable streams. If we
    // remove the block we won't be able to seek back to read it later.
    if (stream->mIsTransportSeekable) {
      AppendMostReusableBlock(&stream->mReadaheadBlocks, &candidates, length);
    }
  }

  TimeDuration latestUse;
  int32_t latestUseBlock = -1;
  for (uint32_t i = 0; i < candidates.Length(); ++i) {
    TimeDuration nextUse = PredictNextUse(aNow, candidates[i]);
    if (nextUse > latestUse) {
      latestUse = nextUse;
      latestUseBlock = candidates[i];
    }
  }

  return latestUseBlock;
}

MediaCache::BlockList*
MediaCache::GetListForBlock(BlockOwner* aBlock)
{
  switch (aBlock->mClass) {
  case METADATA_BLOCK:
    NS_ASSERTION(aBlock->mStream, "Metadata block has no stream?");
    return &aBlock->mStream->mMetadataBlocks;
  case PLAYED_BLOCK:
    NS_ASSERTION(aBlock->mStream, "Metadata block has no stream?");
    return &aBlock->mStream->mPlayedBlocks;
  case READAHEAD_BLOCK:
    NS_ASSERTION(aBlock->mStream, "Readahead block has no stream?");
    return &aBlock->mStream->mReadaheadBlocks;
  default:
    NS_ERROR("Invalid block class");
    return nullptr;
  }
}

MediaCache::BlockOwner*
MediaCache::GetBlockOwner(int32_t aBlockIndex, MediaCacheStream* aStream)
{
  Block* block = &mIndex[aBlockIndex];
  for (uint32_t i = 0; i < block->mOwners.Length(); ++i) {
    if (block->mOwners[i].mStream == aStream)
      return &block->mOwners[i];
  }
  return nullptr;
}

void
MediaCache::SwapBlocks(int32_t aBlockIndex1, int32_t aBlockIndex2)
{
  mReentrantMonitor.AssertCurrentThreadIn();

  Block* block1 = &mIndex[aBlockIndex1];
  Block* block2 = &mIndex[aBlockIndex2];

  block1->mOwners.SwapElements(block2->mOwners);

  // Now all references to block1 have to be replaced with block2 and
  // vice versa.
  // First update stream references to blocks via mBlocks.
  const Block* blocks[] = { block1, block2 };
  int32_t blockIndices[] = { aBlockIndex1, aBlockIndex2 };
  for (int32_t i = 0; i < 2; ++i) {
    for (uint32_t j = 0; j < blocks[i]->mOwners.Length(); ++j) {
      const BlockOwner* b = &blocks[i]->mOwners[j];
      b->mStream->mBlocks[b->mStreamBlock] = blockIndices[i];
    }
  }

  // Now update references to blocks in block lists.
  mFreeBlocks.NotifyBlockSwapped(aBlockIndex1, aBlockIndex2);

  nsTHashtable<nsPtrHashKey<MediaCacheStream> > visitedStreams;

  for (int32_t i = 0; i < 2; ++i) {
    for (uint32_t j = 0; j < blocks[i]->mOwners.Length(); ++j) {
      MediaCacheStream* stream = blocks[i]->mOwners[j].mStream;
      // Make sure that we don't update the same stream twice --- that
      // would result in swapping the block references back again!
      if (visitedStreams.GetEntry(stream))
        continue;
      visitedStreams.PutEntry(stream);
      stream->mReadaheadBlocks.NotifyBlockSwapped(aBlockIndex1, aBlockIndex2);
      stream->mPlayedBlocks.NotifyBlockSwapped(aBlockIndex1, aBlockIndex2);
      stream->mMetadataBlocks.NotifyBlockSwapped(aBlockIndex1, aBlockIndex2);
    }
  }

  Verify();
}

void
MediaCache::RemoveBlockOwner(int32_t aBlockIndex, MediaCacheStream* aStream)
{
  Block* block = &mIndex[aBlockIndex];
  for (uint32_t i = 0; i < block->mOwners.Length(); ++i) {
    BlockOwner* bo = &block->mOwners[i];
    if (bo->mStream == aStream) {
      GetListForBlock(bo)->RemoveBlock(aBlockIndex);
      bo->mStream->mBlocks[bo->mStreamBlock] = -1;
      block->mOwners.RemoveElementAt(i);
      if (block->mOwners.IsEmpty()) {
        mFreeBlocks.AddFirstBlock(aBlockIndex);
      }
      return;
    }
  }
}

void
MediaCache::AddBlockOwnerAsReadahead(int32_t aBlockIndex,
                                       MediaCacheStream* aStream,
                                       int32_t aStreamBlockIndex)
{
  Block* block = &mIndex[aBlockIndex];
  if (block->mOwners.IsEmpty()) {
    mFreeBlocks.RemoveBlock(aBlockIndex);
  }
  BlockOwner* bo = block->mOwners.AppendElement();
  bo->mStream = aStream;
  bo->mStreamBlock = aStreamBlockIndex;
  aStream->mBlocks[aStreamBlockIndex] = aBlockIndex;
  bo->mClass = READAHEAD_BLOCK;
  InsertReadaheadBlock(bo, aBlockIndex);
}

void
MediaCache::FreeBlock(int32_t aBlock)
{
  mReentrantMonitor.AssertCurrentThreadIn();

  Block* block = &mIndex[aBlock];
  if (block->mOwners.IsEmpty()) {
    // already free
    return;
  }

  CACHE_LOG(LogLevel::Debug, ("Released block %d", aBlock));

  for (uint32_t i = 0; i < block->mOwners.Length(); ++i) {
    BlockOwner* bo = &block->mOwners[i];
    GetListForBlock(bo)->RemoveBlock(aBlock);
    bo->mStream->mBlocks[bo->mStreamBlock] = -1;
  }
  block->mOwners.Clear();
  mFreeBlocks.AddFirstBlock(aBlock);
  Verify();
}

TimeDuration
MediaCache::PredictNextUse(TimeStamp aNow, int32_t aBlock)
{
  mReentrantMonitor.AssertCurrentThreadIn();
  NS_ASSERTION(!IsBlockFree(aBlock), "aBlock is free");

  Block* block = &mIndex[aBlock];
  // Blocks can be belong to multiple streams. The predicted next use
  // time is the earliest time predicted by any of the streams.
  TimeDuration result;
  for (uint32_t i = 0; i < block->mOwners.Length(); ++i) {
    BlockOwner* bo = &block->mOwners[i];
    TimeDuration prediction;
    switch (bo->mClass) {
    case METADATA_BLOCK:
      // This block should be managed in LRU mode. For metadata we predict
      // that the time until the next use is the time since the last use.
      prediction = aNow - bo->mLastUseTime;
      break;
    case PLAYED_BLOCK: {
      // This block should be managed in LRU mode, and we should impose
      // a "replay delay" to reflect the likelihood of replay happening
      NS_ASSERTION(static_cast<int64_t>(bo->mStreamBlock)*BLOCK_SIZE <
                   bo->mStream->mStreamOffset,
                   "Played block after the current stream position?");
      int64_t bytesBehind =
        bo->mStream->mStreamOffset - static_cast<int64_t>(bo->mStreamBlock)*BLOCK_SIZE;
      int64_t millisecondsBehind =
        bytesBehind*1000/bo->mStream->mPlaybackBytesPerSecond;
      prediction = TimeDuration::FromMilliseconds(
          std::min<int64_t>(millisecondsBehind*REPLAY_PENALTY_FACTOR, INT32_MAX));
      break;
    }
    case READAHEAD_BLOCK: {
      int64_t bytesAhead =
        static_cast<int64_t>(bo->mStreamBlock)*BLOCK_SIZE - bo->mStream->mStreamOffset;
      NS_ASSERTION(bytesAhead >= 0,
                   "Readahead block before the current stream position?");
      int64_t millisecondsAhead =
        bytesAhead*1000/bo->mStream->mPlaybackBytesPerSecond;
      prediction = TimeDuration::FromMilliseconds(
          std::min<int64_t>(millisecondsAhead, INT32_MAX));
      break;
    }
    default:
      NS_ERROR("Invalid class for predicting next use");
      return TimeDuration(0);
    }
    if (i == 0 || prediction < result) {
      result = prediction;
    }
  }
  return result;
}

TimeDuration
MediaCache::PredictNextUseForIncomingData(MediaCacheStream* aStream)
{
  mReentrantMonitor.AssertCurrentThreadIn();

  int64_t bytesAhead = aStream->mChannelOffset - aStream->mStreamOffset;
  if (bytesAhead <= -BLOCK_SIZE) {
    // Hmm, no idea when data behind us will be used. Guess 24 hours.
    return TimeDuration::FromSeconds(24*60*60);
  }
  if (bytesAhead <= 0)
    return TimeDuration(0);
  int64_t millisecondsAhead = bytesAhead*1000/aStream->mPlaybackBytesPerSecond;
  return TimeDuration::FromMilliseconds(
      std::min<int64_t>(millisecondsAhead, INT32_MAX));
}

enum StreamAction { NONE, SEEK, SEEK_AND_RESUME, RESUME, SUSPEND };

void
MediaCache::Update()
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");

  // The action to use for each stream. We store these so we can make
  // decisions while holding the cache lock but implement those decisions
  // without holding the cache lock, since we need to call out to
  // stream, decoder and element code.
  nsAutoTArray<StreamAction,10> actions;

  {
    ReentrantMonitorAutoEnter mon(mReentrantMonitor);
    mUpdateQueued = false;
#ifdef DEBUG
    mInUpdate = true;
#endif

    int32_t maxBlocks = GetMaxBlocks();
    TimeStamp now = TimeStamp::Now();

    int32_t freeBlockCount = mFreeBlocks.GetCount();
    TimeDuration latestPredictedUseForOverflow = 0;
    if (mIndex.Length() > uint32_t(maxBlocks)) {
      // Try to trim back the cache to its desired maximum size. The cache may
      // have overflowed simply due to data being received when we have
      // no blocks in the main part of the cache that are free or lower
      // priority than the new data. The cache can also be overflowing because
      // the media.cache_size preference was reduced.
      // First, figure out what the least valuable block in the cache overflow
      // is. We don't want to replace any blocks in the main part of the
      // cache whose expected time of next use is earlier or equal to that.
      // If we allow that, we can effectively end up discarding overflowing
      // blocks (by moving an overflowing block to the main part of the cache,
      // and then overwriting it with another overflowing block), and we try
      // to avoid that since it requires HTTP seeks.
      // We also use this loop to eliminate overflowing blocks from
      // freeBlockCount.
      for (int32_t blockIndex = mIndex.Length() - 1; blockIndex >= maxBlocks;
           --blockIndex) {
        if (IsBlockFree(blockIndex)) {
          // Don't count overflowing free blocks in our free block count
          --freeBlockCount;
          continue;
        }
        TimeDuration predictedUse = PredictNextUse(now, blockIndex);
        latestPredictedUseForOverflow = std::max(latestPredictedUseForOverflow, predictedUse);
      }
    } else {
      freeBlockCount += maxBlocks - mIndex.Length();
    }

    // Now try to move overflowing blocks to the main part of the cache.
    for (int32_t blockIndex = mIndex.Length() - 1; blockIndex >= maxBlocks;
         --blockIndex) {
      if (IsBlockFree(blockIndex))
        continue;

      Block* block = &mIndex[blockIndex];
      // Try to relocate the block close to other blocks for the first stream.
      // There is no point in trying to make it close to other blocks in
      // *all* the streams it might belong to.
      int32_t destinationBlockIndex =
        FindReusableBlock(now, block->mOwners[0].mStream,
                          block->mOwners[0].mStreamBlock, maxBlocks);
      if (destinationBlockIndex < 0) {
        // Nowhere to place this overflow block. We won't be able to
        // place any more overflow blocks.
        break;
      }

      if (IsBlockFree(destinationBlockIndex) ||
          PredictNextUse(now, destinationBlockIndex) > latestPredictedUseForOverflow) {
        // Reuse blocks in the main part of the cache that are less useful than
        // the least useful overflow blocks

        nsresult rv = mFileCache->MoveBlock(blockIndex, destinationBlockIndex);

        if (NS_SUCCEEDED(rv)) {
          // We successfully copied the file data.
          CACHE_LOG(LogLevel::Debug, ("Swapping blocks %d and %d (trimming cache)",
                    blockIndex, destinationBlockIndex));
          // Swapping the block metadata here lets us maintain the
          // correct positions in the linked lists
          SwapBlocks(blockIndex, destinationBlockIndex);
          //Free the overflowing block even if the copy failed.
          CACHE_LOG(LogLevel::Debug, ("Released block %d (trimming cache)", blockIndex));
          FreeBlock(blockIndex);
        }
      } else {
        CACHE_LOG(LogLevel::Debug, ("Could not trim cache block %d (destination %d, predicted next use %f, latest predicted use for overflow %f",
                                 blockIndex, destinationBlockIndex,
                                 PredictNextUse(now, destinationBlockIndex).ToSeconds(),
                                 latestPredictedUseForOverflow.ToSeconds()));
      }
    }
    // Try chopping back the array of cache entries and the cache file.
    Truncate();

    // Count the blocks allocated for readahead of non-seekable streams
    // (these blocks can't be freed but we don't want them to monopolize the
    // cache)
    int32_t nonSeekableReadaheadBlockCount = 0;
    for (uint32_t i = 0; i < mStreams.Length(); ++i) {
      MediaCacheStream* stream = mStreams[i];
      if (!stream->mIsTransportSeekable) {
        nonSeekableReadaheadBlockCount += stream->mReadaheadBlocks.GetCount();
      }
    }

    // If freeBlockCount is zero, then compute the latest of
    // the predicted next-uses for all blocks
    TimeDuration latestNextUse;
    if (freeBlockCount == 0) {
      int32_t reusableBlock = FindReusableBlock(now, nullptr, 0, maxBlocks);
      if (reusableBlock >= 0) {
        latestNextUse = PredictNextUse(now, reusableBlock);
      }
    }

    int32_t resumeThreshold = Preferences::GetInt("media.cache_resume_threshold", 10);
    int32_t readaheadLimit = Preferences::GetInt("media.cache_readahead_limit", 30);

    for (uint32_t i = 0; i < mStreams.Length(); ++i) {
      actions.AppendElement(NONE);

      MediaCacheStream* stream = mStreams[i];
      if (stream->mClosed) {
        CACHE_LOG(LogLevel::Debug, ("Stream %p closed", stream));
        continue;
      }

      // Figure out where we should be reading from. It's the first
      // uncached byte after the current mStreamOffset.
      int64_t dataOffset = stream->GetCachedDataEndInternal(stream->mStreamOffset);
      MOZ_ASSERT(dataOffset >= 0);

      // Compute where we'd actually seek to to read at readOffset
      int64_t desiredOffset = dataOffset;
      if (stream->mIsTransportSeekable) {
        if (desiredOffset > stream->mChannelOffset &&
            desiredOffset <= stream->mChannelOffset + SEEK_VS_READ_THRESHOLD) {
          // Assume it's more efficient to just keep reading up to the
          // desired position instead of trying to seek
          desiredOffset = stream->mChannelOffset;
        }
      } else {
        // We can't seek directly to the desired offset...
        if (stream->mChannelOffset > desiredOffset) {
          // Reading forward won't get us anywhere, we need to go backwards.
          // Seek back to 0 (the client will reopen the stream) and then
          // read forward.
          NS_WARNING("Can't seek backwards, so seeking to 0");
          desiredOffset = 0;
          // Flush cached blocks out, since if this is a live stream
          // the cached data may be completely different next time we
          // read it. We have to assume that live streams don't
          // advertise themselves as being seekable...
          ReleaseStreamBlocks(stream);
        } else {
          // otherwise reading forward is looking good, so just stay where we
          // are and don't trigger a channel seek!
          desiredOffset = stream->mChannelOffset;
        }
      }

      // Figure out if we should be reading data now or not. It's amazing
      // how complex this is, but each decision is simple enough.
      bool enableReading;
      if (stream->mStreamLength >= 0 && dataOffset >= stream->mStreamLength) {
        // We want data at the end of the stream, where there's nothing to
        // read. We don't want to try to read if we're suspended, because that
        // might create a new channel and seek unnecessarily (and incorrectly,
        // since HTTP doesn't allow seeking to the actual EOF), and we don't want
        // to suspend if we're not suspended and already reading at the end of
        // the stream, since there just might be more data than the server
        // advertised with Content-Length, and we may as well keep reading.
        // But we don't want to seek to the end of the stream if we're not
        // already there.
        CACHE_LOG(LogLevel::Debug, ("Stream %p at end of stream", stream));
        enableReading = !stream->mCacheSuspended &&
          stream->mStreamLength == stream->mChannelOffset;
      } else if (desiredOffset < stream->mStreamOffset) {
        // We're reading to try to catch up to where the current stream
        // reader wants to be. Better not stop.
        CACHE_LOG(LogLevel::Debug, ("Stream %p catching up", stream));
        enableReading = true;
      } else if (desiredOffset < stream->mStreamOffset + BLOCK_SIZE) {
        // The stream reader is waiting for us, or nearly so. Better feed it.
        CACHE_LOG(LogLevel::Debug, ("Stream %p feeding reader", stream));
        enableReading = true;
      } else if (!stream->mIsTransportSeekable &&
                 nonSeekableReadaheadBlockCount >= maxBlocks*NONSEEKABLE_READAHEAD_MAX) {
        // This stream is not seekable and there are already too many blocks
        // being cached for readahead for nonseekable streams (which we can't
        // free). So stop reading ahead now.
        CACHE_LOG(LogLevel::Debug, ("Stream %p throttling non-seekable readahead", stream));
        enableReading = false;
      } else if (mIndex.Length() > uint32_t(maxBlocks)) {
        // We're in the process of bringing the cache size back to the
        // desired limit, so don't bring in more data yet
        CACHE_LOG(LogLevel::Debug, ("Stream %p throttling to reduce cache size", stream));
        enableReading = false;
      } else {
        TimeDuration predictedNewDataUse = PredictNextUseForIncomingData(stream);

        if (stream->mCacheSuspended &&
            predictedNewDataUse.ToSeconds() > resumeThreshold) {
          // Don't need data for a while, so don't bother waking up the stream
          CACHE_LOG(LogLevel::Debug, ("Stream %p avoiding wakeup since more data is not needed", stream));
          enableReading = false;
        } else if (predictedNewDataUse.ToSeconds() > readaheadLimit) {
          // Don't read ahead more than this much
          CACHE_LOG(LogLevel::Debug, ("Stream %p throttling to avoid reading ahead too far", stream));
          enableReading = false;
        } else if (freeBlockCount > 0) {
          // Free blocks in the cache, so keep reading
          CACHE_LOG(LogLevel::Debug, ("Stream %p reading since there are free blocks", stream));
          enableReading = true;
        } else if (latestNextUse <= TimeDuration(0)) {
          // No reusable blocks, so can't read anything
          CACHE_LOG(LogLevel::Debug, ("Stream %p throttling due to no reusable blocks", stream));
          enableReading = false;
        } else {
          // Read ahead if the data we expect to read is more valuable than
          // the least valuable block in the main part of the cache
          CACHE_LOG(LogLevel::Debug, ("Stream %p predict next data in %f, current worst block is %f",
                    stream, predictedNewDataUse.ToSeconds(), latestNextUse.ToSeconds()));
          enableReading = predictedNewDataUse < latestNextUse;
        }
      }

      if (enableReading) {
        for (uint32_t j = 0; j < i; ++j) {
          MediaCacheStream* other = mStreams[j];
          if (other->mResourceID == stream->mResourceID &&
              !other->mClosed && !other->mClient->IsSuspended() &&
              other->mChannelOffset/BLOCK_SIZE == desiredOffset/BLOCK_SIZE) {
            // This block is already going to be read by the other stream.
            // So don't try to read it from this stream as well.
            enableReading = false;
            CACHE_LOG(LogLevel::Debug, ("Stream %p waiting on same block (%lld) from stream %p",
                                     stream, desiredOffset/BLOCK_SIZE, other));
            break;
          }
        }
      }

      if (stream->mChannelOffset != desiredOffset && enableReading) {
        // We need to seek now.
        NS_ASSERTION(stream->mIsTransportSeekable || desiredOffset == 0,
                     "Trying to seek in a non-seekable stream!");
        // Round seek offset down to the start of the block. This is essential
        // because we don't want to think we have part of a block already
        // in mPartialBlockBuffer.
        stream->mChannelOffset = (desiredOffset/BLOCK_SIZE)*BLOCK_SIZE;
        actions[i] = stream->mCacheSuspended ? SEEK_AND_RESUME : SEEK;
      } else if (enableReading && stream->mCacheSuspended) {
        actions[i] = RESUME;
      } else if (!enableReading && !stream->mCacheSuspended) {
        actions[i] = SUSPEND;
      }
    }
#ifdef DEBUG
    mInUpdate = false;
#endif
  }

  // Update the channel state without holding our cache lock. While we're
  // doing this, decoder threads may be running and seeking, reading or changing
  // other cache state. That's OK, they'll trigger new Update events and we'll
  // get back here and revise our decisions. The important thing here is that
  // performing these actions only depends on mChannelOffset and
  // the action, which can only be written by the main thread (i.e., this
  // thread), so we don't have races here.

  // First, update the mCacheSuspended/mCacheEnded flags so that they're all correct
  // when we fire our CacheClient commands below. Those commands can rely on these flags
  // being set correctly for all streams.
  for (uint32_t i = 0; i < mStreams.Length(); ++i) {
    MediaCacheStream* stream = mStreams[i];
    switch (actions[i]) {
    case SEEK:
	case SEEK_AND_RESUME:
      stream->mCacheSuspended = false;
      stream->mChannelEnded = false;
      break;
    case RESUME:
      stream->mCacheSuspended = false;
      break;
    case SUSPEND:
      stream->mCacheSuspended = true;
      break;
    default:
      break;
    }
    stream->mHasHadUpdate = true;
  }

  for (uint32_t i = 0; i < mStreams.Length(); ++i) {
    MediaCacheStream* stream = mStreams[i];
    nsresult rv;
    switch (actions[i]) {
    case SEEK:
	case SEEK_AND_RESUME:
      CACHE_LOG(LogLevel::Debug, ("Stream %p CacheSeek to %lld (resume=%d)", stream,
                (long long)stream->mChannelOffset, actions[i] == SEEK_AND_RESUME));
      rv = stream->mClient->CacheClientSeek(stream->mChannelOffset,
                                            actions[i] == SEEK_AND_RESUME);
      break;
    case RESUME:
      CACHE_LOG(LogLevel::Debug, ("Stream %p Resumed", stream));
      rv = stream->mClient->CacheClientResume();
      QueueSuspendedStatusUpdate(stream->mResourceID);
      break;
    case SUSPEND:
      CACHE_LOG(LogLevel::Debug, ("Stream %p Suspended", stream));
      rv = stream->mClient->CacheClientSuspend();
      QueueSuspendedStatusUpdate(stream->mResourceID);
      break;
    default:
      rv = NS_OK;
      break;
    }

    if (NS_FAILED(rv)) {
      // Close the streams that failed due to error. This will cause all
      // client Read and Seek operations on those streams to fail. Blocked
      // Reads will also be woken up.
      ReentrantMonitorAutoEnter mon(mReentrantMonitor);
      stream->CloseInternal(mon);
    }
  }

  // Notify streams about the suspended status changes.
  for (uint32_t i = 0; i < mSuspendedStatusToNotify.Length(); ++i) {
    MediaCache::ResourceStreamIterator iter(mSuspendedStatusToNotify[i]);
    while (MediaCacheStream* stream = iter.Next()) {
      stream->mClient->CacheClientNotifySuspendedStatusChanged();
    }
  }
  mSuspendedStatusToNotify.Clear();
}

class UpdateEvent : public nsRunnable
{
public:
  NS_IMETHOD Run()
  {
    if (gMediaCache) {
      gMediaCache->Update();
    }
    return NS_OK;
  }
};

void
MediaCache::QueueUpdate()
{
  mReentrantMonitor.AssertCurrentThreadIn();

  // Queuing an update while we're in an update raises a high risk of
  // triggering endless events
  NS_ASSERTION(!mInUpdate,
               "Queuing an update while we're in an update");
  if (mUpdateQueued)
    return;
  mUpdateQueued = true;
  // XXX MediaCache does updates when decoders are still running at
  // shutdown and get freed in the final cycle-collector cleanup.  So
  // don't leak a runnable in that case.
  nsCOMPtr<nsIThread> mainThread = do_GetMainThread();
  if (mainThread) {
    nsCOMPtr<nsIRunnable> event = new UpdateEvent();
    mainThread->Dispatch(event.forget(), NS_DISPATCH_NORMAL);
  }
}

void
MediaCache::QueueSuspendedStatusUpdate(int64_t aResourceID)
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");
  if (!mSuspendedStatusToNotify.Contains(aResourceID)) {
    mSuspendedStatusToNotify.AppendElement(aResourceID);
  }
}

#ifdef DEBUG_VERIFY_CACHE
void
MediaCache::Verify()
{
  mReentrantMonitor.AssertCurrentThreadIn();

  mFreeBlocks.Verify();
  for (uint32_t i = 0; i < mStreams.Length(); ++i) {
    MediaCacheStream* stream = mStreams[i];
    stream->mReadaheadBlocks.Verify();
    stream->mPlayedBlocks.Verify();
    stream->mMetadataBlocks.Verify();

    // Verify that the readahead blocks are listed in stream block order
    int32_t block = stream->mReadaheadBlocks.GetFirstBlock();
    int32_t lastStreamBlock = -1;
    while (block >= 0) {
      uint32_t j = 0;
      while (mIndex[block].mOwners[j].mStream != stream) {
        ++j;
      }
      int32_t nextStreamBlock =
        int32_t(mIndex[block].mOwners[j].mStreamBlock);
      NS_ASSERTION(lastStreamBlock < nextStreamBlock,
                   "Blocks not increasing in readahead stream");
      lastStreamBlock = nextStreamBlock;
      block = stream->mReadaheadBlocks.GetNextBlock(block);
    }
  }
}
#endif

void
MediaCache::InsertReadaheadBlock(BlockOwner* aBlockOwner,
                                   int32_t aBlockIndex)
{
  mReentrantMonitor.AssertCurrentThreadIn();

  // Find the last block whose stream block is before aBlockIndex's
  // stream block, and insert after it
  MediaCacheStream* stream = aBlockOwner->mStream;
  int32_t readaheadIndex = stream->mReadaheadBlocks.GetLastBlock();
  while (readaheadIndex >= 0) {
    BlockOwner* bo = GetBlockOwner(readaheadIndex, stream);
    NS_ASSERTION(bo, "stream must own its blocks");
    if (bo->mStreamBlock < aBlockOwner->mStreamBlock) {
      stream->mReadaheadBlocks.AddAfter(aBlockIndex, readaheadIndex);
      return;
    }
    NS_ASSERTION(bo->mStreamBlock > aBlockOwner->mStreamBlock,
                 "Duplicated blocks??");
    readaheadIndex = stream->mReadaheadBlocks.GetPrevBlock(readaheadIndex);
  }

  stream->mReadaheadBlocks.AddFirstBlock(aBlockIndex);
  Verify();
}

void
MediaCache::AllocateAndWriteBlock(MediaCacheStream* aStream, const void* aData,
                                    MediaCacheStream::ReadMode aMode)
{
  mReentrantMonitor.AssertCurrentThreadIn();

  int32_t streamBlockIndex = aStream->mChannelOffset/BLOCK_SIZE;

  // Remove all cached copies of this block
  ResourceStreamIterator iter(aStream->mResourceID);
  while (MediaCacheStream* stream = iter.Next()) {
    while (streamBlockIndex >= int32_t(stream->mBlocks.Length())) {
      stream->mBlocks.AppendElement(-1);
    }
    if (stream->mBlocks[streamBlockIndex] >= 0) {
      // We no longer want to own this block
      int32_t globalBlockIndex = stream->mBlocks[streamBlockIndex];
      CACHE_LOG(LogLevel::Debug, ("Released block %d from stream %p block %d(%lld)",
                globalBlockIndex, stream, streamBlockIndex, (long long)streamBlockIndex*BLOCK_SIZE));
      RemoveBlockOwner(globalBlockIndex, stream);
    }
  }

  // Extend the mBlocks array as necessary

  TimeStamp now = TimeStamp::Now();
  int32_t blockIndex = FindBlockForIncomingData(now, aStream);
  if (blockIndex >= 0) {
    FreeBlock(blockIndex);

    Block* block = &mIndex[blockIndex];
    CACHE_LOG(LogLevel::Debug, ("Allocated block %d to stream %p block %d(%lld)",
              blockIndex, aStream, streamBlockIndex, (long long)streamBlockIndex*BLOCK_SIZE));

    mFreeBlocks.RemoveBlock(blockIndex);

    // Tell each stream using this resource about the new block.
    ResourceStreamIterator iter(aStream->mResourceID);
    while (MediaCacheStream* stream = iter.Next()) {
      BlockOwner* bo = block->mOwners.AppendElement();
      if (!bo)
        return;

      bo->mStream = stream;
      bo->mStreamBlock = streamBlockIndex;
      bo->mLastUseTime = now;
      stream->mBlocks[streamBlockIndex] = blockIndex;
      if (streamBlockIndex*BLOCK_SIZE < stream->mStreamOffset) {
        bo->mClass = aMode == MediaCacheStream::MODE_PLAYBACK
          ? PLAYED_BLOCK : METADATA_BLOCK;
        // This must be the most-recently-used block, since we
        // marked it as used now (which may be slightly bogus, but we'll
        // treat it as used for simplicity).
        GetListForBlock(bo)->AddFirstBlock(blockIndex);
        Verify();
      } else {
        // This may not be the latest readahead block, although it usually
        // will be. We may have to scan for the right place to insert
        // the block in the list.
        bo->mClass = READAHEAD_BLOCK;
        InsertReadaheadBlock(bo, blockIndex);
      }
    }

    nsresult rv = mFileCache->WriteBlock(blockIndex, reinterpret_cast<const uint8_t*>(aData));
    if (NS_FAILED(rv)) {
      CACHE_LOG(LogLevel::Debug, ("Released block %d from stream %p block %d(%lld)",
                blockIndex, aStream, streamBlockIndex, (long long)streamBlockIndex*BLOCK_SIZE));
      FreeBlock(blockIndex);
    }
  }

  // Queue an Update since the cache state has changed (for example
  // we might want to stop loading because the cache is full)
  QueueUpdate();
}

void
MediaCache::OpenStream(MediaCacheStream* aStream)
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");

  ReentrantMonitorAutoEnter mon(mReentrantMonitor);
  CACHE_LOG(LogLevel::Debug, ("Stream %p opened", aStream));
  mStreams.AppendElement(aStream);
  aStream->mResourceID = AllocateResourceID();

  // Queue an update since a new stream has been opened.
  gMediaCache->QueueUpdate();
}

void
MediaCache::ReleaseStream(MediaCacheStream* aStream)
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");

  ReentrantMonitorAutoEnter mon(mReentrantMonitor);
  CACHE_LOG(LogLevel::Debug, ("Stream %p closed", aStream));
  mStreams.RemoveElement(aStream);

  // Update MediaCache again for |mStreams| is changed.
  // We need to re-run Update() to ensure streams reading from the same resource
  // as the removed stream get a chance to continue reading.
  gMediaCache->QueueUpdate();
}

void
MediaCache::ReleaseStreamBlocks(MediaCacheStream* aStream)
{
  mReentrantMonitor.AssertCurrentThreadIn();

  // XXX scanning the entire stream doesn't seem great, if not much of it
  // is cached, but the only easy alternative is to scan the entire cache
  // which isn't better
  uint32_t length = aStream->mBlocks.Length();
  for (uint32_t i = 0; i < length; ++i) {
    int32_t blockIndex = aStream->mBlocks[i];
    if (blockIndex >= 0) {
      CACHE_LOG(LogLevel::Debug, ("Released block %d from stream %p block %d(%lld)",
                blockIndex, aStream, i, (long long)i*BLOCK_SIZE));
      RemoveBlockOwner(blockIndex, aStream);
    }
  }
}

void
MediaCache::Truncate()
{
  uint32_t end;
  for (end = mIndex.Length(); end > 0; --end) {
    if (!IsBlockFree(end - 1))
      break;
    mFreeBlocks.RemoveBlock(end - 1);
  }

  if (end < mIndex.Length()) {
    mIndex.TruncateLength(end);
    // XXX We could truncate the cache file here, but we don't seem
    // to have a cross-platform API for doing that. At least when all
    // streams are closed we shut down the cache, which erases the
    // file at that point.
  }
}

void
MediaCache::NoteBlockUsage(MediaCacheStream* aStream, int32_t aBlockIndex,
                             MediaCacheStream::ReadMode aMode,
                             TimeStamp aNow)
{
  mReentrantMonitor.AssertCurrentThreadIn();

  if (aBlockIndex < 0) {
    // this block is not in the cache yet
    return;
  }

  BlockOwner* bo = GetBlockOwner(aBlockIndex, aStream);
  if (!bo) {
    // this block is not in the cache yet
    return;
  }

  // The following check has to be <= because the stream offset has
  // not yet been updated for the data read from this block
  NS_ASSERTION(bo->mStreamBlock*BLOCK_SIZE <= bo->mStream->mStreamOffset,
               "Using a block that's behind the read position?");

  GetListForBlock(bo)->RemoveBlock(aBlockIndex);
  bo->mClass =
    (aMode == MediaCacheStream::MODE_METADATA || bo->mClass == METADATA_BLOCK)
    ? METADATA_BLOCK : PLAYED_BLOCK;
  // Since this is just being used now, it can definitely be at the front
  // of mMetadataBlocks or mPlayedBlocks
  GetListForBlock(bo)->AddFirstBlock(aBlockIndex);
  bo->mLastUseTime = aNow;
  Verify();
}

void
MediaCache::NoteSeek(MediaCacheStream* aStream, int64_t aOldOffset)
{
  mReentrantMonitor.AssertCurrentThreadIn();

  if (aOldOffset < aStream->mStreamOffset) {
    // We seeked forward. Convert blocks from readahead to played.
    // Any readahead block that intersects the seeked-over range must
    // be converted.
    int32_t blockIndex = aOldOffset/BLOCK_SIZE;
    int32_t endIndex =
      std::min<int64_t>((aStream->mStreamOffset + BLOCK_SIZE - 1)/BLOCK_SIZE,
             aStream->mBlocks.Length());
    TimeStamp now = TimeStamp::Now();
    while (blockIndex < endIndex) {
      int32_t cacheBlockIndex = aStream->mBlocks[blockIndex];
      if (cacheBlockIndex >= 0) {
        // Marking the block used may not be exactly what we want but
        // it's simple
        NoteBlockUsage(aStream, cacheBlockIndex, MediaCacheStream::MODE_PLAYBACK,
                       now);
      }
      ++blockIndex;
    }
  } else {
    // We seeked backward. Convert from played to readahead.
    // Any played block that is entirely after the start of the seeked-over
    // range must be converted.
    int32_t blockIndex =
      (aStream->mStreamOffset + BLOCK_SIZE - 1)/BLOCK_SIZE;
    int32_t endIndex =
      std::min<int64_t>((aOldOffset + BLOCK_SIZE - 1)/BLOCK_SIZE,
             aStream->mBlocks.Length());
    while (blockIndex < endIndex) {
      MOZ_ASSERT(endIndex > 0);
      int32_t cacheBlockIndex = aStream->mBlocks[endIndex - 1];
      if (cacheBlockIndex >= 0) {
        BlockOwner* bo = GetBlockOwner(cacheBlockIndex, aStream);
        NS_ASSERTION(bo, "Stream doesn't own its blocks?");
        if (bo->mClass == PLAYED_BLOCK) {
          aStream->mPlayedBlocks.RemoveBlock(cacheBlockIndex);
          bo->mClass = READAHEAD_BLOCK;
          // Adding this as the first block is sure to be OK since
          // this must currently be the earliest readahead block
          // (that's why we're proceeding backwards from the end of
          // the seeked range to the start)
          aStream->mReadaheadBlocks.AddFirstBlock(cacheBlockIndex);
          Verify();
        }
      }
      --endIndex;
    }
  }
}

void
MediaCacheStream::NotifyDataLength(int64_t aLength)
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");

  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  mStreamLength = aLength;
}

void
MediaCacheStream::NotifyDataStarted(int64_t aOffset)
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");

  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  NS_WARN_IF_FALSE(aOffset == mChannelOffset,
                   "Server is giving us unexpected offset");
  MOZ_ASSERT(aOffset >= 0);
  mChannelOffset = aOffset;
  if (mStreamLength >= 0) {
    // If we started reading at a certain offset, then for sure
    // the stream is at least that long.
    mStreamLength = std::max(mStreamLength, mChannelOffset);
  }
}

bool
MediaCacheStream::UpdatePrincipal(nsIPrincipal* aPrincipal)
{
  return nsContentUtils::CombineResourcePrincipals(&mPrincipal, aPrincipal);
}

void
MediaCacheStream::NotifyDataReceived(int64_t aSize, const char* aData,
    nsIPrincipal* aPrincipal)
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");

  // Update principals before putting the data in the cache. This is important,
  // we want to make sure all principals are updated before any consumer
  // can see the new data.
  // We do this without holding the cache monitor, in case the client wants
  // to do something that takes a lock.
  {
    MediaCache::ResourceStreamIterator iter(mResourceID);
    while (MediaCacheStream* stream = iter.Next()) {
      if (stream->UpdatePrincipal(aPrincipal)) {
        stream->mClient->CacheClientNotifyPrincipalChanged();
      }
    }
  }

  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  int64_t size = aSize;
  const char* data = aData;

  CACHE_LOG(LogLevel::Debug, ("Stream %p DataReceived at %lld count=%lld",
            this, (long long)mChannelOffset, (long long)aSize));

  // We process the data one block (or part of a block) at a time
  while (size > 0) {
    uint32_t blockIndex = mChannelOffset/BLOCK_SIZE;
    int32_t blockOffset = int32_t(mChannelOffset - blockIndex*BLOCK_SIZE);
    int32_t chunkSize = std::min<int64_t>(BLOCK_SIZE - blockOffset, size);

    // This gets set to something non-null if we have a whole block
    // of data to write to the cache
    const char* blockDataToStore = nullptr;
    ReadMode mode = MODE_PLAYBACK;
    if (blockOffset == 0 && chunkSize == BLOCK_SIZE) {
      // We received a whole block, so avoid a useless copy through
      // mPartialBlockBuffer
      blockDataToStore = data;
    } else {
      if (blockOffset == 0) {
        // We've just started filling this buffer so now is a good time
        // to clear this flag.
        mMetadataInPartialBlockBuffer = false;
      }
      memcpy(reinterpret_cast<char*>(mPartialBlockBuffer.get()) + blockOffset,
             data, chunkSize);

      if (blockOffset + chunkSize == BLOCK_SIZE) {
        // We completed a block, so lets write it out.
        blockDataToStore = reinterpret_cast<char*>(mPartialBlockBuffer.get());
        if (mMetadataInPartialBlockBuffer) {
          mode = MODE_METADATA;
        }
      }
    }

    if (blockDataToStore) {
      gMediaCache->AllocateAndWriteBlock(this, blockDataToStore, mode);
    }

    mChannelOffset += chunkSize;
    size -= chunkSize;
    data += chunkSize;
  }

  MediaCache::ResourceStreamIterator iter(mResourceID);
  while (MediaCacheStream* stream = iter.Next()) {
    if (stream->mStreamLength >= 0) {
      // The stream is at least as long as what we've read
      stream->mStreamLength = std::max(stream->mStreamLength, mChannelOffset);
    }
    stream->mClient->CacheClientNotifyDataReceived();
  }

  // Notify in case there's a waiting reader
  // XXX it would be fairly easy to optimize things a lot more to
  // avoid waking up reader threads unnecessarily
  mon.NotifyAll();
}

void
MediaCacheStream::FlushPartialBlockInternal(bool aNotifyAll,
                                            ReentrantMonitorAutoEnter& aReentrantMonitor)
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");

  int32_t blockOffset = int32_t(mChannelOffset%BLOCK_SIZE);
  if (blockOffset > 0) {
    CACHE_LOG(LogLevel::Debug,
              ("Stream %p writing partial block: [%d] bytes; "
               "mStreamOffset [%lld] mChannelOffset[%lld] mStreamLength [%lld] "
               "notifying: [%s]",
               this, blockOffset, mStreamOffset, mChannelOffset, mStreamLength,
               aNotifyAll ? "yes" : "no"));

    // Write back the partial block
    memset(reinterpret_cast<char*>(mPartialBlockBuffer.get()) + blockOffset, 0,
           BLOCK_SIZE - blockOffset);
    gMediaCache->AllocateAndWriteBlock(this, mPartialBlockBuffer,
        mMetadataInPartialBlockBuffer ? MODE_METADATA : MODE_PLAYBACK);
  }

  // |mChannelOffset == 0| means download ends with no bytes received.
  // We should also wake up those readers who are waiting for data
  // that will never come.
  if ((blockOffset > 0 || mChannelOffset == 0) && aNotifyAll) {
    // Wake up readers who may be waiting for this data
    aReentrantMonitor.NotifyAll();
  }
}

void
MediaCacheStream::FlushPartialBlock()
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");

  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());

  // Write the current partial block to memory.
  // Note: This writes a full block, so if data is not at the end of the
  // stream, the decoder must subsequently choose correct start and end offsets
  // for reading/seeking.
  FlushPartialBlockInternal(false, mon);

  gMediaCache->QueueUpdate();
}

void
MediaCacheStream::NotifyDataEnded(nsresult aStatus)
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");

  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());

  if (NS_FAILED(aStatus)) {
    // Disconnect from other streams sharing our resource, since they
    // should continue trying to load. Our load might have been deliberately
    // canceled and that shouldn't affect other streams.
    mResourceID = gMediaCache->AllocateResourceID();
  }

  // It is prudent to update channel/cache status before calling
  // CacheClientNotifyDataEnded() which will read |mChannelEnded|.
  FlushPartialBlockInternal(true, mon);
  mChannelEnded = true;
  gMediaCache->QueueUpdate();

  MediaCache::ResourceStreamIterator iter(mResourceID);
  while (MediaCacheStream* stream = iter.Next()) {
    if (NS_SUCCEEDED(aStatus)) {
      // We read the whole stream, so remember the true length
      stream->mStreamLength = mChannelOffset;
    }
    if (!stream->mDidNotifyDataEnded) {
      stream->mDidNotifyDataEnded = true;
      stream->mNotifyDataEndedStatus = aStatus;
      stream->mClient->CacheClientNotifyDataEnded(aStatus);
    }
  }
}

void
MediaCacheStream::NotifyChannelRecreated()
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");
  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  mChannelEnded = false;
  mDidNotifyDataEnded = false;
}

MediaCacheStream::~MediaCacheStream()
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");
  NS_ASSERTION(!mPinCount, "Unbalanced Pin");

  if (gMediaCache) {
    NS_ASSERTION(mClosed, "Stream was not closed");
    gMediaCache->ReleaseStream(this);
    MediaCache::MaybeShutdown();
  }
}

void
MediaCacheStream::SetTransportSeekable(bool aIsTransportSeekable)
{
  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  NS_ASSERTION(mIsTransportSeekable || aIsTransportSeekable ||
               mChannelOffset == 0, "channel offset must be zero when we become non-seekable");
  mIsTransportSeekable = aIsTransportSeekable;
  // Queue an Update since we may change our strategy for dealing
  // with this stream
  gMediaCache->QueueUpdate();
}

bool
MediaCacheStream::IsTransportSeekable()
{
  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  return mIsTransportSeekable;
}

bool
MediaCacheStream::AreAllStreamsForResourceSuspended()
{
  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  MediaCache::ResourceStreamIterator iter(mResourceID);
  // Look for a stream that's able to read the data we need
  int64_t dataOffset = -1;
  while (MediaCacheStream* stream = iter.Next()) {
    if (stream->mCacheSuspended || stream->mChannelEnded || stream->mClosed) {
      continue;
    }
    if (dataOffset < 0) {
      dataOffset = GetCachedDataEndInternal(mStreamOffset);
    }
    // Ignore streams that are reading beyond the data we need
    if (stream->mChannelOffset > dataOffset) {
      continue;
    }
    return false;
  }

  return true;
}

void
MediaCacheStream::Close()
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");

  if (!mInitialized)
    return;

  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  CloseInternal(mon);
  // Queue an Update since we may have created more free space. Don't do
  // it from CloseInternal since that gets called by Update() itself
  // sometimes, and we try to not to queue updates from Update().
  gMediaCache->QueueUpdate();
}

void
MediaCacheStream::EnsureCacheUpdate()
{
  if (mHasHadUpdate)
    return;
  gMediaCache->Update();
}

void
MediaCacheStream::CloseInternal(ReentrantMonitorAutoEnter& aReentrantMonitor)
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");

  if (mClosed)
    return;
  mClosed = true;
  // Closing a stream will change the return value of
  // MediaCacheStream::AreAllStreamsForResourceSuspended as well as
  // ChannelMediaResource::IsSuspendedByCache. Let's notify it.
  gMediaCache->QueueSuspendedStatusUpdate(mResourceID);
  gMediaCache->ReleaseStreamBlocks(this);
  // Wake up any blocked readers
  aReentrantMonitor.NotifyAll();
}

void
MediaCacheStream::Pin()
{
  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  ++mPinCount;
  // Queue an Update since we may no longer want to read more into the
  // cache, if this stream's block have become non-evictable
  gMediaCache->QueueUpdate();
}

void
MediaCacheStream::Unpin()
{
  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  NS_ASSERTION(mPinCount > 0, "Unbalanced Unpin");
  --mPinCount;
  // Queue an Update since we may be able to read more into the
  // cache, if this stream's block have become evictable
  gMediaCache->QueueUpdate();
}

int64_t
MediaCacheStream::GetLength()
{
  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  return mStreamLength;
}

int64_t
MediaCacheStream::GetNextCachedData(int64_t aOffset)
{
  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  return GetNextCachedDataInternal(aOffset);
}

int64_t
MediaCacheStream::GetCachedDataEnd(int64_t aOffset)
{
  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  return GetCachedDataEndInternal(aOffset);
}

bool
MediaCacheStream::IsDataCachedToEndOfStream(int64_t aOffset)
{
  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  if (mStreamLength < 0)
    return false;
  return GetCachedDataEndInternal(aOffset) >= mStreamLength;
}

int64_t
MediaCacheStream::GetCachedDataEndInternal(int64_t aOffset)
{
  gMediaCache->GetReentrantMonitor().AssertCurrentThreadIn();
  uint32_t startBlockIndex = aOffset/BLOCK_SIZE;
  uint32_t blockIndex = startBlockIndex;
  while (blockIndex < mBlocks.Length() && mBlocks[blockIndex] != -1) {
    ++blockIndex;
  }
  int64_t result = blockIndex*BLOCK_SIZE;
  if (blockIndex == mChannelOffset/BLOCK_SIZE) {
    // The block containing mChannelOffset may be partially read but not
    // yet committed to the main cache
    result = mChannelOffset;
  }
  if (mStreamLength >= 0) {
    // The last block in the cache may only be partially valid, so limit
    // the cached range to the stream length
    result = std::min(result, mStreamLength);
  }
  return std::max(result, aOffset);
}

int64_t
MediaCacheStream::GetNextCachedDataInternal(int64_t aOffset)
{
  gMediaCache->GetReentrantMonitor().AssertCurrentThreadIn();
  if (aOffset == mStreamLength)
    return -1;

  uint32_t startBlockIndex = aOffset/BLOCK_SIZE;
  uint32_t channelBlockIndex = mChannelOffset/BLOCK_SIZE;

  if (startBlockIndex == channelBlockIndex &&
      aOffset < mChannelOffset) {
    // The block containing mChannelOffset is partially read, but not
    // yet committed to the main cache. aOffset lies in the partially
    // read portion, thus it is effectively cached.
    return aOffset;
  }

  if (startBlockIndex >= mBlocks.Length())
    return -1;

  // Is the current block cached?
  if (mBlocks[startBlockIndex] != -1)
    return aOffset;

  // Count the number of uncached blocks
  bool hasPartialBlock = (mChannelOffset % BLOCK_SIZE) != 0;
  uint32_t blockIndex = startBlockIndex + 1;
  while (true) {
    if ((hasPartialBlock && blockIndex == channelBlockIndex) ||
        (blockIndex < mBlocks.Length() && mBlocks[blockIndex] != -1)) {
      // We at the incoming channel block, which has has data in it,
      // or are we at a cached block. Return index of block start.
      return blockIndex * BLOCK_SIZE;
    }

    // No more cached blocks?
    if (blockIndex >= mBlocks.Length())
      return -1;

    ++blockIndex;
  }

  NS_NOTREACHED("Should return in loop");
  return -1;
}

void
MediaCacheStream::SetReadMode(ReadMode aMode)
{
  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  if (aMode == mCurrentMode)
    return;
  mCurrentMode = aMode;
  gMediaCache->QueueUpdate();
}

void
MediaCacheStream::SetPlaybackRate(uint32_t aBytesPerSecond)
{
  NS_ASSERTION(aBytesPerSecond > 0, "Zero playback rate not allowed");
  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  if (aBytesPerSecond == mPlaybackBytesPerSecond)
    return;
  mPlaybackBytesPerSecond = aBytesPerSecond;
  gMediaCache->QueueUpdate();
}

nsresult
MediaCacheStream::Seek(int32_t aWhence, int64_t aOffset)
{
  NS_ASSERTION(!NS_IsMainThread(), "Don't call on main thread");

  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  if (mClosed)
    return NS_ERROR_FAILURE;

  int64_t oldOffset = mStreamOffset;
  int64_t newOffset = mStreamOffset;
  switch (aWhence) {
  case PR_SEEK_END:
    if (mStreamLength < 0)
      return NS_ERROR_FAILURE;
    newOffset = mStreamLength + aOffset;
    break;
  case PR_SEEK_CUR:
    newOffset += aOffset;
    break;
  case PR_SEEK_SET:
    newOffset = aOffset;
    break;
  default:
    NS_ERROR("Unknown whence");
    return NS_ERROR_FAILURE;
  }

  if (newOffset < 0)
    return NS_ERROR_FAILURE;
  mStreamOffset = newOffset;

  CACHE_LOG(LogLevel::Debug, ("Stream %p Seek to %lld", this, (long long)mStreamOffset));
  gMediaCache->NoteSeek(this, oldOffset);

  gMediaCache->QueueUpdate();
  return NS_OK;
}

int64_t
MediaCacheStream::Tell()
{
  NS_ASSERTION(!NS_IsMainThread(), "Don't call on main thread");

  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  return mStreamOffset;
}

nsresult
MediaCacheStream::Read(char* aBuffer, uint32_t aCount, uint32_t* aBytes)
{
  NS_ASSERTION(!NS_IsMainThread(), "Don't call on main thread");

  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  if (mClosed)
    return NS_ERROR_FAILURE;

  uint32_t count = 0;
  // Read one block (or part of a block) at a time
  while (count < aCount) {
    uint32_t streamBlock = uint32_t(mStreamOffset/BLOCK_SIZE);
    uint32_t offsetInStreamBlock =
      uint32_t(mStreamOffset - streamBlock*BLOCK_SIZE);
    int64_t size = std::min<int64_t>(aCount - count, BLOCK_SIZE - offsetInStreamBlock);

    if (mStreamLength >= 0) {
      // Don't try to read beyond the end of the stream
      int64_t bytesRemaining = mStreamLength - mStreamOffset;
      if (bytesRemaining <= 0) {
        // Get out of here and return NS_OK
        break;
      }
      size = std::min(size, bytesRemaining);
      // Clamp size until 64-bit file size issues are fixed.
      size = std::min(size, int64_t(INT32_MAX));
    }

    int32_t cacheBlock = streamBlock < mBlocks.Length() ? mBlocks[streamBlock] : -1;
    if (cacheBlock < 0) {
      // We don't have a complete cached block here.

      if (count > 0) {
        // Some data has been read, so return what we've got instead of
        // blocking or trying to find a stream with a partial block.
        break;
      }

      // See if the data is available in the partial cache block of any
      // stream reading this resource. We need to do this in case there is
      // another stream with this resource that has all the data to the end of
      // the stream but the data doesn't end on a block boundary.
      MediaCacheStream* streamWithPartialBlock = nullptr;
      MediaCache::ResourceStreamIterator iter(mResourceID);
      while (MediaCacheStream* stream = iter.Next()) {
        if (uint32_t(stream->mChannelOffset/BLOCK_SIZE) == streamBlock &&
            mStreamOffset < stream->mChannelOffset) {
          streamWithPartialBlock = stream;
          break;
        }
      }
      if (streamWithPartialBlock) {
        // We can just use the data in mPartialBlockBuffer. In fact we should
        // use it rather than waiting for the block to fill and land in
        // the cache.
        int64_t bytes = std::min<int64_t>(size, streamWithPartialBlock->mChannelOffset - mStreamOffset);
        // Clamp bytes until 64-bit file size issues are fixed.
        bytes = std::min(bytes, int64_t(INT32_MAX));
        MOZ_ASSERT(bytes >= 0 && bytes <= aCount, "Bytes out of range.");
        memcpy(aBuffer,
          reinterpret_cast<char*>(streamWithPartialBlock->mPartialBlockBuffer.get()) + offsetInStreamBlock, bytes);
        if (mCurrentMode == MODE_METADATA) {
          streamWithPartialBlock->mMetadataInPartialBlockBuffer = true;
        }
        mStreamOffset += bytes;
        count = bytes;
        break;
      }

      // No data has been read yet, so block
      mon.Wait();
      if (mClosed) {
        // We may have successfully read some data, but let's just throw
        // that out.
        return NS_ERROR_FAILURE;
      }
      continue;
    }

    gMediaCache->NoteBlockUsage(this, cacheBlock, mCurrentMode, TimeStamp::Now());

    int64_t offset = cacheBlock*BLOCK_SIZE + offsetInStreamBlock;
    int32_t bytes;
    MOZ_ASSERT(size >= 0 && size <= INT32_MAX, "Size out of range.");
    nsresult rv = gMediaCache->ReadCacheFile(offset, aBuffer + count, int32_t(size), &bytes);
    if (NS_FAILED(rv)) {
      if (count == 0)
        return rv;
      // If we did successfully read some data, may as well return it
      break;
    }
    mStreamOffset += bytes;
    count += bytes;
  }

  if (count > 0) {
    // Some data was read, so queue an update since block priorities may
    // have changed
    gMediaCache->QueueUpdate();
  }
  CACHE_LOG(LogLevel::Debug,
            ("Stream %p Read at %lld count=%d", this, (long long)(mStreamOffset-count), count));
  *aBytes = count;
  return NS_OK;
}

nsresult
MediaCacheStream::ReadAt(int64_t aOffset, char* aBuffer,
                         uint32_t aCount, uint32_t* aBytes)
{
  NS_ASSERTION(!NS_IsMainThread(), "Don't call on main thread");

  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  nsresult rv = Seek(nsISeekableStream::NS_SEEK_SET, aOffset);
  if (NS_FAILED(rv)) return rv;
  return Read(aBuffer, aCount, aBytes);
}

nsresult
MediaCacheStream::ReadFromCache(char* aBuffer, int64_t aOffset, int64_t aCount)
{
  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());
  if (mClosed)
    return NS_ERROR_FAILURE;

  // Read one block (or part of a block) at a time
  uint32_t count = 0;
  int64_t streamOffset = aOffset;
  while (count < aCount) {
    uint32_t streamBlock = uint32_t(streamOffset/BLOCK_SIZE);
    uint32_t offsetInStreamBlock =
      uint32_t(streamOffset - streamBlock*BLOCK_SIZE);
    int64_t size = std::min<int64_t>(aCount - count, BLOCK_SIZE - offsetInStreamBlock);

    if (mStreamLength >= 0) {
      // Don't try to read beyond the end of the stream
      int64_t bytesRemaining = mStreamLength - streamOffset;
      if (bytesRemaining <= 0) {
        return NS_ERROR_FAILURE;
      }
      size = std::min(size, bytesRemaining);
      // Clamp size until 64-bit file size issues are fixed.
      size = std::min(size, int64_t(INT32_MAX));
    }

    int32_t bytes;
    uint32_t channelBlock = uint32_t(mChannelOffset/BLOCK_SIZE);
    int32_t cacheBlock = streamBlock < mBlocks.Length() ? mBlocks[streamBlock] : -1;
    if (channelBlock == streamBlock && streamOffset < mChannelOffset) {
      // We can just use the data in mPartialBlockBuffer. In fact we should
      // use it rather than waiting for the block to fill and land in
      // the cache.
      // Clamp bytes until 64-bit file size issues are fixed.
      int64_t toCopy = std::min<int64_t>(size, mChannelOffset - streamOffset);
      bytes = std::min(toCopy, int64_t(INT32_MAX));
      MOZ_ASSERT(bytes >= 0 && bytes <= toCopy, "Bytes out of range.");
      memcpy(aBuffer + count,
        reinterpret_cast<char*>(mPartialBlockBuffer.get()) + offsetInStreamBlock, bytes);
    } else {
      if (cacheBlock < 0) {
        // We expect all blocks to be cached! Fail!
        return NS_ERROR_FAILURE;
      }
      int64_t offset = cacheBlock*BLOCK_SIZE + offsetInStreamBlock;
      MOZ_ASSERT(size >= 0 && size <= INT32_MAX, "Size out of range.");
      nsresult rv = gMediaCache->ReadCacheFile(offset, aBuffer + count, int32_t(size), &bytes);
      if (NS_FAILED(rv)) {
        return rv;
      }
    }
    streamOffset += bytes;
    count += bytes;
  }

  return NS_OK;
}

nsresult
MediaCacheStream::Init()
{
  NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");

  if (mInitialized)
    return NS_OK;

  InitMediaCache();
  if (!gMediaCache)
    return NS_ERROR_FAILURE;
  gMediaCache->OpenStream(this);
  mInitialized = true;
  return NS_OK;
}

nsresult
MediaCacheStream::InitAsClone(MediaCacheStream* aOriginal)
{
  if (!aOriginal->IsAvailableForSharing())
    return NS_ERROR_FAILURE;

  if (mInitialized)
    return NS_OK;

  nsresult rv = Init();
  if (NS_FAILED(rv))
    return rv;
  mResourceID = aOriginal->mResourceID;

  // Grab cache blocks from aOriginal as readahead blocks for our stream
  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());

  mPrincipal = aOriginal->mPrincipal;
  mStreamLength = aOriginal->mStreamLength;
  mIsTransportSeekable = aOriginal->mIsTransportSeekable;

  // Cloned streams are initially suspended, since there is no channel open
  // initially for a clone.
  mCacheSuspended = true;
  mChannelEnded = true;

  if (aOriginal->mDidNotifyDataEnded) {
    mNotifyDataEndedStatus = aOriginal->mNotifyDataEndedStatus;
    mDidNotifyDataEnded = true;
    mClient->CacheClientNotifyDataEnded(mNotifyDataEndedStatus);
  }

  for (uint32_t i = 0; i < aOriginal->mBlocks.Length(); ++i) {
    int32_t cacheBlockIndex = aOriginal->mBlocks[i];
    if (cacheBlockIndex < 0)
      continue;

    while (i >= mBlocks.Length()) {
      mBlocks.AppendElement(-1);
    }
    // Every block is a readahead block for the clone because the clone's initial
    // stream offset is zero
    gMediaCache->AddBlockOwnerAsReadahead(cacheBlockIndex, this, i);
  }

  return NS_OK;
}

nsresult MediaCacheStream::GetCachedRanges(nsTArray<MediaByteRange>& aRanges)
{
  // Take the monitor, so that the cached data ranges can't grow while we're
  // trying to loop over them.
  ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor());

  // We must be pinned while running this, otherwise the cached data ranges may
  // shrink while we're trying to loop over them.
  NS_ASSERTION(mPinCount > 0, "Must be pinned");

  int64_t startOffset = GetNextCachedDataInternal(0);
  while (startOffset >= 0) {
    int64_t endOffset = GetCachedDataEndInternal(startOffset);
    NS_ASSERTION(startOffset < endOffset, "Buffered range must end after its start");
    // Bytes [startOffset..endOffset] are cached.
    aRanges.AppendElement(MediaByteRange(startOffset, endOffset));
    startOffset = GetNextCachedDataInternal(endOffset);
    NS_ASSERTION(startOffset == -1 || startOffset > endOffset,
      "Must have advanced to start of next range, or hit end of stream");
  }
  return NS_OK;
}

} // namespace mozilla