DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (fddffdeab170)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this file,
 * You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef GRAPHDRIVER_H_
#define GRAPHDRIVER_H_

#include "nsAutoPtr.h"
#include "nsAutoRef.h"
#include "AudioBufferUtils.h"
#include "AudioMixer.h"
#include "AudioSegment.h"
#include "SelfRef.h"
#include "mozilla/Atomics.h"

struct cubeb_stream;

template <>
class nsAutoRefTraits<cubeb_stream> : public nsPointerRefTraits<cubeb_stream>
{
public:
  static void Release(cubeb_stream* aStream) { cubeb_stream_destroy(aStream); }
};

namespace mozilla {

/**
 * Assume we can run an iteration of the MediaStreamGraph loop in this much time
 * or less.
 * We try to run the control loop at this rate.
 */
static const int MEDIA_GRAPH_TARGET_PERIOD_MS = 10;

/**
 * Assume that we might miss our scheduled wakeup of the MediaStreamGraph by
 * this much.
 */
static const int SCHEDULE_SAFETY_MARGIN_MS = 10;

/**
 * Try have this much audio buffered in streams and queued to the hardware.
 * The maximum delay to the end of the next control loop
 * is 2*MEDIA_GRAPH_TARGET_PERIOD_MS + SCHEDULE_SAFETY_MARGIN_MS.
 * There is no point in buffering more audio than this in a stream at any
 * given time (until we add processing).
 * This is not optimal yet.
 */
static const int AUDIO_TARGET_MS = 2*MEDIA_GRAPH_TARGET_PERIOD_MS +
    SCHEDULE_SAFETY_MARGIN_MS;

class MediaStreamGraphImpl;

class AudioCallbackDriver;
class OfflineClockDriver;

/**
 * A driver is responsible for the scheduling of the processing, the thread
 * management, and give the different clocks to a MediaStreamGraph. This is an
 * abstract base class. A MediaStreamGraph can be driven by an
 * OfflineClockDriver, if the graph is offline, or a SystemClockDriver, if the
 * graph is real time.
 * A MediaStreamGraph holds an owning reference to its driver.
 */
class GraphDriver
{
public:
  explicit GraphDriver(MediaStreamGraphImpl* aGraphImpl);

  NS_INLINE_DECL_THREADSAFE_REFCOUNTING(GraphDriver);
  /* For real-time graphs, this waits until it's time to process more data. For
   * offline graphs, this is a no-op. */
  virtual void WaitForNextIteration() = 0;
  /* Wakes up the graph if it is waiting. */
  virtual void WakeUp() = 0;
  virtual void Destroy() {}
  /* Start the graph, init the driver, start the thread. */
  virtual void Start() = 0;
  /* Stop the graph, shutting down the thread. */
  virtual void Stop() = 0;
  /* Resume after a stop */
  virtual void Resume() = 0;
  /* Revive this driver, as more messages just arrived. */
  virtual void Revive() = 0;
  void Shutdown();
  /* Rate at which the GraphDriver runs, in ms. This can either be user
   * controlled (because we are using a {System,Offline}ClockDriver, and decide
   * how often we want to wakeup/how much we want to process per iteration), or
   * it can be indirectly set by the latency of the audio backend, and the
   * number of buffers of this audio backend: say we have four buffers, and 40ms
   * latency, we will get a callback approximately every 10ms. */
  virtual uint32_t IterationDuration() = 0;

  /* Return whether we are switching or not. */
  bool Switching() {
    return mNextDriver || mPreviousDriver;
  }

  GraphDriver* NextDriver()
  {
    return mNextDriver;
  }

  /**
   * If we are running a real time graph, get the current time stamp to schedule
   * video frames. This has to be reimplemented by real time drivers.
   */
  virtual TimeStamp GetCurrentTimeStamp() {
    return mCurrentTimeStamp;
  }

  bool IsWaiting() {
    return mWaitState == WAITSTATE_WAITING_INDEFINITELY ||
           mWaitState == WAITSTATE_WAITING_FOR_NEXT_ITERATION;
  }

  bool IsWaitingIndefinitly() {
    return mWaitState == WAITSTATE_WAITING_INDEFINITELY;
  }

  GraphTime IterationStart() {
    return mIterationStart;
  }

  GraphTime IterationEnd() {
    return mIterationEnd;
  }

  virtual void GetAudioBuffer(float** aBuffer, long& aFrames) {
    MOZ_CRASH("This is not an Audio GraphDriver!");
  }

  virtual AudioCallbackDriver* AsAudioCallbackDriver() {
    return nullptr;
  }

  virtual OfflineClockDriver* AsOfflineClockDriver() {
    return nullptr;
  }

  /**
   * Tell the driver it has to stop and return the current time of the graph, so
   * another driver can start from the right point in time.
   */
  virtual void SwitchAtNextIteration(GraphDriver* aDriver);

  /**
   * Set the time for a graph, on a driver. This is used so a new driver just
   * created can start at the right point in time.
   */
  void SetGraphTime(GraphDriver* aPreviousDriver,
                    GraphTime aLastSwitchNextIterationStart,
                    GraphTime aLastSwitchNextIterationEnd);

  /**
   * Call this to indicate that another iteration of the control loop is
   * required immediately. The monitor must already be held.
   */
  void EnsureImmediateWakeUpLocked();

  /**
   * Call this to indicate that another iteration of the control loop is
   * required on its regular schedule. The monitor must not be held.
   * This function has to be idempotent.
   */
  void EnsureNextIteration();

  /**
   * Same thing, but not locked.
   */
  void EnsureNextIterationLocked();

  MediaStreamGraphImpl* GraphImpl() {
    return mGraphImpl;
  }

  virtual bool OnThread() = 0;

protected:
  GraphTime StateComputedTime() const;

  // Time of the start of this graph iteration.
  GraphTime mIterationStart;
  // Time of the end of this graph iteration.
  GraphTime mIterationEnd;
  // The MediaStreamGraphImpl that owns this driver. This has a lifetime longer
  // than the driver, and will never be null.
  MediaStreamGraphImpl* mGraphImpl;

  // This enum specifies the wait state of the driver.
  enum WaitState {
    // RunThread() is running normally
    WAITSTATE_RUNNING,
    // RunThread() is paused waiting for its next iteration, which will
    // happen soon
    WAITSTATE_WAITING_FOR_NEXT_ITERATION,
    // RunThread() is paused indefinitely waiting for something to change
    WAITSTATE_WAITING_INDEFINITELY,
    // Something has signaled RunThread() to wake up immediately,
    // but it hasn't done so yet
    WAITSTATE_WAKING_UP
  };
  WaitState mWaitState;

  TimeStamp mCurrentTimeStamp;
  // This is non-null only when this driver has recently switched from an other
  // driver, and has not cleaned it up yet (for example because the audio stream
  // is currently calling the callback during initialization).
  RefPtr<GraphDriver> mPreviousDriver;
  // This is non-null only when this driver is going to switch to an other
  // driver at the end of this iteration.
  RefPtr<GraphDriver> mNextDriver;
  virtual ~GraphDriver()
  { }
};

class MediaStreamGraphInitThreadRunnable;

/**
 * This class is a driver that manages its own thread.
 */
class ThreadedDriver : public GraphDriver
{
public:
  explicit ThreadedDriver(MediaStreamGraphImpl* aGraphImpl);
  virtual ~ThreadedDriver();
  virtual void Start() override;
  virtual void Stop() override;
  virtual void Resume() override;
  virtual void Revive() override;
  /**
   * Runs main control loop on the graph thread. Normally a single invocation
   * of this runs for the entire lifetime of the graph thread.
   */
  void RunThread();
  friend class MediaStreamGraphInitThreadRunnable;
  virtual uint32_t IterationDuration() override {
    return MEDIA_GRAPH_TARGET_PERIOD_MS;
  }

  virtual bool OnThread() override { return !mThread || NS_GetCurrentThread() == mThread; }

  /* When the graph wakes up to do an iteration, implementations return the
   * range of time that will be processed.  This is called only once per
   * iteration; it may determine the interval from state in a previous
   * call. */
  virtual MediaTime GetIntervalForIteration() = 0;
protected:
  nsCOMPtr<nsIThread> mThread;
};

/**
 * A SystemClockDriver drives a MediaStreamGraph using a system clock, and waits
 * using a monitor, between each iteration.
 */
class SystemClockDriver : public ThreadedDriver
{
public:
  explicit SystemClockDriver(MediaStreamGraphImpl* aGraphImpl);
  virtual ~SystemClockDriver();
  virtual MediaTime GetIntervalForIteration() override;
  virtual void WaitForNextIteration() override;
  virtual void WakeUp() override;


private:
  TimeStamp mInitialTimeStamp;
  TimeStamp mLastTimeStamp;
};

/**
 * An OfflineClockDriver runs the graph as fast as possible, without waiting
 * between iteration.
 */
class OfflineClockDriver : public ThreadedDriver
{
public:
  OfflineClockDriver(MediaStreamGraphImpl* aGraphImpl, GraphTime aSlice);
  virtual ~OfflineClockDriver();
  virtual MediaTime GetIntervalForIteration() override;
  virtual void WaitForNextIteration() override;
  virtual void WakeUp() override;
  virtual TimeStamp GetCurrentTimeStamp() override;
  virtual OfflineClockDriver* AsOfflineClockDriver() override {
    return this;
  }

private:
  // Time, in GraphTime, for each iteration
  GraphTime mSlice;
};

struct StreamAndPromiseForOperation
{
  StreamAndPromiseForOperation(MediaStream* aStream,
                               void* aPromise,
                               dom::AudioContextOperation aOperation);
  RefPtr<MediaStream> mStream;
  void* mPromise;
  dom::AudioContextOperation mOperation;
};

enum AsyncCubebOperation {
  INIT,
  SHUTDOWN
};

/**
 * This is a graph driver that is based on callback functions called by the
 * audio api. This ensures minimal audio latency, because it means there is no
 * buffering happening: the audio is generated inside the callback.
 *
 * This design is less flexible than running our own thread:
 * - We have no control over the thread:
 * - It cannot block, and it has to run for a shorter amount of time than the
 *   buffer it is going to fill, or an under-run is going to occur (short burst
 *   of silence in the final audio output).
 * - We can't know for sure when the callback function is going to be called
 *   (although we compute an estimation so we can schedule video frames)
 * - Creating and shutting the thread down is a blocking operation, that can
 *   take _seconds_ in some cases (because IPC has to be set up, and
 *   sometimes hardware components are involved and need to be warmed up)
 * - We have no control on how much audio we generate, we have to return exactly
 *   the number of frames asked for by the callback. Since for the Web Audio
 *   API, we have to do block processing at 128 frames per block, we need to
 *   keep a little spill buffer to store the extra frames.
 */
class AudioCallbackDriver : public GraphDriver,
                            public MixerCallbackReceiver
{
public:
  explicit AudioCallbackDriver(MediaStreamGraphImpl* aGraphImpl);
  virtual ~AudioCallbackDriver();

  virtual void Destroy() override;
  virtual void Start() override;
  virtual void Stop() override;
  virtual void Resume() override;
  virtual void Revive() override;
  virtual void WaitForNextIteration() override;
  virtual void WakeUp() override;

  /* Static wrapper function cubeb calls back. */
  static long DataCallback_s(cubeb_stream * aStream,
                             void * aUser, void * aBuffer,
                             long aFrames);
  static void StateCallback_s(cubeb_stream* aStream, void * aUser,
                              cubeb_state aState);
  static void DeviceChangedCallback_s(void * aUser);
  /* This function is called by the underlying audio backend when a refill is
   * needed. This is what drives the whole graph when it is used to output
   * audio. If the return value is exactly aFrames, this function will get
   * called again. If it is less than aFrames, the stream will go in draining
   * mode, and this function will not be called again. */
  long DataCallback(AudioDataValue* aBuffer, long aFrames);
  /* This function is called by the underlying audio backend, but is only used
   * for informational purposes at the moment. */
  void StateCallback(cubeb_state aState);
  /* This is an approximation of the number of millisecond there are between two
   * iterations of the graph. */
  virtual uint32_t IterationDuration() override;

  /* This function gets called when the graph has produced the audio frames for
   * this iteration. */
  virtual void MixerCallback(AudioDataValue* aMixedBuffer,
                             AudioSampleFormat aFormat,
                             uint32_t aChannels,
                             uint32_t aFrames,
                             uint32_t aSampleRate) override;

  virtual AudioCallbackDriver* AsAudioCallbackDriver() override {
    return this;
  }

  /* Enqueue a promise that is going to be resolved when a specific operation
   * occurs on the cubeb stream. */
  void EnqueueStreamAndPromiseForOperation(MediaStream* aStream,
                                         void* aPromise,
                                         dom::AudioContextOperation aOperation);

  bool IsSwitchingDevice() {
#ifdef XP_MACOSX
    return mSelfReference;
#else
    return false;
#endif
  }

  /**
   * Whether the audio callback is processing. This is for asserting only.
   */
  bool InCallback();

  virtual bool OnThread() override { return !mStarted || InCallback(); }

  /* Whether the underlying cubeb stream has been started. See comment for
   * mStarted for details. */
  bool IsStarted();

  /* Tell the driver whether this process is using a microphone or not. This is
   * thread safe. */
  void SetMicrophoneActive(bool aActive);

  void CompleteAudioContextOperations(AsyncCubebOperation aOperation);
private:
  /**
   * On certain MacBookPro, the microphone is located near the left speaker.
   * We need to pan the sound output to the right speaker if we are using the
   * mic and the built-in speaker, or we will have terrible echo.  */
  void PanOutputIfNeeded(bool aMicrophoneActive);
  /**
   * This is called when the output device used by the cubeb stream changes. */
  void DeviceChangedCallback();
  /* Start the cubeb stream */
  void StartStream();
  friend class AsyncCubebTask;
  void Init();
  /* MediaStreamGraphs are always down/up mixed to stereo for now. */
  static const uint32_t ChannelCount = 2;
  /* The size of this buffer comes from the fact that some audio backends can
   * call back with a number of frames lower than one block (128 frames), so we
   * need to keep at most two block in the SpillBuffer, because we always round
   * up to block boundaries during an iteration. */
  SpillBuffer<AudioDataValue, WEBAUDIO_BLOCK_SIZE * 2, ChannelCount> mScratchBuffer;
  /* Wrapper to ensure we write exactly the number of frames we need in the
   * audio buffer cubeb passes us. */
  AudioCallbackBufferWrapper<AudioDataValue, ChannelCount> mBuffer;
  /* cubeb stream for this graph. This is guaranteed to be non-null after Init()
   * has been called. */
  nsAutoRef<cubeb_stream> mAudioStream;
  /* The sample rate for the aforementionned cubeb stream. */
  uint32_t mSampleRate;
  /* Approximation of the time between two callbacks. This is used to schedule
   * video frames. This is in milliseconds. */
  uint32_t mIterationDurationMS;
  /* cubeb_stream_init calls the audio callback to prefill the buffers. The
   * previous driver has to be kept alive until the audio stream has been
   * started, because it is responsible to call cubeb_stream_start, so we delay
   * the cleanup of the previous driver until it has started the audio stream.
   * Otherwise, there is a race where we kill the previous driver thread
   * between cubeb_stream_init and cubeb_stream_start,
   * and callbacks after the prefill never get called.
   * This is written on the previous driver's thread (if switching) or main
   * thread (if this driver is the first one).
   * This is read on previous driver's thread (during callbacks from
   * cubeb_stream_init) and the audio thread (when switching away from this
   * driver back to a SystemClockDriver).
   * This is synchronized by the Graph's monitor.
   * */
  bool mStarted;

  struct AutoInCallback
  {
    explicit AutoInCallback(AudioCallbackDriver* aDriver);
    ~AutoInCallback();
    AudioCallbackDriver* mDriver;
  };

  /* Thread for off-main-thread initialization and
   * shutdown of the audio stream. */
  nsCOMPtr<nsIThread> mInitShutdownThread;
  nsAutoTArray<StreamAndPromiseForOperation, 1> mPromisesForOperation;
  dom::AudioChannel mAudioChannel;
  Atomic<bool> mInCallback;
  /* A thread has been created to be able to pause and restart the audio thread,
   * but has not done so yet. This indicates that the callback should return
   * early */
  bool mPauseRequested;
  /**
   * True if microphone is being used by this process. This is synchronized by
   * the graph's monitor. */
  bool mMicrophoneActive;

#ifdef XP_MACOSX
  /* Implements the workaround for the osx audio stack when changing output
   * devices. See comments in .cpp */
  bool OSXDeviceSwitchingWorkaround();
  /* Self-reference that keep this driver alive when switching output audio
   * device and making the graph running temporarily off a SystemClockDriver.  */
  SelfReference<AudioCallbackDriver> mSelfReference;
  /* While switching devices, we keep track of the number of callbacks received,
   * since OSX seems to still call us _sometimes_. */
  uint32_t mCallbackReceivedWhileSwitching;
#endif
};

class AsyncCubebTask : public nsRunnable
{
public:

  AsyncCubebTask(AudioCallbackDriver* aDriver, AsyncCubebOperation aOperation);

  nsresult Dispatch()
  {
    // Can't add 'this' as the event to run, since mThread may not be set yet
    nsresult rv = NS_NewNamedThread("CubebOperation", getter_AddRefs(mThread));
    if (NS_SUCCEEDED(rv)) {
      // Note: event must not null out mThread!
      rv = mThread->Dispatch(this, NS_DISPATCH_NORMAL);
    }
    return rv;
  }

protected:
  virtual ~AsyncCubebTask();

private:
  NS_IMETHOD Run() override final;
  nsCOMPtr<nsIThread> mThread;
  RefPtr<AudioCallbackDriver> mDriver;
  AsyncCubebOperation mOperation;
  RefPtr<MediaStreamGraphImpl> mShutdownGrip;
};

} // namespace mozilla

#endif // GRAPHDRIVER_H_