DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
/* -*- Mode: C; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "nsBidi.h"
#include "nsUnicodeProperties.h"
#include "nsCRTGlue.h"

using namespace mozilla::unicode;

// These are #defined in <sys/regset.h> under Solaris 10 x86
#undef CS
#undef ES

/*  Comparing the description of the Bidi algorithm with this implementation
    is easier with the same names for the Bidi types in the code as there.
*/
enum {
    L =   eCharType_LeftToRight,
    R =   eCharType_RightToLeft,
    EN =  eCharType_EuropeanNumber,
    ES =  eCharType_EuropeanNumberSeparator,
    ET =  eCharType_EuropeanNumberTerminator,
    AN =  eCharType_ArabicNumber,
    CS =  eCharType_CommonNumberSeparator,
    B =   eCharType_BlockSeparator,
    S =   eCharType_SegmentSeparator,
    WS =  eCharType_WhiteSpaceNeutral,
    O_N = eCharType_OtherNeutral,
    LRE = eCharType_LeftToRightEmbedding,
    LRO = eCharType_LeftToRightOverride,
    AL =  eCharType_RightToLeftArabic,
    RLE = eCharType_RightToLeftEmbedding,
    RLO = eCharType_RightToLeftOverride,
    PDF = eCharType_PopDirectionalFormat,
    NSM = eCharType_DirNonSpacingMark,
    BN =  eCharType_BoundaryNeutral,
    LRI = eCharType_LeftToRightIsolate,
    RLI = eCharType_RightToLeftIsolate,
    FSI = eCharType_FirstStrongIsolate,
    PDI = eCharType_PopDirectionalIsolate,
    dirPropCount
};

/* to avoid some conditional statements, use tiny constant arrays */
static Flags flagLR[2]={ DIRPROP_FLAG(L), DIRPROP_FLAG(R) };
static Flags flagE[2]={ DIRPROP_FLAG(LRE), DIRPROP_FLAG(RLE) };
static Flags flagO[2]={ DIRPROP_FLAG(LRO), DIRPROP_FLAG(RLO) };

#define DIRPROP_FLAG_LR(level) flagLR[(level)&1]
#define DIRPROP_FLAG_E(level) flagE[(level)&1]
#define DIRPROP_FLAG_O(level) flagO[(level)&1]

/*
 * General implementation notes:
 *
 * Throughout the implementation, there are comments like (W2) that refer to
 * rules of the Bidi algorithm in its version 5, in this example to the second
 * rule of the resolution of weak types.
 *
 * For handling surrogate pairs, where two UChar's form one "abstract" (or UTF-32)
 * character according to UTF-16, the second UChar gets the directional property of
 * the entire character assigned, while the first one gets a BN, a boundary
 * neutral, type, which is ignored by most of the algorithm according to
 * rule (X9) and the implementation suggestions of the Bidi algorithm.
 *
 * Later, AdjustWSLevels() will set the level for each BN to that of the
 * following character (UChar), which results in surrogate pairs getting the
 * same level on each of their surrogates.
 *
 * In a UTF-8 implementation, the same thing could be done: the last byte of
 * a multi-byte sequence would get the "real" property, while all previous
 * bytes of that sequence would get BN.
 *
 * It is not possible to assign all those parts of a character the same real
 * property because this would fail in the resolution of weak types with rules
 * that look at immediately surrounding types.
 *
 * As a related topic, this implementation does not remove Boundary Neutral
 * types from the input, but ignores them whenever this is relevant.
 * For example, the loop for the resolution of the weak types reads
 * types until it finds a non-BN.
 * Also, explicit embedding codes are neither changed into BN nor removed.
 * They are only treated the same way real BNs are.
 * As stated before, AdjustWSLevels() takes care of them at the end.
 * For the purpose of conformance, the levels of all these codes
 * do not matter.
 *
 * Note that this implementation never modifies the dirProps
 * after the initial setup, except for FSI which is changed to either
 * LRI or RLI in GetDirProps(), and paired brackets which may be changed
 * to L or R according to N0.
 *
 *
 * In this implementation, the resolution of weak types (Wn),
 * neutrals (Nn), and the assignment of the resolved level (In)
 * are all done in one single loop, in ResolveImplicitLevels().
 * Changes of dirProp values are done on the fly, without writing
 * them back to the dirProps array.
 *
 *
 * This implementation contains code that allows to bypass steps of the
 * algorithm that are not needed on the specific paragraph
 * in order to speed up the most common cases considerably,
 * like text that is entirely LTR, or RTL text without numbers.
 *
 * Most of this is done by setting a bit for each directional property
 * in a flags variable and later checking for whether there are
 * any LTR characters or any RTL characters, or both, whether
 * there are any explicit embedding codes, etc.
 *
 * If the (Xn) steps are performed, then the flags are re-evaluated,
 * because they will then not contain the embedding codes any more
 * and will be adjusted for override codes, so that subsequently
 * more bypassing may be possible than what the initial flags suggested.
 *
 * If the text is not mixed-directional, then the
 * algorithm steps for the weak type resolution are not performed,
 * and all levels are set to the paragraph level.
 *
 * If there are no explicit embedding codes, then the (Xn) steps
 * are not performed.
 *
 * If embedding levels are supplied as a parameter, then all
 * explicit embedding codes are ignored, and the (Xn) steps
 * are not performed.
 *
 * White Space types could get the level of the run they belong to,
 * and are checked with a test of (flags&MASK_EMBEDDING) to
 * consider if the paragraph direction should be considered in
 * the flags variable.
 *
 * If there are no White Space types in the paragraph, then
 * (L1) is not necessary in AdjustWSLevels().
 */
nsBidi::nsBidi()
{
  Init();

  mMayAllocateText=true;
  mMayAllocateRuns=true;
}

nsBidi::~nsBidi()
{
  Free();
}

void nsBidi::Init()
{
  /* reset the object, all pointers nullptr, all flags false, all sizes 0 */
  mLength = 0;
  mParaLevel = 0;
  mFlags = 0;
  mDirection = NSBIDI_LTR;
  mTrailingWSStart = 0;

  mDirPropsSize = 0;
  mLevelsSize = 0;
  mRunsSize = 0;
  mIsolatesSize = 0;

  mRunCount = -1;
  mIsolateCount = -1;

  mDirProps=nullptr;
  mLevels=nullptr;
  mRuns=nullptr;
  mIsolates=nullptr;

  mDirPropsMemory=nullptr;
  mLevelsMemory=nullptr;
  mRunsMemory=nullptr;
  mIsolatesMemory=nullptr;

  mMayAllocateText=false;
  mMayAllocateRuns=false;
}

/*
 * We are allowed to allocate memory if aMemory==nullptr or
 * aMayAllocate==true for each array that we need.
 * We also try to grow and shrink memory as needed if we
 * allocate it.
 *
 * Assume aSizeNeeded>0.
 * If *aMemory!=nullptr, then assume *aSize>0.
 *
 * ### this realloc() may unnecessarily copy the old data,
 * which we know we don't need any more;
 * is this the best way to do this??
 */
bool nsBidi::GetMemory(void **aMemory, size_t *aSize, bool aMayAllocate, size_t aSizeNeeded)
{
  /* check for existing memory */
  if(*aMemory==nullptr) {
    /* we need to allocate memory */
    if(!aMayAllocate) {
      return false;
    } else {
      *aMemory=moz_malloc(aSizeNeeded);
      if (*aMemory!=nullptr) {
        *aSize=aSizeNeeded;
        return true;
      } else {
        *aSize=0;
        return false;
      }
    }
  } else {
    /* there is some memory, is it enough or too much? */
    if(aSizeNeeded>*aSize && !aMayAllocate) {
      /* not enough memory, and we must not allocate */
      return false;
    } else if(aSizeNeeded!=*aSize && aMayAllocate) {
      /* we may try to grow or shrink */
      void *memory=moz_realloc(*aMemory, aSizeNeeded);

      if(memory!=nullptr) {
        *aMemory=memory;
        *aSize=aSizeNeeded;
        return true;
      } else {
        /* we failed to grow */
        return false;
      }
    } else {
      /* we have at least enough memory and must not allocate */
      return true;
    }
  }
}

void nsBidi::Free()
{
  moz_free(mDirPropsMemory);
  mDirPropsMemory = nullptr;
  moz_free(mLevelsMemory);
  mLevelsMemory = nullptr;
  moz_free(mRunsMemory);
  mRunsMemory = nullptr;
  free(mIsolatesMemory);
  mIsolatesMemory = nullptr;
}

/* SetPara ------------------------------------------------------------ */

nsresult nsBidi::SetPara(const char16_t *aText, int32_t aLength,
                         nsBidiLevel aParaLevel, nsBidiLevel *aEmbeddingLevels)
{
  nsBidiDirection direction;

  /* check the argument values */
  if(aText==nullptr ||
     ((NSBIDI_MAX_EXPLICIT_LEVEL<aParaLevel) && !IS_DEFAULT_LEVEL(aParaLevel)) ||
     aLength<-1
    ) {
    return NS_ERROR_INVALID_ARG;
  }

  if(aLength==-1) {
    aLength = NS_strlen(aText);
  }

  /* initialize member data */
  mLength = aLength;
  mParaLevel=aParaLevel;
  mDirection=aParaLevel & 1 ? NSBIDI_RTL : NSBIDI_LTR;
  mTrailingWSStart=aLength;  /* the levels[] will reflect the WS run */

  mDirProps=nullptr;
  mLevels=nullptr;
  mRuns=nullptr;

  if(aLength==0) {
    /*
     * For an empty paragraph, create an nsBidi object with the aParaLevel and
     * the flags and the direction set but without allocating zero-length arrays.
     * There is nothing more to do.
     */
    if(IS_DEFAULT_LEVEL(aParaLevel)) {
      mParaLevel&=1;
    }
    mFlags=DIRPROP_FLAG_LR(aParaLevel);
    mRunCount=0;
    return NS_OK;
  }

  mRunCount=-1;

  /*
   * Get the directional properties,
   * the flags bit-set, and
   * determine the partagraph level if necessary.
   */
  if(GETDIRPROPSMEMORY(aLength)) {
    mDirProps=mDirPropsMemory;
    GetDirProps(aText);
  } else {
    return NS_ERROR_OUT_OF_MEMORY;
  }

  /* are explicit levels specified? */
  if(aEmbeddingLevels==nullptr) {
    /* no: determine explicit levels according to the (Xn) rules */\
    if(GETLEVELSMEMORY(aLength)) {
      mLevels=mLevelsMemory;
      ResolveExplicitLevels(&direction);
    } else {
      return NS_ERROR_OUT_OF_MEMORY;
    }
  } else {
    /* set BN for all explicit codes, check that all levels are aParaLevel..NSBIDI_MAX_EXPLICIT_LEVEL */
    mLevels=aEmbeddingLevels;
    nsresult rv = CheckExplicitLevels(&direction);
    if(NS_FAILED(rv)) {
      return rv;
    }
  }

  /* allocate isolate memory */
  if (mIsolateCount <= SIMPLE_ISOLATES_SIZE) {
    mIsolates = mSimpleIsolates;
  } else {
    if (mIsolateCount * sizeof(Isolate) <= mIsolatesSize) {
      mIsolates = mIsolatesMemory;
    } else {
      if (GETINITIALISOLATESMEMORY(mIsolateCount)) {
        mIsolates = mIsolatesMemory;
      } else {
        return NS_ERROR_OUT_OF_MEMORY;
      }
    }
  }
  mIsolateCount = -1;  /* current isolates stack entry == none */

  /*
   * The steps after (X9) in the Bidi algorithm are performed only if
   * the paragraph text has mixed directionality!
   */
  mDirection = direction;
  switch(direction) {
    case NSBIDI_LTR:
      /* make sure paraLevel is even */
      mParaLevel=(mParaLevel+1)&~1;

      /* all levels are implicitly at paraLevel (important for GetLevels()) */
      mTrailingWSStart=0;
      break;
    case NSBIDI_RTL:
      /* make sure paraLevel is odd */
      mParaLevel|=1;

      /* all levels are implicitly at paraLevel (important for GetLevels()) */
      mTrailingWSStart=0;
      break;
    default:
      /*
       * If there are no external levels specified and there
       * are no significant explicit level codes in the text,
       * then we can treat the entire paragraph as one run.
       * Otherwise, we need to perform the following rules on runs of
       * the text with the same embedding levels. (X10)
       * "Significant" explicit level codes are ones that actually
       * affect non-BN characters.
       * Examples for "insignificant" ones are empty embeddings
       * LRE-PDF, LRE-RLE-PDF-PDF, etc.
       */
      if(aEmbeddingLevels==nullptr && !(mFlags&DIRPROP_FLAG_MULTI_RUNS)) {
        ResolveImplicitLevels(0, aLength,
                    GET_LR_FROM_LEVEL(mParaLevel),
                    GET_LR_FROM_LEVEL(mParaLevel));
      } else {
        /* sor, eor: start and end types of same-level-run */
        nsBidiLevel *levels=mLevels;
        int32_t start, limit=0;
        nsBidiLevel level, nextLevel;
        DirProp sor, eor;

        /* determine the first sor and set eor to it because of the loop body (sor=eor there) */
        level=mParaLevel;
        nextLevel=levels[0];
        if(level<nextLevel) {
          eor=GET_LR_FROM_LEVEL(nextLevel);
        } else {
          eor=GET_LR_FROM_LEVEL(level);
        }

        do {
          /* determine start and limit of the run (end points just behind the run) */

          /* the values for this run's start are the same as for the previous run's end */
          sor=eor;
          start=limit;
          level=nextLevel;

          /* search for the limit of this run */
          while(++limit<aLength && levels[limit]==level) {}

          /* get the correct level of the next run */
          if(limit<aLength) {
            nextLevel=levels[limit];
          } else {
            nextLevel=mParaLevel;
          }

          /* determine eor from max(level, nextLevel); sor is last run's eor */
          if((level&~NSBIDI_LEVEL_OVERRIDE)<(nextLevel&~NSBIDI_LEVEL_OVERRIDE)) {
            eor=GET_LR_FROM_LEVEL(nextLevel);
          } else {
            eor=GET_LR_FROM_LEVEL(level);
          }

          /* if the run consists of overridden directional types, then there
          are no implicit types to be resolved */
          if(!(level&NSBIDI_LEVEL_OVERRIDE)) {
            ResolveImplicitLevels(start, limit, sor, eor);
          } else {
            do {
              levels[start++] &= ~NSBIDI_LEVEL_OVERRIDE;
            } while (start < limit);
          }
        } while(limit<aLength);
      }

      /* reset the embedding levels for some non-graphic characters (L1), (X9) */
      AdjustWSLevels();
      break;
  }

  return NS_OK;
}

/* perform (P2)..(P3) ------------------------------------------------------- */

/*
 * Get the directional properties for the text,
 * calculate the flags bit-set, and
 * determine the partagraph level if necessary.
 */
void nsBidi::GetDirProps(const char16_t *aText)
{
  DirProp *dirProps=mDirPropsMemory;    /* mDirProps is const */

  int32_t i=0, length=mLength;
  Flags flags=0;      /* collect all directionalities in the text */
  char16_t uchar;
  DirProp dirProp;

  bool isDefaultLevel = IS_DEFAULT_LEVEL(mParaLevel);

  enum State {
    NOT_SEEKING_STRONG,       /* 0: not after FSI */
    SEEKING_STRONG_FOR_PARA,  /* 1: looking for first strong char in para */
    SEEKING_STRONG_FOR_FSI,   /* 2: looking for first strong after FSI */
    LOOKING_FOR_PDI           /* 3: found strong after FSI, looking for PDI */
  };
  State state;

  /* The following stacks are used to manage isolate sequences. Those
     sequences may be nested, but obviously never more deeply than the
     maximum explicit embedding level.
     lastStack is the index of the last used entry in the stack. A value of -1
     means that there is no open isolate sequence. */
  /* The following stack contains the position of the initiator of
     each open isolate sequence */
  int32_t isolateStartStack[NSBIDI_MAX_EXPLICIT_LEVEL + 1];
  /* The following stack contains the last known state before
     encountering the initiator of an isolate sequence */
  State previousStateStack[NSBIDI_MAX_EXPLICIT_LEVEL + 1];
  int32_t stackLast = -1;

  if(isDefaultLevel) {
    /*
     * see comment in nsBidi.h:
     * the DEFAULT_XXX values are designed so that
     * their bit 0 alone yields the intended default
     */
    mParaLevel &= 1;
    state = SEEKING_STRONG_FOR_PARA;
  } else {
    state = NOT_SEEKING_STRONG;
  }

  /* determine the paragraph level (P2..P3) */
  for(/* i = 0 above */; i < length;) {
    uchar=aText[i];
    if(!IS_FIRST_SURROGATE(uchar) || i+1==length || !IS_SECOND_SURROGATE(aText[i+1])) {
      /* not a surrogate pair */
      flags|=DIRPROP_FLAG(dirProps[i]=dirProp=GetBidiCat((uint32_t)uchar));
    } else {
      /* a surrogate pair */
      dirProps[i++]=BN;   /* first surrogate in the pair gets the BN type */
      flags|=DIRPROP_FLAG(dirProps[i]=dirProp=GetBidiCat(GET_UTF_32(uchar, aText[i])))|DIRPROP_FLAG(BN);
    }
    ++i;

    switch (dirProp) {
    case L:
      if (state == SEEKING_STRONG_FOR_PARA) {
        mParaLevel = 0;
        state = NOT_SEEKING_STRONG;
      } else if  (state == SEEKING_STRONG_FOR_FSI) {
        if (stackLast <= NSBIDI_MAX_EXPLICIT_LEVEL) {
          dirProps[isolateStartStack[stackLast]] = LRI;
          flags |= LRI;
        }
        state = LOOKING_FOR_PDI;
      }
      break;

    case R: case AL:
      if (state == SEEKING_STRONG_FOR_PARA) {
        mParaLevel = 1;
        state = NOT_SEEKING_STRONG;
      } else if  (state == SEEKING_STRONG_FOR_FSI) {
        if (stackLast <= NSBIDI_MAX_EXPLICIT_LEVEL) {
          dirProps[isolateStartStack[stackLast]] = RLI;
          flags |= RLI;
        }
        state = LOOKING_FOR_PDI;
      }
      break;

    case FSI: case LRI: case RLI:
      stackLast++;
      if (stackLast <= NSBIDI_MAX_EXPLICIT_LEVEL) {
        isolateStartStack[stackLast] = i - 1;
        previousStateStack[stackLast] = state;
      }
      if (dirProp == FSI) {
        state = SEEKING_STRONG_FOR_FSI;
      } else {
        state = LOOKING_FOR_PDI;
      }
      break;

    case PDI:
      if (state == SEEKING_STRONG_FOR_FSI) {
        if (stackLast <= NSBIDI_MAX_EXPLICIT_LEVEL) {
          dirProps[isolateStartStack[stackLast]] = LRI;
          flags |= DIRPROP_FLAG(LRI);
        }
      }
      if (stackLast >= 0) {
        if (stackLast <= NSBIDI_MAX_EXPLICIT_LEVEL) {
          state = previousStateStack[stackLast];
        }
        stackLast--;
      }
      break;

    case B:
      // This shouldn't happen, since we don't support multiple paragraphs.
      NS_NOTREACHED("Unexpected paragraph separator");
      break;

    default:
      break;
    }
  }

  /* Ignore still open isolate sequences with overflow */
  if (stackLast > NSBIDI_MAX_EXPLICIT_LEVEL) {
    stackLast = NSBIDI_MAX_EXPLICIT_LEVEL;
    if (dirProps[previousStateStack[NSBIDI_MAX_EXPLICIT_LEVEL]] != FSI) {
      state = LOOKING_FOR_PDI;
    }
  }

  /* Resolve direction of still unresolved open FSI sequences */
  while (stackLast >= 0) {
    if (state == SEEKING_STRONG_FOR_FSI) {
      dirProps[isolateStartStack[stackLast]] = LRI;
      flags |= DIRPROP_FLAG(LRI);
    }
    state = previousStateStack[stackLast];
    stackLast--;
  }

  flags|=DIRPROP_FLAG_LR(mParaLevel);

  mFlags = flags;
}

/* perform (X1)..(X9) ------------------------------------------------------- */

/*
 * Resolve the explicit levels as specified by explicit embedding codes.
 * Recalculate the flags to have them reflect the real properties
 * after taking the explicit embeddings into account.
 *
 * The Bidi algorithm is designed to result in the same behavior whether embedding
 * levels are externally specified (from "styled text", supposedly the preferred
 * method) or set by explicit embedding codes (LRx, RLx, PDF, FSI, PDI) in the plain text.
 * That is why (X9) instructs to remove all not-isolate explicit codes (and BN).
 * However, in a real implementation, this removal of these codes and their index
 * positions in the plain text is undesirable since it would result in
 * reallocated, reindexed text.
 * Instead, this implementation leaves the codes in there and just ignores them
 * in the subsequent processing.
 * In order to get the same reordering behavior, positions with a BN or a not-isolate
 * explicit embedding code just get the same level assigned as the last "real"
 * character.
 *
 * Some implementations, not this one, then overwrite some of these
 * directionality properties at "real" same-level-run boundaries by
 * L or R codes so that the resolution of weak types can be performed on the
 * entire paragraph at once instead of having to parse it once more and
 * perform that resolution on same-level-runs.
 * This limits the scope of the implicit rules in effectively
 * the same way as the run limits.
 *
 * Instead, this implementation does not modify these codes.
 * On one hand, the paragraph has to be scanned for same-level-runs, but
 * on the other hand, this saves another loop to reset these codes,
 * or saves making and modifying a copy of dirProps[].
 *
 *
 * Note that (Pn) and (Xn) changed significantly from version 4 of the Bidi algorithm.
 *
 *
 * Handling the stack of explicit levels (Xn):
 *
 * With the Bidi stack of explicit levels, as pushed with each
 * LRE, RLE, LRO, and RLO, LRI, RLI, and FSI and popped with each PDF and PDI,
 * the explicit level must never exceed NSBIDI_MAX_EXPLICIT_LEVEL.
 *
 * In order to have a correct push-pop semantics even in the case of overflows,
 * overflow counters and a valid isolate counter are used as described in UAX#9
 * section 3.3.2 "Explicit Levels and Direction".
 *
 * This implementation assumes that NSBIDI_MAX_EXPLICIT_LEVEL is odd.
 */

void nsBidi::ResolveExplicitLevels(nsBidiDirection *aDirection)
{
  DirProp *dirProps=mDirProps;
  nsBidiLevel *levels=mLevels;

  int32_t i=0, length=mLength;
  Flags flags=mFlags;       /* collect all directionalities in the text */
  DirProp dirProp;
  nsBidiLevel level=mParaLevel;
  nsBidiDirection direction;

  mIsolateCount = 0;

  /* determine if the text is mixed-directional or single-directional */
  direction=DirectionFromFlags(flags);

  /* we may not need to resolve any explicit levels */
  if(direction!=NSBIDI_MIXED) {
    /* not mixed directionality: levels don't matter - trailingWSStart will be 0 */
  } else if(!(flags&(MASK_EXPLICIT|MASK_ISO))) {
    /* no embeddings, set all levels to the paragraph level */
    for(i=0; i<length; ++i) {
      levels[i]=level;
    }
  } else {
    /* continue to perform (Xn) */

    /* (X1) level is set for all codes, embeddingLevel keeps track of the push/pop operations */
    /* both variables may carry the NSBIDI_LEVEL_OVERRIDE flag to indicate the override status */
    nsBidiLevel embeddingLevel = level, newLevel;
    nsBidiLevel previousLevel = level;     /* previous level for regular (not CC) characters */

    uint16_t stack[NSBIDI_MAX_EXPLICIT_LEVEL + 2];   /* we never push anything >=NSBIDI_MAX_EXPLICIT_LEVEL
                                                        but we need one more entry as base */
    int32_t stackLast = 0;
    int32_t overflowIsolateCount = 0;
    int32_t overflowEmbeddingCount = 0;
    int32_t validIsolateCount = 0;

    stack[0] = level;

    /* recalculate the flags */
    flags=0;

    /* since we assume that this is a single paragraph, we ignore (X8) */
    for(i=0; i<length; ++i) {
      dirProp=dirProps[i];
      switch(dirProp) {
        case LRE:
        case RLE:
        case LRO:
        case RLO:
          /* (X2, X3, X4, X5) */
          flags |= DIRPROP_FLAG(BN);
          if (dirProp == LRE || dirProp == LRO) {
            newLevel = (embeddingLevel + 2) & ~(NSBIDI_LEVEL_OVERRIDE | 1);    /* least greater even level */
          } else {
            newLevel = ((embeddingLevel & ~NSBIDI_LEVEL_OVERRIDE) + 1) | 1;    /* least greater odd level */
          }
          if(newLevel <= NSBIDI_MAX_EXPLICIT_LEVEL && overflowIsolateCount == 0 && overflowEmbeddingCount == 0) {
            embeddingLevel = newLevel;
            if (dirProp == LRO || dirProp == RLO) {
              embeddingLevel |= NSBIDI_LEVEL_OVERRIDE;
            }
            stackLast++;
            stack[stackLast] = embeddingLevel;
            /* we don't need to set UBIDI_LEVEL_OVERRIDE off for LRE and RLE
               since this has already been done for newLevel which is
               the source for embeddingLevel.
             */
          } else {
            dirProps[i] |= IGNORE_CC;
            if (overflowIsolateCount == 0) {
              overflowEmbeddingCount++;
            }
          }
          break;

        case PDF:
          /* (X7) */
          flags |= DIRPROP_FLAG(BN);
          /* handle all the overflow cases first */
          if (overflowIsolateCount) {
            dirProps[i] |= IGNORE_CC;
            break;
          }
          if (overflowEmbeddingCount) {
            dirProps[i] |= IGNORE_CC;
            overflowEmbeddingCount--;
            break;
          }
          if (stackLast > 0 && stack[stackLast] < ISOLATE) {   /* not an isolate entry */
            stackLast--;
            embeddingLevel = stack[stackLast];
          } else {
            dirProps[i] |= IGNORE_CC;
          }
          break;

        case LRI:
        case RLI:
          if (embeddingLevel != previousLevel) {
            previousLevel = embeddingLevel;
          }
          /* (X5a, X5b) */
          flags |= DIRPROP_FLAG(O_N) | DIRPROP_FLAG(BN) | DIRPROP_FLAG_LR(embeddingLevel);
          level = embeddingLevel;
          if (dirProp == LRI) {
            newLevel = (embeddingLevel + 2) & ~(NSBIDI_LEVEL_OVERRIDE | 1); /* least greater even level */
          } else {
            newLevel = ((embeddingLevel & ~NSBIDI_LEVEL_OVERRIDE) + 1) | 1;  /* least greater odd level */
          }
          if (newLevel <= NSBIDI_MAX_EXPLICIT_LEVEL && overflowIsolateCount == 0 && overflowEmbeddingCount == 0) {
            previousLevel = embeddingLevel;
            validIsolateCount++;
            if (validIsolateCount > mIsolateCount) {
              mIsolateCount = validIsolateCount;
            }
            embeddingLevel = newLevel;
            stackLast++;
            stack[stackLast] = embeddingLevel + ISOLATE;
          } else {
            dirProps[i] |= IGNORE_CC;
            overflowIsolateCount++;
          }
          break;

        case PDI:
          /* (X6a) */
          if (overflowIsolateCount) {
            dirProps[i] |= IGNORE_CC;
            overflowIsolateCount--;
          } else if (validIsolateCount) {
            overflowEmbeddingCount = 0;
            while (stack[stackLast] < ISOLATE) {
              /* pop embedding entries        */
              /* until the last isolate entry */
              stackLast--;

              // Since validIsolateCount is true, there must be an isolate entry
              // on the stack, so the stack is guaranteed to not be empty.
              // Still, to eliminate a warning from coverity, we use an assertion.
              MOZ_ASSERT(stackLast > 0);
            }
            stackLast--;  /* pop also the last isolate entry */
            MOZ_ASSERT(stackLast >= 0);  // For coverity
            validIsolateCount--;
          } else {
            dirProps[i] |= IGNORE_CC;
          }
          embeddingLevel = stack[stackLast] & ~ISOLATE;
          previousLevel = level = embeddingLevel;
          flags |= DIRPROP_FLAG(O_N) | DIRPROP_FLAG(BN) | DIRPROP_FLAG_LR(embeddingLevel);
          break;

        case B:
          /*
           * We do not expect to see a paragraph separator (B),
           */
          NS_NOTREACHED("Unexpected paragraph separator");
          break;

        case BN:
          /* BN, LRE, RLE, and PDF are supposed to be removed (X9) */
          /* they will get their levels set correctly in AdjustWSLevels() */
          flags|=DIRPROP_FLAG(BN);
          break;

        default:
          /* all other types get the "real" level */
          level = embeddingLevel;
          if(embeddingLevel != previousLevel) {
            previousLevel = embeddingLevel;
          }

          if (level & NSBIDI_LEVEL_OVERRIDE) {
            flags |= DIRPROP_FLAG_LR(level);
          } else {
            flags |= DIRPROP_FLAG(dirProp);
          }
          break;
      }

      /*
       * We need to set reasonable levels even on BN codes and
       * explicit codes because we will later look at same-level runs (X10).
       */
      levels[i]=level;
      if (i > 0 && levels[i - 1] != level) {
        flags |= DIRPROP_FLAG_MULTI_RUNS;
        if (level & NSBIDI_LEVEL_OVERRIDE) {
          flags |= DIRPROP_FLAG_O(level);
        } else {
          flags |= DIRPROP_FLAG_E(level);
        }
      }
      if (DIRPROP_FLAG(dirProp) & MASK_ISO) {
        level = embeddingLevel;
      }
    }

    if(flags&MASK_EMBEDDING) {
      flags|=DIRPROP_FLAG_LR(mParaLevel);
    }

    /* subsequently, ignore the explicit codes and BN (X9) */

    /* again, determine if the text is mixed-directional or single-directional */
    mFlags=flags;
    direction=DirectionFromFlags(flags);
  }

  *aDirection = direction;
}

/*
 * Use a pre-specified embedding levels array:
 *
 * Adjust the directional properties for overrides (->LEVEL_OVERRIDE),
 * ignore all explicit codes (X9),
 * and check all the preset levels.
 *
 * Recalculate the flags to have them reflect the real properties
 * after taking the explicit embeddings into account.
 */
nsresult nsBidi::CheckExplicitLevels(nsBidiDirection *aDirection)
{
  const DirProp *dirProps=mDirProps;
  DirProp dirProp;
  nsBidiLevel *levels=mLevels;
  int32_t isolateCount = 0;

  int32_t i, length=mLength;
  Flags flags=0;  /* collect all directionalities in the text */
  nsBidiLevel level, paraLevel=mParaLevel;
  mIsolateCount = 0;

  for(i=0; i<length; ++i) {
    level=levels[i];
    dirProp = dirProps[i];
    if (dirProp == LRI || dirProp == RLI) {
      isolateCount++;
      if (isolateCount > mIsolateCount) {
        mIsolateCount = isolateCount;
      }
    } else if (dirProp == PDI) {
      isolateCount--;
    }
    if(level&NSBIDI_LEVEL_OVERRIDE) {
      /* keep the override flag in levels[i] but adjust the flags */
      level&=~NSBIDI_LEVEL_OVERRIDE;     /* make the range check below simpler */
      flags|=DIRPROP_FLAG_O(level);
    } else {
      /* set the flags */
      flags|=DIRPROP_FLAG_E(level)|DIRPROP_FLAG(dirProp);
    }
    if(level<paraLevel || NSBIDI_MAX_EXPLICIT_LEVEL<level) {
      /* level out of bounds */
      *aDirection = NSBIDI_LTR;
      return NS_ERROR_INVALID_ARG;
    }
  }
  if(flags&MASK_EMBEDDING) {
    flags|=DIRPROP_FLAG_LR(mParaLevel);
  }

  /* determine if the text is mixed-directional or single-directional */
  mFlags=flags;
  *aDirection = DirectionFromFlags(flags);
  return NS_OK;
}

/* determine if the text is mixed-directional or single-directional */
nsBidiDirection nsBidi::DirectionFromFlags(Flags aFlags)
{
  /* if the text contains AN and neutrals, then some neutrals may become RTL */
  if(!(aFlags&MASK_RTL || (aFlags&DIRPROP_FLAG(AN) && aFlags&MASK_POSSIBLE_N))) {
    return NSBIDI_LTR;
  } else if(!(aFlags&MASK_LTR)) {
    return NSBIDI_RTL;
  } else {
    return NSBIDI_MIXED;
  }
}

/******************************************************************
 The Properties state machine table
*******************************************************************

 All table cells are 8 bits:
      bits 0..4:  next state
      bits 5..7:  action to perform (if > 0)

 Cells may be of format "n" where n represents the next state
 (except for the rightmost column).
 Cells may also be of format "s(x,y)" where x represents an action
 to perform and y represents the next state.

*******************************************************************
 Definitions and type for properties state table
*******************************************************************
*/
#define IMPTABPROPS_COLUMNS 16
#define IMPTABPROPS_RES (IMPTABPROPS_COLUMNS - 1)
#define GET_STATEPROPS(cell) ((cell)&0x1f)
#define GET_ACTIONPROPS(cell) ((cell)>>5)
#undef s
#define s(action, newState) ((uint8_t)(newState+(action<<5)))

static const uint8_t groupProp[] =          /* dirProp regrouped */
{
/*  L   R   EN  ES  ET  AN  CS  B   S   WS  ON  LRE LRO AL  RLE RLO PDF NSM BN  FSI LRI RLI PDI ENL ENR */
    0,  1,  2,  7,  8,  3,  9,  6,  5,  4,  4,  10, 10, 12, 10, 10, 10, 11, 10, 4,  4,  4,  4,  13, 14
};

/******************************************************************

      PROPERTIES  STATE  TABLE

 In table impTabProps,
      - the ON column regroups ON and WS, FSI, RLI, LRI and PDI
      - the BN column regroups BN, LRE, RLE, LRO, RLO, PDF
      - the Res column is the reduced property assigned to a run

 Action 1: process current run1, init new run1
        2: init new run2
        3: process run1, process run2, init new run1
        4: process run1, set run1=run2, init new run2

 Notes:
  1) This table is used in ResolveImplicitLevels().
  2) This table triggers actions when there is a change in the Bidi
     property of incoming characters (action 1).
  3) Most such property sequences are processed immediately (in
     fact, passed to ProcessPropertySeq().
  4) However, numbers are assembled as one sequence. This means
     that undefined situations (like CS following digits, until
     it is known if the next char will be a digit) are held until
     following chars define them.
     Example: digits followed by CS, then comes another CS or ON;
              the digits will be processed, then the CS assigned
              as the start of an ON sequence (action 3).
  5) There are cases where more than one sequence must be
     processed, for instance digits followed by CS followed by L:
     the digits must be processed as one sequence, and the CS
     must be processed as an ON sequence, all this before starting
     assembling chars for the opening L sequence.


*/
static const uint8_t impTabProps[][IMPTABPROPS_COLUMNS] =
{
/*                        L ,     R ,    EN ,    AN ,    ON ,     S ,     B ,    ES ,    ET ,    CS ,    BN ,   NSM ,    AL ,   ENL ,   ENR , Res */
/* 0 Init        */ {     1 ,     2 ,     4 ,     5 ,     7 ,    15 ,    17 ,     7 ,     9 ,     7 ,     0 ,     7 ,     3 ,    18 ,    21 , DirProp_ON },
/* 1 L           */ {     1 , s(1,2), s(1,4), s(1,5), s(1,7),s(1,15),s(1,17), s(1,7), s(1,9), s(1,7),     1 ,     1 , s(1,3),s(1,18),s(1,21),  DirProp_L },
/* 2 R           */ { s(1,1),     2 , s(1,4), s(1,5), s(1,7),s(1,15),s(1,17), s(1,7), s(1,9), s(1,7),     2 ,     2 , s(1,3),s(1,18),s(1,21),  DirProp_R },
/* 3 AL          */ { s(1,1), s(1,2), s(1,6), s(1,6), s(1,8),s(1,16),s(1,17), s(1,8), s(1,8), s(1,8),     3 ,     3 ,     3 ,s(1,18),s(1,21),  DirProp_R },
/* 4 EN          */ { s(1,1), s(1,2),     4 , s(1,5), s(1,7),s(1,15),s(1,17),s(2,10),    11 ,s(2,10),     4 ,     4 , s(1,3),    18 ,    21 , DirProp_EN },
/* 5 AN          */ { s(1,1), s(1,2), s(1,4),     5 , s(1,7),s(1,15),s(1,17), s(1,7), s(1,9),s(2,12),     5 ,     5 , s(1,3),s(1,18),s(1,21), DirProp_AN },
/* 6 AL:EN/AN    */ { s(1,1), s(1,2),     6 ,     6 , s(1,8),s(1,16),s(1,17), s(1,8), s(1,8),s(2,13),     6 ,     6 , s(1,3),    18 ,    21 , DirProp_AN },
/* 7 ON          */ { s(1,1), s(1,2), s(1,4), s(1,5),     7 ,s(1,15),s(1,17),     7 ,s(2,14),     7 ,     7 ,     7 , s(1,3),s(1,18),s(1,21), DirProp_ON },
/* 8 AL:ON       */ { s(1,1), s(1,2), s(1,6), s(1,6),     8 ,s(1,16),s(1,17),     8 ,     8 ,     8 ,     8 ,     8 , s(1,3),s(1,18),s(1,21), DirProp_ON },
/* 9 ET          */ { s(1,1), s(1,2),     4 , s(1,5),     7 ,s(1,15),s(1,17),     7 ,     9 ,     7 ,     9 ,     9 , s(1,3),    18 ,    21 , DirProp_ON },
/*10 EN+ES/CS    */ { s(3,1), s(3,2),     4 , s(3,5), s(4,7),s(3,15),s(3,17), s(4,7),s(4,14), s(4,7),    10 , s(4,7), s(3,3),    18 ,    21 , DirProp_EN },
/*11 EN+ET       */ { s(1,1), s(1,2),     4 , s(1,5), s(1,7),s(1,15),s(1,17), s(1,7),    11 , s(1,7),    11 ,    11 , s(1,3),    18 ,    21 , DirProp_EN },
/*12 AN+CS       */ { s(3,1), s(3,2), s(3,4),     5 , s(4,7),s(3,15),s(3,17), s(4,7),s(4,14), s(4,7),    12 , s(4,7), s(3,3),s(3,18),s(3,21), DirProp_AN },
/*13 AL:EN/AN+CS */ { s(3,1), s(3,2),     6 ,     6 , s(4,8),s(3,16),s(3,17), s(4,8), s(4,8), s(4,8),    13 , s(4,8), s(3,3),    18 ,    21 , DirProp_AN },
/*14 ON+ET       */ { s(1,1), s(1,2), s(4,4), s(1,5),     7 ,s(1,15),s(1,17),     7 ,    14 ,     7 ,    14 ,    14 , s(1,3),s(4,18),s(4,21), DirProp_ON },
/*15 S           */ { s(1,1), s(1,2), s(1,4), s(1,5), s(1,7),    15 ,s(1,17), s(1,7), s(1,9), s(1,7),    15 , s(1,7), s(1,3),s(1,18),s(1,21),  DirProp_S },
/*16 AL:S        */ { s(1,1), s(1,2), s(1,6), s(1,6), s(1,8),    16 ,s(1,17), s(1,8), s(1,8), s(1,8),    16 , s(1,8), s(1,3),s(1,18),s(1,21),  DirProp_S },
/*17 B           */ { s(1,1), s(1,2), s(1,4), s(1,5), s(1,7),s(1,15),    17 , s(1,7), s(1,9), s(1,7),    17 , s(1,7), s(1,3),s(1,18),s(1,21),  DirProp_B },
/*18 ENL         */ { s(1,1), s(1,2),    18 , s(1,5), s(1,7),s(1,15),s(1,17),s(2,19),    20 ,s(2,19),    18 ,    18 , s(1,3),    18 ,    21 ,  DirProp_L },
/*19 ENL+ES/CS   */ { s(3,1), s(3,2),    18 , s(3,5), s(4,7),s(3,15),s(3,17), s(4,7),s(4,14), s(4,7),    19 , s(4,7), s(3,3),    18 ,    21 ,  DirProp_L },
/*20 ENL+ET      */ { s(1,1), s(1,2),    18 , s(1,5), s(1,7),s(1,15),s(1,17), s(1,7),    20 , s(1,7),    20 ,    20 , s(1,3),    18 ,    21 ,  DirProp_L },
/*21 ENR         */ { s(1,1), s(1,2),    21 , s(1,5), s(1,7),s(1,15),s(1,17),s(2,22),    23 ,s(2,22),    21 ,    21 , s(1,3),    18 ,    21 , DirProp_AN },
/*22 ENR+ES/CS   */ { s(3,1), s(3,2),    21 , s(3,5), s(4,7),s(3,15),s(3,17), s(4,7),s(4,14), s(4,7),    22 , s(4,7), s(3,3),    18 ,    21 , DirProp_AN },
/*23 ENR+ET      */ { s(1,1), s(1,2),    21 , s(1,5), s(1,7),s(1,15),s(1,17), s(1,7),    23 , s(1,7),    23 ,    23 , s(1,3),    18 ,    21 , DirProp_AN }
};

/*  we must undef macro s because the levels table have a different
 *  structure (4 bits for action and 4 bits for next state.
 */
#undef s

/******************************************************************
 The levels state machine tables
*******************************************************************

 All table cells are 8 bits:
      bits 0..3:  next state
      bits 4..7:  action to perform (if > 0)

 Cells may be of format "n" where n represents the next state
 (except for the rightmost column).
 Cells may also be of format "s(x,y)" where x represents an action
 to perform and y represents the next state.

 This format limits each table to 16 states each and to 15 actions.

*******************************************************************
 Definitions and type for levels state tables
*******************************************************************
*/
#define IMPTABLEVELS_RES (IMPTABLEVELS_COLUMNS - 1)
#define GET_STATE(cell) ((cell)&0x0f)
#define GET_ACTION(cell) ((cell)>>4)
#define s(action, newState) ((uint8_t)(newState+(action<<4)))

/******************************************************************

      LEVELS  STATE  TABLES

 In all levels state tables,
      - state 0 is the initial state
      - the Res column is the increment to add to the text level
        for this property sequence.

 The impAct arrays for each table of a pair map the local action
 numbers of the table to the total list of actions. For instance,
 action 2 in a given table corresponds to the action number which
 appears in entry [2] of the impAct array for that table.
 The first entry of all impAct arrays must be 0.

 Action 1: init conditional sequence
        2: prepend conditional sequence to current sequence
        3: set ON sequence to new level - 1
        4: init EN/AN/ON sequence
        5: fix EN/AN/ON sequence followed by R
        6: set previous level sequence to level 2

 Notes:
  1) These tables are used in ProcessPropertySeq(). The input
     is property sequences as determined by ResolveImplicitLevels.
  2) Most such property sequences are processed immediately
     (levels are assigned).
  3) However, some sequences cannot be assigned a final level till
     one or more following sequences are received. For instance,
     ON following an R sequence within an even-level paragraph.
     If the following sequence is R, the ON sequence will be
     assigned basic run level+1, and so will the R sequence.
  4) S is generally handled like ON, since its level will be fixed
     to paragraph level in AdjustWSLevels().

*/

static const ImpTab impTabL =   /* Even paragraph level */
/*  In this table, conditional sequences receive the higher possible level
    until proven otherwise.
*/
{
/*                         L ,     R ,    EN ,    AN ,    ON ,     S ,     B , Res */
/* 0 : init       */ {     0 ,     1 ,     0 ,     2 ,     0 ,     0 ,     0 ,  0 },
/* 1 : R          */ {     0 ,     1 ,     3 ,     3 , s(1,4), s(1,4),     0 ,  1 },
/* 2 : AN         */ {     0 ,     1 ,     0 ,     2 , s(1,5), s(1,5),     0 ,  2 },
/* 3 : R+EN/AN    */ {     0 ,     1 ,     3 ,     3 , s(1,4), s(1,4),     0 ,  2 },
/* 4 : R+ON       */ { s(2,0),     1 ,     3 ,     3 ,     4 ,     4 , s(2,0),  1 },
/* 5 : AN+ON      */ { s(2,0),     1 , s(2,0),     2 ,     5 ,     5 , s(2,0),  1 }
};
static const ImpTab impTabR =   /* Odd  paragraph level */
/*  In this table, conditional sequences receive the lower possible level
    until proven otherwise.
*/
{
/*                         L ,     R ,    EN ,    AN ,    ON ,     S ,     B , Res */
/* 0 : init       */ {     1 ,     0 ,     2 ,     2 ,     0 ,     0 ,     0 ,  0 },
/* 1 : L          */ {     1 ,     0 ,     1 ,     3 , s(1,4), s(1,4),     0 ,  1 },
/* 2 : EN/AN      */ {     1 ,     0 ,     2 ,     2 ,     0 ,     0 ,     0 ,  1 },
/* 3 : L+AN       */ {     1 ,     0 ,     1 ,     3 ,     5 ,     5 ,     0 ,  1 },
/* 4 : L+ON       */ { s(2,1),     0 , s(2,1),     3 ,     4 ,     4 ,     0 ,  0 },
/* 5 : L+AN+ON    */ {     1 ,     0 ,     1 ,     3 ,     5 ,     5 ,     0 ,  0 }
};

#undef s

static ImpAct impAct0 = {0,1,2,3,4,5,6};
static PImpTab impTab[2] = {impTabL, impTabR};

/*------------------------------------------------------------------------*/

/* perform rules (Wn), (Nn), and (In) on a run of the text ------------------ */

/*
 * This implementation of the (Wn) rules applies all rules in one pass.
 * In order to do so, it needs a look-ahead of typically 1 character
 * (except for W5: sequences of ET) and keeps track of changes
 * in a rule Wp that affect a later Wq (p<q).
 *
 * The (Nn) and (In) rules are also performed in that same single loop,
 * but effectively one iteration behind for white space.
 *
 * Since all implicit rules are performed in one step, it is not necessary
 * to actually store the intermediate directional properties in dirProps[].
 */

void nsBidi::ProcessPropertySeq(LevState *pLevState, uint8_t _prop, int32_t start, int32_t limit)
{
  uint8_t cell, oldStateSeq, actionSeq;
  PImpTab pImpTab = pLevState->pImpTab;
  PImpAct pImpAct = pLevState->pImpAct;
  nsBidiLevel* levels = mLevels;
  nsBidiLevel level, addLevel;
  int32_t start0, k;

  start0 = start;                         /* save original start position */
  oldStateSeq = (uint8_t)pLevState->state;
  cell = pImpTab[oldStateSeq][_prop];
  pLevState->state = GET_STATE(cell);       /* isolate the new state */
  actionSeq = pImpAct[GET_ACTION(cell)]; /* isolate the action */
  addLevel = pImpTab[pLevState->state][IMPTABLEVELS_RES];

  if(actionSeq) {
    switch(actionSeq) {
    case 1:                         /* init ON seq */
      pLevState->startON = start0;
      break;

    case 2:                         /* prepend ON seq to current seq */
      start = pLevState->startON;
      break;

    default:                        /* we should never get here */
      MOZ_ASSERT(false);
      break;
    }
  }
  if(addLevel || (start < start0)) {
    level = pLevState->runLevel + addLevel;
    if (start >= pLevState->runStart) {
      for (k = start; k < limit; k++) {
        levels[k] = level;
      }
    } else {
      DirProp *dirProps = mDirProps, dirProp;
      int32_t isolateCount = 0;
      for (k = start; k < limit; k++) {
        dirProp = dirProps[k];
        if (dirProp == PDI) {
          isolateCount--;
        }
        if (isolateCount == 0) {
          levels[k]=level;
        }
        if (dirProp == LRI || dirProp == RLI) {
          isolateCount++;
        }
      }
    }
  }
}

void nsBidi::ResolveImplicitLevels(int32_t aStart, int32_t aLimit,
                   DirProp aSOR, DirProp aEOR)
{
  const DirProp *dirProps = mDirProps;
  DirProp dirProp;
  LevState levState;
  int32_t i, start1, start2;
  uint16_t oldStateImp, stateImp, actionImp;
  uint8_t gprop, resProp, cell;

  /* initialize for property and levels state tables */
  levState.startON = -1;
  levState.runStart = aStart;
  levState.runLevel = mLevels[aStart];
  levState.pImpTab = impTab[levState.runLevel & 1];
  levState.pImpAct = impAct0;

  /* The isolates[] entries contain enough information to
     resume the bidi algorithm in the same state as it was
     when it was interrupted by an isolate sequence. */
  if (dirProps[aStart] == PDI) {
    start1 = mIsolates[mIsolateCount].start1;
    stateImp = mIsolates[mIsolateCount].stateImp;
    levState.state = mIsolates[mIsolateCount].state;
    mIsolateCount--;
  } else {
    start1 = aStart;
    if (dirProps[aStart] == NSM) {
      stateImp = 1 + aSOR;
    } else {
      stateImp = 0;
    }
    levState.state = 0;
    ProcessPropertySeq(&levState, aSOR, aStart, aStart);
  }
  start2 = aStart;

  for (i = aStart; i <= aLimit; i++) {
    if (i >= aLimit) {
      if (aLimit > aStart) {
        dirProp = mDirProps[aLimit - 1];
        if (dirProp == LRI || dirProp == RLI) {
          break;  /* no forced closing for sequence ending with LRI/RLI */
        }
      }
      gprop = aEOR;
    } else {
      DirProp prop;
      prop = PURE_DIRPROP(dirProps[i]);
      gprop = groupProp[prop];
    }
    oldStateImp = stateImp;
    cell = impTabProps[oldStateImp][gprop];
    stateImp = GET_STATEPROPS(cell);      /* isolate the new state */
    actionImp = GET_ACTIONPROPS(cell);    /* isolate the action */
    if ((i == aLimit) && (actionImp == 0)) {
      /* there is an unprocessed sequence if its property == eor   */
      actionImp = 1;                      /* process the last sequence */
    }
    if (actionImp) {
      resProp = impTabProps[oldStateImp][IMPTABPROPS_RES];
      switch (actionImp) {
      case 1:             /* process current seq1, init new seq1 */
        ProcessPropertySeq(&levState, resProp, start1, i);
        start1 = i;
        break;
      case 2:             /* init new seq2 */
        start2 = i;
        break;
      case 3:             /* process seq1, process seq2, init new seq1 */
        ProcessPropertySeq(&levState, resProp, start1, start2);
        ProcessPropertySeq(&levState, DirProp_ON, start2, i);
        start1 = i;
        break;
      case 4:             /* process seq1, set seq1=seq2, init new seq2 */
        ProcessPropertySeq(&levState, resProp, start1, start2);
        start1 = start2;
        start2 = i;
        break;
      default:            /* we should never get here */
        MOZ_ASSERT(false);
        break;
      }
    }
  }

  dirProp = dirProps[aLimit - 1];
  if ((dirProp == LRI || dirProp == RLI) && aLimit < mLength) {
    mIsolateCount++;
    mIsolates[mIsolateCount].stateImp = stateImp;
    mIsolates[mIsolateCount].state = levState.state;
    mIsolates[mIsolateCount].start1 = start1;
  } else {
    ProcessPropertySeq(&levState, aEOR, aLimit, aLimit);
  }
}


/* perform (L1) and (X9) ---------------------------------------------------- */

/*
 * Reset the embedding levels for some non-graphic characters (L1).
 * This function also sets appropriate levels for BN, and
 * explicit embedding types that are supposed to have been removed
 * from the paragraph in (X9).
 */
void nsBidi::AdjustWSLevels()
{
  const DirProp *dirProps=mDirProps;
  nsBidiLevel *levels=mLevels;
  int32_t i;

  if(mFlags&MASK_WS) {
    nsBidiLevel paraLevel=mParaLevel;
    Flags flag;

    i=mTrailingWSStart;
    while(i>0) {
      /* reset a sequence of WS/BN before eop and B/S to the paragraph paraLevel */
      while (i > 0 && DIRPROP_FLAG(PURE_DIRPROP(dirProps[--i])) & MASK_WS) {
        levels[i]=paraLevel;
      }

      /* reset BN to the next character's paraLevel until B/S, which restarts above loop */
      /* here, i+1 is guaranteed to be <length */
      while(i>0) {
        flag = DIRPROP_FLAG(PURE_DIRPROP(dirProps[--i]));
        if(flag&MASK_BN_EXPLICIT) {
          levels[i]=levels[i+1];
        } else if(flag&MASK_B_S) {
          levels[i]=paraLevel;
          break;
        }
      }
    }
  }
}

nsresult nsBidi::GetDirection(nsBidiDirection* aDirection)
{
  *aDirection = mDirection;
  return NS_OK;
}

nsresult nsBidi::GetParaLevel(nsBidiLevel* aParaLevel)
{
  *aParaLevel = mParaLevel;
  return NS_OK;
}
#ifdef FULL_BIDI_ENGINE

/* -------------------------------------------------------------------------- */

nsresult nsBidi::GetLength(int32_t* aLength)
{
  *aLength = mLength;
  return NS_OK;
}

/*
 * General remarks about the functions in this section:
 *
 * These functions deal with the aspects of potentially mixed-directional
 * text in a single paragraph or in a line of a single paragraph
 * which has already been processed according to
 * the Unicode 6.3 Bidi algorithm as defined in
 * http://www.unicode.org/unicode/reports/tr9/ , version 28,
 * also described in The Unicode Standard, Version 6.3.0 .
 *
 * This means that there is a nsBidi object with a levels
 * and a dirProps array.
 * paraLevel and direction are also set.
 * Only if the length of the text is zero, then levels==dirProps==nullptr.
 *
 * The overall directionality of the paragraph
 * or line is used to bypass the reordering steps if possible.
 * Even purely RTL text does not need reordering there because
 * the getLogical/VisualIndex() functions can compute the
 * index on the fly in such a case.
 *
 * The implementation of the access to same-level-runs and of the reordering
 * do attempt to provide better performance and less memory usage compared to
 * a direct implementation of especially rule (L2) with an array of
 * one (32-bit) integer per text character.
 *
 * Here, the levels array is scanned as soon as necessary, and a vector of
 * same-level-runs is created. Reordering then is done on this vector.
 * For each run of text positions that were resolved to the same level,
 * only 8 bytes are stored: the first text position of the run and the visual
 * position behind the run after reordering.
 * One sign bit is used to hold the directionality of the run.
 * This is inefficient if there are many very short runs. If the average run
 * length is <2, then this uses more memory.
 *
 * In a further attempt to save memory, the levels array is never changed
 * after all the resolution rules (Xn, Wn, Nn, In).
 * Many functions have to consider the field trailingWSStart:
 * if it is less than length, then there is an implicit trailing run
 * at the paraLevel,
 * which is not reflected in the levels array.
 * This allows a line nsBidi object to use the same levels array as
 * its paragraph parent object.
 *
 * When a nsBidi object is created for a line of a paragraph, then the
 * paragraph's levels and dirProps arrays are reused by way of setting
 * a pointer into them, not by copying. This again saves memory and forbids to
 * change the now shared levels for (L1).
 */
nsresult nsBidi::SetLine(const nsBidi* aParaBidi, int32_t aStart, int32_t aLimit)
{
  nsBidi* pParent = (nsBidi*)aParaBidi;
  int32_t length;

  /* check the argument values */
  if(pParent==nullptr) {
    return NS_ERROR_INVALID_POINTER;
  } else if(aStart < 0 || aStart >= aLimit || aLimit > pParent->mLength) {
    return NS_ERROR_INVALID_ARG;
  }

  /* set members from our aParaBidi parent */
  length = mLength = aLimit - aStart;
  mParaLevel=pParent->mParaLevel;

  mRuns=nullptr;
  mFlags=0;

  mDirProps=pParent->mDirProps+aStart;
  mLevels=pParent->mLevels+aStart;
  mRunCount=-1;

  if(pParent->mDirection!=NSBIDI_MIXED) {
    /* the parent is already trivial */
    mDirection=pParent->mDirection;

    /*
     * The parent's levels are all either
     * implicitly or explicitly ==paraLevel;
     * do the same here.
     */
    if(pParent->mTrailingWSStart<=aStart) {
      mTrailingWSStart=0;
    } else if(pParent->mTrailingWSStart<aLimit) {
      mTrailingWSStart=pParent->mTrailingWSStart-aStart;
    } else {
      mTrailingWSStart=length;
    }
  } else {
    const nsBidiLevel *levels=mLevels;
    int32_t i, trailingWSStart;
    nsBidiLevel level;

    SetTrailingWSStart();
    trailingWSStart=mTrailingWSStart;

    /* recalculate pLineBidi->direction */
    if(trailingWSStart==0) {
      /* all levels are at paraLevel */
      mDirection=(nsBidiDirection)(mParaLevel&1);
   } else {
      /* get the level of the first character */
      level=levels[0]&1;

      /* if there is anything of a different level, then the line is mixed */
      if(trailingWSStart<length && (mParaLevel&1)!=level) {
        /* the trailing WS is at paraLevel, which differs from levels[0] */
        mDirection=NSBIDI_MIXED;
      } else {
        /* see if levels[1..trailingWSStart-1] have the same direction as levels[0] and paraLevel */
        i=1;
        for(;;) {
          if(i==trailingWSStart) {
            /* the direction values match those in level */
            mDirection=(nsBidiDirection)level;
            break;
          } else if((levels[i]&1)!=level) {
            mDirection=NSBIDI_MIXED;
            break;
          }
          ++i;
        }
      }
    }

    switch(mDirection) {
      case NSBIDI_LTR:
        /* make sure paraLevel is even */
        mParaLevel=(mParaLevel+1)&~1;

        /* all levels are implicitly at paraLevel (important for GetLevels()) */
        mTrailingWSStart=0;
      break;
      case NSBIDI_RTL:
        /* make sure paraLevel is odd */
        mParaLevel|=1;

        /* all levels are implicitly at paraLevel (important for GetLevels()) */
        mTrailingWSStart=0;
        break;
      default:
        break;
    }
  }
  return NS_OK;
}

/* handle trailing WS (L1) -------------------------------------------------- */

/*
 * SetTrailingWSStart() sets the start index for a trailing
 * run of WS in the line. This is necessary because we do not modify
 * the paragraph's levels array that we just point into.
 * Using trailingWSStart is another form of performing (L1).
 *
 * To make subsequent operations easier, we also include the run
 * before the WS if it is at the paraLevel - we merge the two here.
 */
void nsBidi::SetTrailingWSStart() {
  /* mDirection!=NSBIDI_MIXED */

  const DirProp *dirProps=mDirProps;
  nsBidiLevel *levels=mLevels;
  int32_t start=mLength;
  nsBidiLevel paraLevel=mParaLevel;

  /* go backwards across all WS, BN, explicit codes */
  while(start>0 && DIRPROP_FLAG(dirProps[start-1])&MASK_WS) {
    --start;
  }

  /* if the WS run can be merged with the previous run then do so here */
  while(start>0 && levels[start-1]==paraLevel) {
    --start;
  }

  mTrailingWSStart=start;
}

nsresult nsBidi::GetLevelAt(int32_t aCharIndex, nsBidiLevel* aLevel)
{
  /* return paraLevel if in the trailing WS run, otherwise the real level */
  if(aCharIndex<0 || mLength<=aCharIndex) {
    *aLevel = 0;
  } else if(mDirection!=NSBIDI_MIXED || aCharIndex>=mTrailingWSStart) {
    *aLevel = mParaLevel;
  } else {
    *aLevel = mLevels[aCharIndex];
  }
  return NS_OK;
}

nsresult nsBidi::GetLevels(nsBidiLevel** aLevels)
{
  int32_t start, length;

  length = mLength;
  if(length<=0) {
    *aLevels = nullptr;
    return NS_ERROR_INVALID_ARG;
  }

  start = mTrailingWSStart;
  if(start==length) {
    /* the current levels array reflects the WS run */
    *aLevels = mLevels;
    return NS_OK;
  }

  /*
   * After the previous if(), we know that the levels array
   * has an implicit trailing WS run and therefore does not fully
   * reflect itself all the levels.
   * This must be a nsBidi object for a line, and
   * we need to create a new levels array.
   */

  if(GETLEVELSMEMORY(length)) {
    nsBidiLevel *levels=mLevelsMemory;

    if(start>0 && levels!=mLevels) {
      memcpy(levels, mLevels, start);
    }
    memset(levels+start, mParaLevel, length-start);

    /* this new levels array is set for the line and reflects the WS run */
    mTrailingWSStart=length;
    *aLevels=mLevels=levels;
    return NS_OK;
  } else {
    /* out of memory */
    *aLevels = nullptr;
    return NS_ERROR_OUT_OF_MEMORY;
  }
}
#endif // FULL_BIDI_ENGINE

nsresult nsBidi::GetCharTypeAt(int32_t aCharIndex, nsCharType* pType)
{
  if(aCharIndex<0 || mLength<=aCharIndex) {
    return NS_ERROR_INVALID_ARG;
  }
  *pType = (nsCharType)mDirProps[aCharIndex];
  return NS_OK;
}

nsresult nsBidi::GetLogicalRun(int32_t aLogicalStart, int32_t *aLogicalLimit, nsBidiLevel *aLevel)
{
  int32_t length = mLength;

  if(aLogicalStart<0 || length<=aLogicalStart) {
    return NS_ERROR_INVALID_ARG;
  }

  int32_t runCount, visualStart, logicalLimit, logicalFirst, i;
  Run iRun;

  /* CountRuns will check VALID_PARA_OR_LINE */
  nsresult rv = CountRuns(&runCount);
  if (NS_FAILED(rv)) {
    return rv;
  }

  visualStart = logicalLimit = 0;
  iRun = mRuns[0];

  for (i = 0; i < runCount; i++) {
    iRun = mRuns[i];
    logicalFirst = GET_INDEX(iRun.logicalStart);
    logicalLimit = logicalFirst + iRun.visualLimit - visualStart;
    if ((aLogicalStart >= logicalFirst) && (aLogicalStart < logicalLimit)) {
       break;
    }
    visualStart = iRun.visualLimit;
  }
  if (aLogicalLimit) {
    *aLogicalLimit = logicalLimit;
  }
  if (aLevel) {
    if (mDirection != NSBIDI_MIXED || aLogicalStart >= mTrailingWSStart) {
      *aLevel = mParaLevel;
    } else {
      *aLevel = mLevels[aLogicalStart];
    }
  }
  return NS_OK;
}

/* runs API functions ------------------------------------------------------- */

nsresult nsBidi::CountRuns(int32_t* aRunCount)
{
  if(mRunCount<0 && !GetRuns()) {
    return NS_ERROR_OUT_OF_MEMORY;
  } else {
    if (aRunCount)
      *aRunCount = mRunCount;
    return NS_OK;
  }
}

nsresult nsBidi::GetVisualRun(int32_t aRunIndex, int32_t *aLogicalStart, int32_t *aLength, nsBidiDirection *aDirection)
{
  if( aRunIndex<0 ||
      (mRunCount==-1 && !GetRuns()) ||
      aRunIndex>=mRunCount
    ) {
    *aDirection = NSBIDI_LTR;
    return NS_OK;
  } else {
    int32_t start=mRuns[aRunIndex].logicalStart;
    if(aLogicalStart!=nullptr) {
      *aLogicalStart=GET_INDEX(start);
    }
    if(aLength!=nullptr) {
      if(aRunIndex>0) {
        *aLength=mRuns[aRunIndex].visualLimit-
             mRuns[aRunIndex-1].visualLimit;
      } else {
        *aLength=mRuns[0].visualLimit;
      }
    }
    *aDirection = (nsBidiDirection)GET_ODD_BIT(start);
    return NS_OK;
  }
}

/* compute the runs array --------------------------------------------------- */

/*
 * Compute the runs array from the levels array.
 * After GetRuns() returns true, runCount is guaranteed to be >0
 * and the runs are reordered.
 * Odd-level runs have visualStart on their visual right edge and
 * they progress visually to the left.
 */
bool nsBidi::GetRuns()
{
  /*
   * This method returns immediately if the runs are already set. This
   * includes the case of length==0 (handled in setPara)..
   */
  if (mRunCount >= 0) {
    return true;
  }

  if(mDirection!=NSBIDI_MIXED) {
    /* simple, single-run case - this covers length==0 */
    GetSingleRun(mParaLevel);
  } else /* NSBIDI_MIXED, length>0 */ {
    /* mixed directionality */
    int32_t length=mLength, limit=mTrailingWSStart;

    /*
     * If there are WS characters at the end of the line
     * and the run preceding them has a level different from
     * paraLevel, then they will form their own run at paraLevel (L1).
     * Count them separately.
     * We need some special treatment for this in order to not
     * modify the levels array which a line nsBidi object shares
     * with its paragraph parent and its other line siblings.
     * In other words, for the trailing WS, it may be
     * levels[]!=paraLevel but we have to treat it like it were so.
     */
    nsBidiLevel *levels=mLevels;
    int32_t i, runCount;
    nsBidiLevel level=NSBIDI_DEFAULT_LTR;   /* initialize with no valid level */

    /* count the runs, there is at least one non-WS run, and limit>0 */
    runCount=0;
    for(i=0; i<limit; ++i) {
      /* increment runCount at the start of each run */
      if(levels[i]!=level) {
        ++runCount;
        level=levels[i];
      }
    }

    /*
     * We don't need to see if the last run can be merged with a trailing
     * WS run because SetTrailingWSStart() would have done that.
     */
    if(runCount==1 && limit==length) {
      /* There is only one non-WS run and no trailing WS-run. */
      GetSingleRun(levels[0]);
    } else /* runCount>1 || limit<length */ {
      /* allocate and set the runs */
      Run *runs;
      int32_t runIndex, start;
      nsBidiLevel minLevel=NSBIDI_MAX_EXPLICIT_LEVEL+1, maxLevel=0;

      /* now, count a (non-mergable) WS run */
      if(limit<length) {
        ++runCount;
      }

      /* runCount>1 */
      if(GETRUNSMEMORY(runCount)) {
        runs=mRunsMemory;
      } else {
        return false;
      }

      /* set the runs */
      /* this could be optimized, e.g.: 464->444, 484->444, 575->555, 595->555 */
      /* however, that would take longer and make other functions more complicated */
      runIndex=0;

      /* search for the run ends */
      i = 0;
      do {
        /* prepare this run */
        start = i;
        level = levels[i];
        if(level<minLevel) {
          minLevel=level;
        }
        if(level>maxLevel) {
          maxLevel=level;
        }

        /* look for the run limit */
        while (++i < limit && levels[i] == level) {
        }

        /* i is another run limit */
        runs[runIndex].logicalStart = start;
        runs[runIndex].visualLimit = i - start;
        ++runIndex;
      } while (i < limit);

      if(limit<length) {
        /* there is a separate WS run */
        runs[runIndex].logicalStart=limit;
        runs[runIndex].visualLimit=length-limit;
        if(mParaLevel<minLevel) {
          minLevel=mParaLevel;
        }
      }

      /* set the object fields */
      mRuns=runs;
      mRunCount=runCount;

      ReorderLine(minLevel, maxLevel);

      /* now add the direction flags and adjust the visualLimit's to be just that */
      /* this loop will also handling the trailing WS run */
      limit = 0;
      for (i = 0; i < runCount; ++i) {
        ADD_ODD_BIT_FROM_LEVEL(runs[i].logicalStart, levels[runs[i].logicalStart]);
        limit += runs[i].visualLimit;
        runs[i].visualLimit = limit;
      }

      /* Set the "odd" bit for the trailing WS run. */
      /* For a RTL paragraph, it will be the *first* run in visual order. */
      if (runIndex < runCount) {
        int32_t trailingRun = (mParaLevel & 1) ? 0 : runIndex;
        ADD_ODD_BIT_FROM_LEVEL(runs[trailingRun].logicalStart, mParaLevel);
      }
    }
  }

  return true;
}

/* in trivial cases there is only one trivial run; called by GetRuns() */
void nsBidi::GetSingleRun(nsBidiLevel aLevel)
{
  /* simple, single-run case */
  mRuns=mSimpleRuns;
  mRunCount=1;

  /* fill and reorder the single run */
  mRuns[0].logicalStart=MAKE_INDEX_ODD_PAIR(0, aLevel);
  mRuns[0].visualLimit=mLength;
}

/* reorder the runs array (L2) ---------------------------------------------- */

/*
 * Reorder the same-level runs in the runs array.
 * Here, runCount>1 and maxLevel>=minLevel>=paraLevel.
 * All the visualStart fields=logical start before reordering.
 * The "odd" bits are not set yet.
 *
 * Reordering with this data structure lends itself to some handy shortcuts:
 *
 * Since each run is moved but not modified, and since at the initial maxLevel
 * each sequence of same-level runs consists of only one run each, we
 * don't need to do anything there and can predecrement maxLevel.
 * In many simple cases, the reordering is thus done entirely in the
 * index mapping.
 * Also, reordering occurs only down to the lowest odd level that occurs,
 * which is minLevel|1. However, if the lowest level itself is odd, then
 * in the last reordering the sequence of the runs at this level or higher
 * will be all runs, and we don't need the elaborate loop to search for them.
 * This is covered by ++minLevel instead of minLevel|=1 followed
 * by an extra reorder-all after the reorder-some loop.
 * About a trailing WS run:
 * Such a run would need special treatment because its level is not
 * reflected in levels[] if this is not a paragraph object.
 * Instead, all characters from trailingWSStart on are implicitly at
 * paraLevel.
 * However, for all maxLevel>paraLevel, this run will never be reordered
 * and does not need to be taken into account. maxLevel==paraLevel is only reordered
 * if minLevel==paraLevel is odd, which is done in the extra segment.
 * This means that for the main reordering loop we don't need to consider
 * this run and can --runCount. If it is later part of the all-runs
 * reordering, then runCount is adjusted accordingly.
 */
void nsBidi::ReorderLine(nsBidiLevel aMinLevel, nsBidiLevel aMaxLevel)
{
  Run *runs, tempRun;
  nsBidiLevel *levels;
  int32_t firstRun, endRun, limitRun, runCount;

  /* nothing to do? */
  if(aMaxLevel<=(aMinLevel|1)) {
    return;
  }

  /*
   * Reorder only down to the lowest odd level
   * and reorder at an odd aMinLevel in a separate, simpler loop.
   * See comments above for why aMinLevel is always incremented.
   */
  ++aMinLevel;

  runs=mRuns;
  levels=mLevels;
  runCount=mRunCount;

  /* do not include the WS run at paraLevel<=old aMinLevel except in the simple loop */
  if(mTrailingWSStart<mLength) {
    --runCount;
  }

  while(--aMaxLevel>=aMinLevel) {
    firstRun=0;

    /* loop for all sequences of runs */
    for(;;) {
      /* look for a sequence of runs that are all at >=aMaxLevel */
      /* look for the first run of such a sequence */
      while(firstRun<runCount && levels[runs[firstRun].logicalStart]<aMaxLevel) {
        ++firstRun;
      }
      if(firstRun>=runCount) {
        break;  /* no more such runs */
      }

      /* look for the limit run of such a sequence (the run behind it) */
      for(limitRun=firstRun; ++limitRun<runCount && levels[runs[limitRun].logicalStart]>=aMaxLevel;) {}

      /* Swap the entire sequence of runs from firstRun to limitRun-1. */
      endRun=limitRun-1;
      while(firstRun<endRun) {
        tempRun = runs[firstRun];
        runs[firstRun] = runs[endRun];
        runs[endRun] = tempRun;
        ++firstRun;
        --endRun;
      }

      if(limitRun==runCount) {
        break;  /* no more such runs */
      } else {
        firstRun=limitRun+1;
      }
    }
  }

  /* now do aMaxLevel==old aMinLevel (==odd!), see above */
  if(!(aMinLevel&1)) {
    firstRun=0;

    /* include the trailing WS run in this complete reordering */
    if(mTrailingWSStart==mLength) {
      --runCount;
    }

    /* Swap the entire sequence of all runs. (endRun==runCount) */
    while(firstRun<runCount) {
      tempRun = runs[firstRun];
      runs[firstRun] = runs[runCount];
      runs[runCount] = tempRun;
      ++firstRun;
      --runCount;
    }
  }
}

nsresult nsBidi::ReorderVisual(const nsBidiLevel *aLevels, int32_t aLength, int32_t *aIndexMap)
{
  int32_t start, end, limit, temp;
  nsBidiLevel minLevel, maxLevel;

  if(aIndexMap==nullptr ||
     !PrepareReorder(aLevels, aLength, aIndexMap, &minLevel, &maxLevel)) {
    return NS_OK;
  }

  /* nothing to do? */
  if(minLevel==maxLevel && (minLevel&1)==0) {
    return NS_OK;
  }

  /* reorder only down to the lowest odd level */
  minLevel|=1;

  /* loop maxLevel..minLevel */
  do {
    start=0;

    /* loop for all sequences of levels to reorder at the current maxLevel */
    for(;;) {
      /* look for a sequence of levels that are all at >=maxLevel */
      /* look for the first index of such a sequence */
      while(start<aLength && aLevels[start]<maxLevel) {
        ++start;
      }
      if(start>=aLength) {
        break;  /* no more such runs */
      }

      /* look for the limit of such a sequence (the index behind it) */
      for(limit=start; ++limit<aLength && aLevels[limit]>=maxLevel;) {}

      /*
       * Swap the entire interval of indexes from start to limit-1.
       * We don't need to swap the levels for the purpose of this
       * algorithm: the sequence of levels that we look at does not
       * move anyway.
       */
      end=limit-1;
      while(start<end) {
        temp=aIndexMap[start];
        aIndexMap[start]=aIndexMap[end];
        aIndexMap[end]=temp;

        ++start;
        --end;
      }

      if(limit==aLength) {
        break;  /* no more such sequences */
      } else {
        start=limit+1;
      }
    }
  } while(--maxLevel>=minLevel);

  return NS_OK;
}

bool nsBidi::PrepareReorder(const nsBidiLevel *aLevels, int32_t aLength,
                int32_t *aIndexMap,
                nsBidiLevel *aMinLevel, nsBidiLevel *aMaxLevel)
{
  int32_t start;
  nsBidiLevel level, minLevel, maxLevel;

  if(aLevels==nullptr || aLength<=0) {
    return false;
  }

  /* determine minLevel and maxLevel */
  minLevel=NSBIDI_MAX_EXPLICIT_LEVEL+1;
  maxLevel=0;
  for(start=aLength; start>0;) {
    level=aLevels[--start];
    if(level>NSBIDI_MAX_EXPLICIT_LEVEL+1) {
      return false;
    }
    if(level<minLevel) {
      minLevel=level;
    }
    if(level>maxLevel) {
      maxLevel=level;
    }
  }
  *aMinLevel=minLevel;
  *aMaxLevel=maxLevel;

  /* initialize the index map */
  for(start=aLength; start>0;) {
    --start;
    aIndexMap[start]=start;
  }

  return true;
}

#ifdef FULL_BIDI_ENGINE
/* API functions for logical<->visual mapping ------------------------------- */

nsresult nsBidi::GetVisualIndex(int32_t aLogicalIndex, int32_t* aVisualIndex) {
  int32_t visualIndex = NSBIDI_MAP_NOWHERE;

  if(aLogicalIndex<0 || mLength<=aLogicalIndex) {
    return NS_ERROR_INVALID_ARG;
  } else {
    /* we can do the trivial cases without the runs array */
    switch(mDirection) {
    case NSBIDI_LTR:
      *aVisualIndex = aLogicalIndex;
      return NS_OK;
    case NSBIDI_RTL:
      *aVisualIndex = mLength-aLogicalIndex-1;
      return NS_OK;
    default:
      if(mRunCount<0 && !GetRuns()) {
        return NS_ERROR_OUT_OF_MEMORY;
      } else {
        Run *runs=mRuns;
        int32_t i, visualStart=0, offset, length;

        /* linear search for the run, search on the visual runs */
        for (i = 0; i < mRunCount; ++i) {
          length=runs[i].visualLimit-visualStart;
          offset=aLogicalIndex-GET_INDEX(runs[i].logicalStart);
          if(offset>=0 && offset<length) {
            if(IS_EVEN_RUN(runs[i].logicalStart)) {
              /* LTR */
              visualIndex = visualStart + offset;
            } else {
              /* RTL */
              visualIndex = visualStart + length - offset - 1;
            }
            break;
          }
          visualStart+=length;
        }
        if (i >= mRunCount) {
          *aVisualIndex = NSBIDI_MAP_NOWHERE;
          return NS_OK;
        }
      }
    }
  }

  *aVisualIndex = visualIndex;
  return NS_OK;
}

nsresult nsBidi::GetLogicalIndex(int32_t aVisualIndex, int32_t *aLogicalIndex)
{
  if(aVisualIndex<0 || mLength<=aVisualIndex) {
    return NS_ERROR_INVALID_ARG;
  }

  /* we can do the trivial cases without the runs array */
  if (mDirection == NSBIDI_LTR) {
    *aLogicalIndex = aVisualIndex;
    return NS_OK;
  } else if (mDirection == NSBIDI_RTL) {
    *aLogicalIndex = mLength - aVisualIndex - 1;
    return NS_OK;
  }

  if(mRunCount<0 && !GetRuns()) {
    return NS_ERROR_OUT_OF_MEMORY;
  }

  Run *runs=mRuns;
  int32_t i, runCount=mRunCount, start;

  if(runCount<=10) {
    /* linear search for the run */
    for(i=0; aVisualIndex>=runs[i].visualLimit; ++i) {}
  } else {
    /* binary search for the run */
    int32_t start=0, limit=runCount;

    /* the middle if() will guaranteed find the run, we don't need a loop limit */
    for(;;) {
      i=(start+limit)/2;
      if(aVisualIndex>=runs[i].visualLimit) {
        start=i+1;
      } else if(i==0 || aVisualIndex>=runs[i-1].visualLimit) {
        break;
      } else {
        limit=i;
      }
    }
  }

  start=runs[i].logicalStart;
  if(IS_EVEN_RUN(start)) {
    /* LTR */
    /* the offset in runs[i] is aVisualIndex-runs[i-1].visualLimit */
    if(i>0) {
      aVisualIndex-=runs[i-1].visualLimit;
    }
    *aLogicalIndex = GET_INDEX(start)+aVisualIndex;
    return NS_OK;
  } else {
    /* RTL */
    *aLogicalIndex = GET_INDEX(start)+runs[i].visualLimit-aVisualIndex-1;
    return NS_OK;
  }
}

nsresult nsBidi::GetLogicalMap(int32_t *aIndexMap)
{
  nsresult rv;

  /* CountRuns() checks for VALID_PARA_OR_LINE */
  rv = CountRuns(nullptr);
  if(NS_FAILED(rv)) {
    return rv;
  } else if(aIndexMap==nullptr) {
    return NS_ERROR_INVALID_ARG;
  } else {
    /* fill a logical-to-visual index map using the runs[] */
    int32_t visualStart, visualLimit, j;
    int32_t logicalStart;
    Run *runs = mRuns;
    if (mLength <= 0) {
      return NS_OK;
    }

    visualStart = 0;
    for (j = 0; j < mRunCount; ++j) {
      logicalStart = GET_INDEX(runs[j].logicalStart);
      visualLimit = runs[j].visualLimit;
      if (IS_EVEN_RUN(runs[j].logicalStart)) {
        do { /* LTR */
          aIndexMap[logicalStart++] = visualStart++;
        } while (visualStart < visualLimit);
      } else {
        logicalStart += visualLimit-visualStart;  /* logicalLimit */
        do { /* RTL */
          aIndexMap[--logicalStart] = visualStart++;
        } while (visualStart < visualLimit);
      }
      /* visualStart==visualLimit; */
    }
  }
  return NS_OK;
}

nsresult nsBidi::GetVisualMap(int32_t *aIndexMap)
{
  int32_t* runCount=nullptr;
  nsresult rv;

  if(aIndexMap==nullptr) {
    return NS_ERROR_INVALID_ARG;
  }

  /* CountRuns() checks all of its and our arguments */
  rv = CountRuns(runCount);
  if(NS_FAILED(rv)) {
    return rv;
  } else {
    /* fill a visual-to-logical index map using the runs[] */
    Run *runs=mRuns, *runsLimit=runs+mRunCount;
    int32_t logicalStart, visualStart, visualLimit;

    visualStart=0;
    for(; runs<runsLimit; ++runs) {
      logicalStart=runs->logicalStart;
      visualLimit=runs->visualLimit;
      if(IS_EVEN_RUN(logicalStart)) {
        do { /* LTR */
          *aIndexMap++ = logicalStart++;
        } while(++visualStart<visualLimit);
      } else {
        REMOVE_ODD_BIT(logicalStart);
        logicalStart+=visualLimit-visualStart;  /* logicalLimit */
        do { /* RTL */
          *aIndexMap++ = --logicalStart;
        } while(++visualStart<visualLimit);
      }
      /* visualStart==visualLimit; */
    }
    return NS_OK;
  }
}

/* reorder a line based on a levels array (L2) ------------------------------ */

nsresult nsBidi::ReorderLogical(const nsBidiLevel *aLevels, int32_t aLength, int32_t *aIndexMap)
{
  int32_t start, limit, sumOfSosEos;
  nsBidiLevel minLevel, maxLevel;

  if(aIndexMap==nullptr ||
     !PrepareReorder(aLevels, aLength, aIndexMap, &minLevel, &maxLevel)) {
    return NS_OK;
  }

  /* nothing to do? */
  if(minLevel==maxLevel && (minLevel&1)==0) {
    return NS_OK;
  }

  /* reorder only down to the lowest odd level */
  minLevel|=1;

  /* loop maxLevel..minLevel */
  do {
    start=0;

    /* loop for all sequences of levels to reorder at the current maxLevel */
    for(;;) {
      /* look for a sequence of levels that are all at >=maxLevel */
      /* look for the first index of such a sequence */
      while(start<aLength && aLevels[start]<maxLevel) {
        ++start;
      }
      if(start>=aLength) {
        break;  /* no more such sequences */
      }

      /* look for the limit of such a sequence (the index behind it) */
      for(limit=start; ++limit<aLength && aLevels[limit]>=maxLevel;) {}

      /*
       * sos=start of sequence, eos=end of sequence
       *
       * The closed (inclusive) interval from sos to eos includes all the logical
       * and visual indexes within this sequence. They are logically and
       * visually contiguous and in the same range.
       *
       * For each run, the new visual index=sos+eos-old visual index;
       * we pre-add sos+eos into sumOfSosEos ->
       * new visual index=sumOfSosEos-old visual index;
       */
      sumOfSosEos=start+limit-1;

      /* reorder each index in the sequence */
      do {
        aIndexMap[start]=sumOfSosEos-aIndexMap[start];
      } while(++start<limit);

      /* start==limit */
      if(limit==aLength) {
        break;  /* no more such sequences */
      } else {
        start=limit+1;
      }
    }
  } while(--maxLevel>=minLevel);

  return NS_OK;
}

nsresult nsBidi::InvertMap(const int32_t *aSrcMap, int32_t *aDestMap, int32_t aLength)
{
  if(aSrcMap!=nullptr && aDestMap!=nullptr && aLength > 0) {
    const int32_t *pi;
    int32_t destLength = -1, count = 0;
    /* find highest value and count positive indexes in srcMap */
    pi = aSrcMap + aLength;
    while (pi > aSrcMap) {
      if (*--pi > destLength) {
        destLength = *pi;
      }
      if (*pi >= 0) {
        count++;
      }
    }
    destLength++;  /* add 1 for origin 0 */
    if (count < destLength) {
      /* we must fill unmatched destMap entries with -1 */
      memset(aDestMap, 0xFF, destLength * sizeof(int32_t));
    }
    pi = aSrcMap + aLength;
    while (aLength > 0) {
      if (*--pi >= 0) {
        aDestMap[*pi] = --aLength;
      } else {
        --aLength;
      }
    }
  }
  return NS_OK;
}

int32_t nsBidi::doWriteReverse(const char16_t *src, int32_t srcLength,
                               char16_t *dest, uint16_t options) {
  /*
   * RTL run -
   *
   * RTL runs need to be copied to the destination in reverse order
   * of code points, not code units, to keep Unicode characters intact.
   *
   * The general strategy for this is to read the source text
   * in backward order, collect all code units for a code point
   * (and optionally following combining characters, see below),
   * and copy all these code units in ascending order
   * to the destination for this run.
   *
   * Several options request whether combining characters
   * should be kept after their base characters,
   * whether Bidi control characters should be removed, and
   * whether characters should be replaced by their mirror-image
   * equivalent Unicode characters.
   */
  int32_t i, j, destSize;
  uint32_t c;

  /* optimize for several combinations of options */
  switch(options&(NSBIDI_REMOVE_BIDI_CONTROLS|NSBIDI_DO_MIRRORING|NSBIDI_KEEP_BASE_COMBINING)) {
    case 0:
        /*
         * With none of the "complicated" options set, the destination
         * run will have the same length as the source run,
         * and there is no mirroring and no keeping combining characters
         * with their base characters.
         */
      destSize=srcLength;

    /* preserve character integrity */
      do {
      /* i is always after the last code unit known to need to be kept in this segment */
        i=srcLength;

      /* collect code units for one base character */
        UTF_BACK_1(src, 0, srcLength);

      /* copy this base character */
        j=srcLength;
        do {
          *dest++=src[j++];
        } while(j<i);
      } while(srcLength>0);
      break;
    case NSBIDI_KEEP_BASE_COMBINING:
    /*
         * Here, too, the destination
         * run will have the same length as the source run,
         * and there is no mirroring.
         * We do need to keep combining characters with their base characters.
         */
      destSize=srcLength;

    /* preserve character integrity */
      do {
      /* i is always after the last code unit known to need to be kept in this segment */
        i=srcLength;

      /* collect code units and modifier letters for one base character */
        do {
          UTF_PREV_CHAR(src, 0, srcLength, c);
        } while(srcLength>0 && GetBidiCat(c) == eCharType_DirNonSpacingMark);

      /* copy this "user character" */
        j=srcLength;
        do {
          *dest++=src[j++];
        } while(j<i);
      } while(srcLength>0);
      break;
    default:
    /*
         * With several "complicated" options set, this is the most
         * general and the slowest copying of an RTL run.
         * We will do mirroring, remove Bidi controls, and
         * keep combining characters with their base characters
         * as requested.
         */
      if(!(options&NSBIDI_REMOVE_BIDI_CONTROLS)) {
        i=srcLength;
      } else {
      /* we need to find out the destination length of the run,
               which will not include the Bidi control characters */
        int32_t length=srcLength;
        char16_t ch;

        i=0;
        do {
          ch=*src++;
          if (!IsBidiControl((uint32_t)ch)) {
            ++i;
          }
        } while(--length>0);
        src-=srcLength;
      }
      destSize=i;

    /* preserve character integrity */
      do {
      /* i is always after the last code unit known to need to be kept in this segment */
        i=srcLength;

      /* collect code units for one base character */
        UTF_PREV_CHAR(src, 0, srcLength, c);
        if(options&NSBIDI_KEEP_BASE_COMBINING) {
        /* collect modifier letters for this base character */
          while(srcLength>0 && GetBidiCat(c) == eCharType_DirNonSpacingMark) {
            UTF_PREV_CHAR(src, 0, srcLength, c);
          }
        }

        if(options&NSBIDI_REMOVE_BIDI_CONTROLS && IsBidiControl(c)) {
        /* do not copy this Bidi control character */
          continue;
        }

      /* copy this "user character" */
        j=srcLength;
        if(options&NSBIDI_DO_MIRRORING) {
          /* mirror only the base character */
          c = GetMirroredChar(c);

          int32_t k=0;
          UTF_APPEND_CHAR_UNSAFE(dest, k, c);
          dest+=k;
          j+=k;
        }
        while(j<i) {
          *dest++=src[j++];
        }
      } while(srcLength>0);
      break;
  } /* end of switch */
  return destSize;
}

nsresult nsBidi::WriteReverse(const char16_t *aSrc, int32_t aSrcLength, char16_t *aDest, uint16_t aOptions, int32_t *aDestSize)
{
  if( aSrc==nullptr || aSrcLength<0 ||
      aDest==nullptr
    ) {
    return NS_ERROR_INVALID_ARG;
  }

  /* do input and output overlap? */
  if( aSrc>=aDest && aSrc<aDest+aSrcLength ||
      aDest>=aSrc && aDest<aSrc+aSrcLength
    ) {
    return NS_ERROR_INVALID_ARG;
  }

  if(aSrcLength>0) {
    *aDestSize = doWriteReverse(aSrc, aSrcLength, aDest, aOptions);
  }
  return NS_OK;
}
#endif // FULL_BIDI_ENGINE