DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
*/
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "gc/Memory.h"
#include "jsapi-tests/tests.h"

#if defined(XP_WIN)
#include "jswin.h"
#include <psapi.h>
#elif defined(SOLARIS)
// This test doesn't apply to Solaris.
#elif defined(XP_UNIX)
#include <algorithm>
#include <errno.h>
#include <sys/mman.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#else
#error "Memory mapping functions are not defined for your OS."
#endif

BEGIN_TEST(testGCAllocator)
{
#if defined(XP_WIN)
    SYSTEM_INFO sysinfo;
    GetSystemInfo(&sysinfo);
    const size_t PageSize = sysinfo.dwPageSize;
#elif defined(SOLARIS)
    return true;
#elif defined(XP_UNIX)
    const size_t PageSize = size_t(sysconf(_SC_PAGESIZE));
#else
    return true;
#endif
    if (addressesGrowUp())
        return testGCAllocatorUp(PageSize);
    return testGCAllocatorDown(PageSize);
}

static const size_t Chunk = 512 * 1024;
static const size_t Alignment = 2 * Chunk;
static const int MaxTempChunks = 4096;
static const size_t StagingSize = 16 * Chunk;

bool
addressesGrowUp()
{
    void* p1 = mapMemory(2 * Chunk);
    void* p2 = mapMemory(2 * Chunk);
    unmapPages(p1, 2 * Chunk);
    unmapPages(p2, 2 * Chunk);
    return p1 < p2;
}

size_t
offsetFromAligned(void* p)
{
    return uintptr_t(p) % Alignment;
}

enum AllocType {
   UseNormalAllocator,
   UseLastDitchAllocator
};

bool
testGCAllocatorUp(const size_t PageSize)
{
    const size_t UnalignedSize = StagingSize + Alignment - PageSize;
    void* chunkPool[MaxTempChunks];
    // Allocate a contiguous chunk that we can partition for testing.
    void* stagingArea = mapMemory(UnalignedSize);
    if (!stagingArea)
        return false;
    // Ensure that the staging area is aligned.
    unmapPages(stagingArea, UnalignedSize);
    if (offsetFromAligned(stagingArea)) {
        const size_t Offset = offsetFromAligned(stagingArea);
        // Place the area at the lowest aligned address.
        stagingArea = (void*)(uintptr_t(stagingArea) + (Alignment - Offset));
    }
    mapMemoryAt(stagingArea, StagingSize);
    // Make sure there are no available chunks below the staging area.
    int tempChunks;
    if (!fillSpaceBeforeStagingArea(tempChunks, stagingArea, chunkPool, false))
        return false;
    // Unmap the staging area so we can set it up for testing.
    unmapPages(stagingArea, StagingSize);
    // Check that the first chunk is used if it is aligned.
    CHECK(positionIsCorrect("xxooxxx---------", stagingArea, chunkPool, tempChunks));
    // Check that the first chunk is used if it can be aligned.
    CHECK(positionIsCorrect("x-ooxxx---------", stagingArea, chunkPool, tempChunks));
    // Check that an aligned chunk after a single unalignable chunk is used.
    CHECK(positionIsCorrect("x--xooxxx-------", stagingArea, chunkPool, tempChunks));
    // Check that we fall back to the slow path after two unalignable chunks.
    CHECK(positionIsCorrect("x--xx--xoo--xxx-", stagingArea, chunkPool, tempChunks));
    // Check that we also fall back after an unalignable and an alignable chunk.
    CHECK(positionIsCorrect("x--xx---x-oo--x-", stagingArea, chunkPool, tempChunks));
    // Check that the last ditch allocator works as expected.
    CHECK(positionIsCorrect("x--xx--xx-oox---", stagingArea, chunkPool, tempChunks,
                            UseLastDitchAllocator));

    // Clean up.
    while (--tempChunks >= 0)
        unmapPages(chunkPool[tempChunks], 2 * Chunk);
    return true;
}

bool
testGCAllocatorDown(const size_t PageSize)
{
    const size_t UnalignedSize = StagingSize + Alignment - PageSize;
    void* chunkPool[MaxTempChunks];
    // Allocate a contiguous chunk that we can partition for testing.
    void* stagingArea = mapMemory(UnalignedSize);
    if (!stagingArea)
        return false;
    // Ensure that the staging area is aligned.
    unmapPages(stagingArea, UnalignedSize);
    if (offsetFromAligned(stagingArea)) {
        void* stagingEnd = (void*)(uintptr_t(stagingArea) + UnalignedSize);
        const size_t Offset = offsetFromAligned(stagingEnd);
        // Place the area at the highest aligned address.
        stagingArea = (void*)(uintptr_t(stagingEnd) - Offset - StagingSize);
    }
    mapMemoryAt(stagingArea, StagingSize);
    // Make sure there are no available chunks above the staging area.
    int tempChunks;
    if (!fillSpaceBeforeStagingArea(tempChunks, stagingArea, chunkPool, true))
        return false;
    // Unmap the staging area so we can set it up for testing.
    unmapPages(stagingArea, StagingSize);
    // Check that the first chunk is used if it is aligned.
    CHECK(positionIsCorrect("---------xxxooxx", stagingArea, chunkPool, tempChunks));
    // Check that the first chunk is used if it can be aligned.
    CHECK(positionIsCorrect("---------xxxoo-x", stagingArea, chunkPool, tempChunks));
    // Check that an aligned chunk after a single unalignable chunk is used.
    CHECK(positionIsCorrect("-------xxxoox--x", stagingArea, chunkPool, tempChunks));
    // Check that we fall back to the slow path after two unalignable chunks.
    CHECK(positionIsCorrect("-xxx--oox--xx--x", stagingArea, chunkPool, tempChunks));
    // Check that we also fall back after an unalignable and an alignable chunk.
    CHECK(positionIsCorrect("-x--oo-x---xx--x", stagingArea, chunkPool, tempChunks));
    // Check that the last ditch allocator works as expected.
    CHECK(positionIsCorrect("---xoo-xx--xx--x", stagingArea, chunkPool, tempChunks,
                            UseLastDitchAllocator));

    // Clean up.
    while (--tempChunks >= 0)
        unmapPages(chunkPool[tempChunks], 2 * Chunk);
    return true;
}

bool
fillSpaceBeforeStagingArea(int& tempChunks, void* stagingArea,
                           void** chunkPool, bool addressesGrowDown)
{
    // Make sure there are no available chunks before the staging area.
    tempChunks = 0;
    chunkPool[tempChunks++] = mapMemory(2 * Chunk);
    while (tempChunks < MaxTempChunks && chunkPool[tempChunks - 1] &&
           (chunkPool[tempChunks - 1] < stagingArea) ^ addressesGrowDown) {
        chunkPool[tempChunks++] = mapMemory(2 * Chunk);
        if (!chunkPool[tempChunks - 1])
            break; // We already have our staging area, so OOM here is okay.
        if ((chunkPool[tempChunks - 1] < chunkPool[tempChunks - 2]) ^ addressesGrowDown)
            break; // The address growth direction is inconsistent!
    }
    // OOM also means success in this case.
    if (!chunkPool[tempChunks - 1]) {
        --tempChunks;
        return true;
    }
    // Bail if we can't guarantee the right address space layout.
    if ((chunkPool[tempChunks - 1] < stagingArea) ^ addressesGrowDown || (tempChunks > 1 &&
            (chunkPool[tempChunks - 1] < chunkPool[tempChunks - 2]) ^ addressesGrowDown))
    {
        while (--tempChunks >= 0)
            unmapPages(chunkPool[tempChunks], 2 * Chunk);
        unmapPages(stagingArea, StagingSize);
        return false;
    }
    return true;
}

bool
positionIsCorrect(const char* str, void* base, void** chunkPool, int tempChunks,
                  AllocType allocator = UseNormalAllocator)
{
    // str represents a region of memory, with each character representing a
    // region of Chunk bytes. str should contain only x, o and -, where
    // x = mapped by the test to set up the initial conditions,
    // o = mapped by the GC allocator, and
    // - = unmapped.
    // base should point to a region of contiguous free memory
    // large enough to hold strlen(str) chunks of Chunk bytes.
    int len = strlen(str);
    int i;
    // Find the index of the desired address.
    for (i = 0; i < len && str[i] != 'o'; ++i);
    void* desired = (void*)(uintptr_t(base) + i * Chunk);
    // Map the regions indicated by str.
    for (i = 0; i < len; ++i) {
        if (str[i] == 'x')
            mapMemoryAt((void*)(uintptr_t(base) +  i * Chunk), Chunk);
    }
    // Allocate using the GC's allocator.
    void* result;
    if (allocator == UseNormalAllocator)
        result = js::gc::MapAlignedPages(2 * Chunk, Alignment);
    else
        result = js::gc::TestMapAlignedPagesLastDitch(2 * Chunk, Alignment);
    // Clean up the mapped regions.
    if (result)
        js::gc::UnmapPages(result, 2 * Chunk);
    for (--i; i >= 0; --i) {
        if (str[i] == 'x')
            js::gc::UnmapPages((void*)(uintptr_t(base) +  i * Chunk), Chunk);
    }
    // CHECK returns, so clean up on failure.
    if (result != desired) {
        while (--tempChunks >= 0)
            js::gc::UnmapPages(chunkPool[tempChunks], 2 * Chunk);
    }
    return result == desired;
}

#if defined(XP_WIN)

void*
mapMemoryAt(void* desired, size_t length)
{
    return VirtualAlloc(desired, length, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
}

void*
mapMemory(size_t length)
{
    return VirtualAlloc(nullptr, length, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
}

void
unmapPages(void* p, size_t size)
{
    MOZ_ALWAYS_TRUE(VirtualFree(p, 0, MEM_RELEASE));
}

#elif defined(SOLARIS)
// This test doesn't apply to Solaris.
#elif defined(XP_UNIX)

void*
mapMemoryAt(void* desired, size_t length)
{
#if defined(__ia64__)
    MOZ_RELEASE_ASSERT(0xffff800000000000ULL & (uintptr_t(desired) + length - 1) == 0);
#endif
    void* region = mmap(desired, length, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0);
    if (region == MAP_FAILED)
        return nullptr;
    if (region != desired) {
        if (munmap(region, length))
            MOZ_RELEASE_ASSERT(errno == ENOMEM);
        return nullptr;
    }
    return region;
}

void*
mapMemory(size_t length)
{
    void* hint = nullptr;
#if defined(__ia64__)
    hint = (void*)0x0000070000000000ULL;
#endif
    void* region = mmap(hint, length, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0);
    if (region == MAP_FAILED)
        return nullptr;
#if defined(__ia64__)
    if ((uintptr_t(region) + (length - 1)) & 0xffff800000000000ULL) {
        if (munmap(region, length))
            MOZ_RELEASE_ASSERT(errno == ENOMEM);
        return nullptr;
    }
#endif
    return region;
}

void
unmapPages(void* p, size_t size)
{
    if (munmap(p, size))
        MOZ_RELEASE_ASSERT(errno == ENOMEM);
}

#else // !defined(XP_WIN) && !defined(SOLARIS) && !defined(XP_UNIX)
#error "Memory mapping functions are not defined for your OS."
#endif
END_TEST(testGCAllocator)