DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef gc_Zone_h
#define gc_Zone_h

#include "mozilla/Atomics.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/MemoryReporting.h"

#include "jscntxt.h"
#include "jsinfer.h"

#include "gc/FindSCCs.h"
#include "gc/GCRuntime.h"
#include "js/TracingAPI.h"

namespace js {

namespace jit {
class JitZone;
}

// Encapsulates the data needed to perform allocation. Typically there is
// precisely one of these per zone (|cx->zone().allocator|). However, in
// parallel execution mode, there will be one per worker thread.
class Allocator
{
  public:
    explicit Allocator(JS::Zone* zone);

    js::gc::ArenaLists arenas;

  private:
    // Since allocators can be accessed from worker threads, the parent zone_
    // should not be accessed in general. GCRuntime is allowed to actually do
    // the allocation, however.
    friend class js::gc::GCRuntime;

    JS::Zone* zone_;
};

namespace gc {

// This class encapsulates the data that determines when we need to do a zone GC.
class ZoneHeapThreshold
{
    // The "growth factor" for computing our next thresholds after a GC.
    double gcHeapGrowthFactor_;

    // GC trigger threshold for allocations on the GC heap.
    size_t gcTriggerBytes_;

  public:
    ZoneHeapThreshold()
      : gcHeapGrowthFactor_(3.0),
        gcTriggerBytes_(0)
    {}

    double gcHeapGrowthFactor() const { return gcHeapGrowthFactor_; }
    size_t gcTriggerBytes() const { return gcTriggerBytes_; }
    bool isCloseToAllocTrigger(const js::gc::HeapUsage& usage, bool highFrequencyGC) const;

    void updateAfterGC(size_t lastBytes, JSGCInvocationKind gckind,
                       const GCSchedulingTunables& tunables, const GCSchedulingState& state);
    void updateForRemovedArena(const GCSchedulingTunables& tunables);

  private:
    static double computeZoneHeapGrowthFactorForHeapSize(size_t lastBytes,
                                                         const GCSchedulingTunables& tunables,
                                                         const GCSchedulingState& state);
    static size_t computeZoneTriggerBytes(double growthFactor, size_t lastBytes,
                                          JSGCInvocationKind gckind,
                                          const GCSchedulingTunables& tunables);
};

} // namespace gc
} // namespace js

namespace JS {

// A zone is a collection of compartments. Every compartment belongs to exactly
// one zone. In Firefox, there is roughly one zone per tab along with a system
// zone for everything else. Zones mainly serve as boundaries for garbage
// collection. Unlike compartments, they have no special security properties.
//
// Every GC thing belongs to exactly one zone. GC things from the same zone but
// different compartments can share an arena (4k page). GC things from different
// zones cannot be stored in the same arena. The garbage collector is capable of
// collecting one zone at a time; it cannot collect at the granularity of
// compartments.
//
// GC things are tied to zones and compartments as follows:
//
// - JSObjects belong to a compartment and cannot be shared between
//   compartments. If an object needs to point to a JSObject in a different
//   compartment, regardless of zone, it must go through a cross-compartment
//   wrapper. Each compartment keeps track of its outgoing wrappers in a table.
//
// - JSStrings do not belong to any particular compartment, but they do belong
//   to a zone. Thus, two different compartments in the same zone can point to a
//   JSString. When a string needs to be wrapped, we copy it if it's in a
//   different zone and do nothing if it's in the same zone. Thus, transferring
//   strings within a zone is very efficient.
//
// - Shapes and base shapes belong to a compartment and cannot be shared between
//   compartments. A base shape holds a pointer to its compartment. Shapes find
//   their compartment via their base shape. JSObjects find their compartment
//   via their shape.
//
// - Scripts are also compartment-local and cannot be shared. A script points to
//   its compartment.
//
// - Type objects and JitCode objects belong to a compartment and cannot be
//   shared. However, there is no mechanism to obtain their compartments.
//
// A zone remains alive as long as any GC things in the zone are alive. A
// compartment remains alive as long as any JSObjects, scripts, shapes, or base
// shapes within it are alive.
//
// We always guarantee that a zone has at least one live compartment by refusing
// to delete the last compartment in a live zone. (This could happen, for
// example, if the conservative scanner marks a string in an otherwise dead
// zone.)
struct Zone : public JS::shadow::Zone,
              public js::gc::GraphNodeBase<JS::Zone>,
              public js::MallocProvider<JS::Zone>
{
    explicit Zone(JSRuntime* rt);
    ~Zone();
    bool init(bool isSystem);

    void findOutgoingEdges(js::gc::ComponentFinder<JS::Zone>& finder);

    void discardJitCode(js::FreeOp* fop);

    void addSizeOfIncludingThis(mozilla::MallocSizeOf mallocSizeOf,
                                size_t* typePool,
                                size_t* baselineStubsOptimized);

    void resetGCMallocBytes();
    void setGCMaxMallocBytes(size_t value);
    void updateMallocCounter(size_t nbytes) {
        // Note: this code may be run from worker threads. We tolerate any
        // thread races when updating gcMallocBytes.
        gcMallocBytes -= ptrdiff_t(nbytes);
        if (MOZ_UNLIKELY(isTooMuchMalloc()))
            onTooMuchMalloc();
    }

    bool isTooMuchMalloc() const { return gcMallocBytes <= 0; }
    void onTooMuchMalloc();

    void* onOutOfMemory(void* p, size_t nbytes) {
        return runtimeFromMainThread()->onOutOfMemory(p, nbytes);
    }
    void reportAllocationOverflow() { js_ReportAllocationOverflow(nullptr); }

    void beginSweepTypes(js::FreeOp* fop, bool releaseTypes);

    bool hasMarkedCompartments();

    void scheduleGC() { MOZ_ASSERT(!runtimeFromMainThread()->isHeapBusy()); gcScheduled_ = true; }
    void unscheduleGC() { gcScheduled_ = false; }
    bool isGCScheduled() { return gcScheduled_ && canCollect(); }

    void setPreservingCode(bool preserving) { gcPreserveCode_ = preserving; }
    bool isPreservingCode() const { return gcPreserveCode_; }

    bool canCollect();

    enum GCState {
        NoGC,
        Mark,
        MarkGray,
        Sweep,
        Finished,
        Compact
    };
    void setGCState(GCState state) {
        MOZ_ASSERT(runtimeFromMainThread()->isHeapBusy());
        MOZ_ASSERT_IF(state != NoGC, canCollect());
        gcState_ = state;
    }

    bool isCollecting() const {
        if (runtimeFromMainThread()->isHeapCollecting())
            return gcState_ != NoGC;
        else
            return needsIncrementalBarrier();
    }

    bool isCollectingFromAnyThread() const {
        if (runtimeFromAnyThread()->isHeapCollecting())
            return gcState_ != NoGC;
        else
            return needsIncrementalBarrier();
    }

    // If this returns true, all object tracing must be done with a GC marking
    // tracer.
    bool requireGCTracer() const {
        JSRuntime* rt = runtimeFromAnyThread();
        return rt->isHeapMajorCollecting() && !rt->isHeapCompacting() && gcState_ != NoGC;
    }

    bool isGCMarking() {
        if (runtimeFromMainThread()->isHeapCollecting())
            return gcState_ == Mark || gcState_ == MarkGray;
        else
            return needsIncrementalBarrier();
    }

    bool wasGCStarted() const { return gcState_ != NoGC; }
    bool isGCMarkingBlack() { return gcState_ == Mark; }
    bool isGCMarkingGray() { return gcState_ == MarkGray; }
    bool isGCSweeping() { return gcState_ == Sweep; }
    bool isGCFinished() { return gcState_ == Finished; }
    bool isGCCompacting() { return gcState_ == Compact; }
    bool isGCSweepingOrCompacting() { return gcState_ == Sweep || gcState_ == Compact; }

    // Get a number that is incremented whenever this zone is collected, and
    // possibly at other times too.
    uint64_t gcNumber();

    bool compileBarriers() const { return compileBarriers(needsIncrementalBarrier()); }
    bool compileBarriers(bool needsIncrementalBarrier) const {
        return needsIncrementalBarrier ||
               runtimeFromMainThread()->gcZeal() == js::gc::ZealVerifierPreValue;
    }

    enum ShouldUpdateJit { DontUpdateJit, UpdateJit };
    void setNeedsIncrementalBarrier(bool needs, ShouldUpdateJit updateJit);
    const bool* addressOfNeedsIncrementalBarrier() const { return &needsIncrementalBarrier_; }

    js::jit::JitZone* getJitZone(JSContext* cx) { return jitZone_ ? jitZone_ : createJitZone(cx); }
    js::jit::JitZone* jitZone() { return jitZone_; }

#ifdef DEBUG
    // For testing purposes, return the index of the zone group which this zone
    // was swept in in the last GC.
    unsigned lastZoneGroupIndex() { return gcLastZoneGroupIndex; }
#endif

  private:
    void sweepBreakpoints(js::FreeOp* fop);
    void sweepCompartments(js::FreeOp* fop, bool keepAtleastOne, bool lastGC);

    js::jit::JitZone* createJitZone(JSContext* cx);

    bool isQueuedForBackgroundSweep() {
        return isOnList();
    }

  public:
    js::Allocator allocator;

    js::types::TypeZone types;

    // The set of compartments in this zone.
    typedef js::Vector<JSCompartment*, 1, js::SystemAllocPolicy> CompartmentVector;
    CompartmentVector compartments;

    // This compartment's gray roots.
    typedef js::Vector<js::GrayRoot, 0, js::SystemAllocPolicy> GrayRootVector;
    GrayRootVector gcGrayRoots;

    // A set of edges from this zone to other zones.
    //
    // This is used during GC while calculating zone groups to record edges that
    // can't be determined by examining this zone by itself.
    ZoneSet gcZoneGroupEdges;

    // Malloc counter to measure memory pressure for GC scheduling. It runs from
    // gcMaxMallocBytes down to zero. This counter should be used only when it's
    // not possible to know the size of a free.
    mozilla::Atomic<ptrdiff_t, mozilla::ReleaseAcquire> gcMallocBytes;

    // GC trigger threshold for allocations on the C heap.
    size_t gcMaxMallocBytes;

    // Whether a GC has been triggered as a result of gcMallocBytes falling
    // below zero.
    //
    // This should be a bool, but Atomic only supports 32-bit and pointer-sized
    // types.
    mozilla::Atomic<uint32_t, mozilla::ReleaseAcquire> gcMallocGCTriggered;

    // Track heap usage under this Zone.
    js::gc::HeapUsage usage;

    // Thresholds used to trigger GC.
    js::gc::ZoneHeapThreshold threshold;

    // Amount of data to allocate before triggering a new incremental slice for
    // the current GC.
    size_t gcDelayBytes;

    // Per-zone data for use by an embedder.
    void* data;

    bool isSystem;

    bool usedByExclusiveThread;

    // True when there are active frames.
    bool active;

    mozilla::DebugOnly<unsigned> gcLastZoneGroupIndex;

  private:
    js::jit::JitZone* jitZone_;

    GCState gcState_;
    bool gcScheduled_;
    bool gcPreserveCode_;
    bool jitUsingBarriers_;

    // Allow zones to be linked into a list
    friend class js::gc::ZoneList;
    static Zone * const NotOnList;
    Zone* listNext_;
    bool isOnList() const;
    Zone* nextZone() const;

    friend bool js::CurrentThreadCanAccessZone(Zone* zone);
    friend class js::gc::GCRuntime;
};

} // namespace JS

namespace js {

// Using the atoms zone without holding the exclusive access lock is dangerous
// because worker threads may be using it simultaneously. Therefore, it's
// better to skip the atoms zone when iterating over zones. If you need to
// iterate over the atoms zone, consider taking the exclusive access lock first.
enum ZoneSelector {
    WithAtoms,
    SkipAtoms
};

class ZonesIter
{
    gc::AutoEnterIteration iterMarker;
    JS::Zone** it, **end;

  public:
    ZonesIter(JSRuntime* rt, ZoneSelector selector) : iterMarker(&rt->gc) {
        it = rt->gc.zones.begin();
        end = rt->gc.zones.end();

        if (selector == SkipAtoms) {
            MOZ_ASSERT(atAtomsZone(rt));
            it++;
        }
    }

    bool atAtomsZone(JSRuntime* rt);

    bool done() const { return it == end; }

    void next() {
        MOZ_ASSERT(!done());
        do {
            it++;
        } while (!done() && (*it)->usedByExclusiveThread);
    }

    JS::Zone* get() const {
        MOZ_ASSERT(!done());
        return *it;
    }

    operator JS::Zone*() const { return get(); }
    JS::Zone* operator->() const { return get(); }
};

struct CompartmentsInZoneIter
{
    explicit CompartmentsInZoneIter(JS::Zone* zone) : zone(zone) {
        it = zone->compartments.begin();
    }

    bool done() const {
        MOZ_ASSERT(it);
        return it < zone->compartments.begin() ||
               it >= zone->compartments.end();
    }
    void next() {
        MOZ_ASSERT(!done());
        it++;
    }

    JSCompartment* get() const {
        MOZ_ASSERT(it);
        return *it;
    }

    operator JSCompartment*() const { return get(); }
    JSCompartment* operator->() const { return get(); }

  private:
    JS::Zone* zone;
    JSCompartment** it;

    CompartmentsInZoneIter()
      : zone(nullptr), it(nullptr)
    {}

    // This is for the benefit of CompartmentsIterT::comp.
    friend class mozilla::Maybe<CompartmentsInZoneIter>;
};

// This iterator iterates over all the compartments in a given set of zones. The
// set of zones is determined by iterating ZoneIterT.
template<class ZonesIterT>
class CompartmentsIterT
{
    gc::AutoEnterIteration iterMarker;
    ZonesIterT zone;
    mozilla::Maybe<CompartmentsInZoneIter> comp;

  public:
    explicit CompartmentsIterT(JSRuntime* rt)
      : iterMarker(&rt->gc), zone(rt)
    {
        if (zone.done())
            comp.emplace();
        else
            comp.emplace(zone);
    }

    CompartmentsIterT(JSRuntime* rt, ZoneSelector selector)
      : iterMarker(&rt->gc), zone(rt, selector)
    {
        if (zone.done())
            comp.emplace();
        else
            comp.emplace(zone);
    }

    bool done() const { return zone.done(); }

    void next() {
        MOZ_ASSERT(!done());
        MOZ_ASSERT(!comp.ref().done());
        comp->next();
        if (comp->done()) {
            comp.reset();
            zone.next();
            if (!zone.done())
                comp.emplace(zone);
        }
    }

    JSCompartment* get() const {
        MOZ_ASSERT(!done());
        return *comp;
    }

    operator JSCompartment*() const { return get(); }
    JSCompartment* operator->() const { return get(); }
};

typedef CompartmentsIterT<ZonesIter> CompartmentsIter;

// Return the Zone* of a Value. Asserts if the Value is not a GC thing.
Zone*
ZoneOfValue(const JS::Value& value);

} // namespace js

#endif // gc_Zone_h