DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "gc/Memory.h"

#include "mozilla/Atomics.h"
#include "mozilla/TaggedAnonymousMemory.h"

#include "js/HeapAPI.h"
#include "vm/Runtime.h"

#if defined(XP_WIN)

#include "jswin.h"
#include <psapi.h>

#elif defined(SOLARIS)

#include <sys/mman.h>
#include <unistd.h>

#elif defined(XP_UNIX)

#include <algorithm>
#include <errno.h>
#include <sys/mman.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

#endif

namespace js {
namespace gc {

// The GC can only safely decommit memory when the page size of the
// running process matches the compiled arena size.
static size_t pageSize = 0;

// The OS allocation granularity may not match the page size.
static size_t allocGranularity = 0;

#if defined(XP_UNIX)
// The addresses handed out by mmap may grow up or down.
static mozilla::Atomic<int, mozilla::Relaxed> growthDirection(0);
#endif

// Data from OOM crashes shows there may be up to 24 chunksized but unusable
// chunks available in low memory situations. These chunks may all need to be
// used up before we gain access to remaining *alignable* chunksized regions,
// so we use a generous limit of 32 unusable chunks to ensure we reach them.
static const int MaxLastDitchAttempts = 32;

static void GetNewChunk(void** aAddress, void** aRetainedAddr, size_t size, size_t alignment);
static void* MapAlignedPagesSlow(size_t size, size_t alignment);
static void* MapAlignedPagesLastDitch(size_t size, size_t alignment);

size_t
SystemPageSize()
{
    return pageSize;
}

static bool
DecommitEnabled()
{
    return pageSize == ArenaSize;
}

/*
 * This returns the offset of address p from the nearest aligned address at
 * or below p - or alternatively, the number of unaligned bytes at the end of
 * the region starting at p (as we assert that allocation size is an integer
 * multiple of the alignment).
 */
static inline size_t
OffsetFromAligned(void* p, size_t alignment)
{
    return uintptr_t(p) % alignment;
}

void*
TestMapAlignedPagesLastDitch(size_t size, size_t alignment)
{
    return MapAlignedPagesLastDitch(size, alignment);
}


#if defined(XP_WIN)

void
InitMemorySubsystem()
{
    if (pageSize == 0) {
        SYSTEM_INFO sysinfo;
        GetSystemInfo(&sysinfo);
        pageSize = sysinfo.dwPageSize;
        allocGranularity = sysinfo.dwAllocationGranularity;
    }
}

static inline void*
MapMemoryAt(void* desired, size_t length, int flags, int prot = PAGE_READWRITE)
{
    return VirtualAlloc(desired, length, flags, prot);
}

static inline void*
MapMemory(size_t length, int flags, int prot = PAGE_READWRITE)
{
    return VirtualAlloc(nullptr, length, flags, prot);
}

void*
MapAlignedPages(size_t size, size_t alignment)
{
    MOZ_ASSERT(size >= alignment);
    MOZ_ASSERT(size % alignment == 0);
    MOZ_ASSERT(size % pageSize == 0);
    MOZ_ASSERT(alignment % allocGranularity == 0);

    void* p = MapMemory(size, MEM_COMMIT | MEM_RESERVE);

    /* Special case: If we want allocation alignment, no further work is needed. */
    if (alignment == allocGranularity)
        return p;

    if (OffsetFromAligned(p, alignment) == 0)
        return p;

    void* retainedAddr;
    GetNewChunk(&p, &retainedAddr, size, alignment);
    if (retainedAddr)
        UnmapPages(retainedAddr, size);
    if (p) {
        if (OffsetFromAligned(p, alignment) == 0)
            return p;
        UnmapPages(p, size);
    }

    p = MapAlignedPagesSlow(size, alignment);
    if (!p)
        return MapAlignedPagesLastDitch(size, alignment);

    MOZ_ASSERT(OffsetFromAligned(p, alignment) == 0);
    return p;
}

static void*
MapAlignedPagesSlow(size_t size, size_t alignment)
{
    /*
     * Windows requires that there be a 1:1 mapping between VM allocation
     * and deallocation operations.  Therefore, take care here to acquire the
     * final result via one mapping operation.  This means unmapping any
     * preliminary result that is not correctly aligned.
     */
    void* p;
    do {
        /*
         * Over-allocate in order to map a memory region that is definitely
         * large enough, then deallocate and allocate again the correct size,
         * within the over-sized mapping.
         *
         * Since we're going to unmap the whole thing anyway, the first
         * mapping doesn't have to commit pages.
         */
        size_t reserveSize = size + alignment - pageSize;
        p = MapMemory(reserveSize, MEM_RESERVE);
        if (!p)
            return nullptr;
        void* chunkStart = (void*)AlignBytes(uintptr_t(p), alignment);
        UnmapPages(p, reserveSize);
        p = MapMemoryAt(chunkStart, size, MEM_COMMIT | MEM_RESERVE);

        /* Failure here indicates a race with another thread, so try again. */
    } while (!p);

    return p;
}

/*
 * In a low memory or high fragmentation situation, alignable chunks of the
 * desired size may still be available, even if there are no more contiguous
 * free chunks that meet the |size + alignment - pageSize| requirement of
 * MapAlignedPagesSlow. In this case, try harder to find an alignable chunk
 * by temporarily holding onto the unaligned parts of each chunk until the
 * allocator gives us a chunk that either is, or can be aligned.
 */
static void*
MapAlignedPagesLastDitch(size_t size, size_t alignment)
{
    void* tempMaps[MaxLastDitchAttempts];
    int attempt = 0;
    void* p = MapMemory(size, MEM_COMMIT | MEM_RESERVE);
    if (OffsetFromAligned(p, alignment) == 0)
        return p;
    for (; attempt < MaxLastDitchAttempts; ++attempt) {
        GetNewChunk(&p, tempMaps + attempt, size, alignment);
        if (OffsetFromAligned(p, alignment) == 0) {
            if (tempMaps[attempt])
                UnmapPages(tempMaps[attempt], size);
            break;
        }
        if (!tempMaps[attempt])
            break; /* Bail if GetNewChunk failed. */
    }
    if (OffsetFromAligned(p, alignment)) {
        UnmapPages(p, size);
        p = nullptr;
    }
    while (--attempt >= 0)
        UnmapPages(tempMaps[attempt], size);
    return p;
}

/*
 * On Windows, map and unmap calls must be matched, so we deallocate the
 * unaligned chunk, then reallocate the unaligned part to block off the
 * old address and force the allocator to give us a new one.
 */
static void
GetNewChunk(void** aAddress, void** aRetainedAddr, size_t size, size_t alignment)
{
    void* address = *aAddress;
    void* retainedAddr = nullptr;
    do {
        size_t retainedSize;
        size_t offset = OffsetFromAligned(address, alignment);
        if (!offset)
            break;
        UnmapPages(address, size);
        retainedSize = alignment - offset;
        retainedAddr = MapMemoryAt(address, retainedSize, MEM_RESERVE);
        address = MapMemory(size, MEM_COMMIT | MEM_RESERVE);
        /* If retainedAddr is null here, we raced with another thread. */
    } while (!retainedAddr);
    *aAddress = address;
    *aRetainedAddr = retainedAddr;
}

void
UnmapPages(void* p, size_t size)
{
    MOZ_ALWAYS_TRUE(VirtualFree(p, 0, MEM_RELEASE));
}

bool
MarkPagesUnused(void* p, size_t size)
{
    if (!DecommitEnabled())
        return true;

    MOZ_ASSERT(OffsetFromAligned(p, pageSize) == 0);
    LPVOID p2 = MapMemoryAt(p, size, MEM_RESET);
    return p2 == p;
}

bool
MarkPagesInUse(void* p, size_t size)
{
    if (!DecommitEnabled())
        return true;

    MOZ_ASSERT(OffsetFromAligned(p, pageSize) == 0);
    return true;
}

size_t
GetPageFaultCount()
{
    PROCESS_MEMORY_COUNTERS pmc;
    if (!GetProcessMemoryInfo(GetCurrentProcess(), &pmc, sizeof(pmc)))
        return 0;
    return pmc.PageFaultCount;
}

void*
AllocateMappedContent(int fd, size_t offset, size_t length, size_t alignment)
{
    // TODO: Bug 988813 - Support memory mapped array buffer for Windows platform.
    return nullptr;
}

// Deallocate mapped memory for object.
void
DeallocateMappedContent(void* p, size_t length)
{
    // TODO: Bug 988813 - Support memory mapped array buffer for Windows platform.
}

#elif defined(SOLARIS)

#ifndef MAP_NOSYNC
# define MAP_NOSYNC 0
#endif

void
InitMemorySubsystem()
{
    if (pageSize == 0)
        pageSize = allocGranularity = size_t(sysconf(_SC_PAGESIZE));
}

void*
MapAlignedPages(size_t size, size_t alignment)
{
    MOZ_ASSERT(size >= alignment);
    MOZ_ASSERT(size % alignment == 0);
    MOZ_ASSERT(size % pageSize == 0);
    MOZ_ASSERT(alignment % allocGranularity == 0);

    int prot = PROT_READ | PROT_WRITE;
    int flags = MAP_PRIVATE | MAP_ANON | MAP_ALIGN | MAP_NOSYNC;

    void* p = mmap((caddr_t)alignment, size, prot, flags, -1, 0);
    if (p == MAP_FAILED)
        return nullptr;
    return p;
}

void
UnmapPages(void* p, size_t size)
{
    MOZ_ALWAYS_TRUE(0 == munmap((caddr_t)p, size));
}

bool
MarkPagesUnused(void* p, size_t size)
{
    MOZ_ASSERT(OffsetFromAligned(p, pageSize) == 0);
    return true;
}

bool
MarkPagesInUse(void* p, size_t size)
{
    if (!DecommitEnabled())
        return true;

    MOZ_ASSERT(OffsetFromAligned(p, pageSize) == 0);
    return true;
}

size_t
GetPageFaultCount()
{
    return 0;
}

void*
AllocateMappedContent(int fd, size_t offset, size_t length, size_t alignment)
{
    // Not implemented.
    return nullptr;
}

// Deallocate mapped memory for object.
void
DeallocateMappedContent(void* p, size_t length)
{
    // Not implemented.
}

#elif defined(XP_UNIX)

void
InitMemorySubsystem()
{
    if (pageSize == 0)
        pageSize = allocGranularity = size_t(sysconf(_SC_PAGESIZE));
}

static inline void*
MapMemoryAt(void* desired, size_t length, int prot = PROT_READ | PROT_WRITE,
            int flags = MAP_PRIVATE | MAP_ANON, int fd = -1, off_t offset = 0)
{
#if defined(__ia64__)
    MOZ_ASSERT(0xffff800000000000ULL & (uintptr_t(desired) + length - 1) == 0);
#endif
    void* region = mmap(desired, length, prot, flags, fd, offset);
    if (region == MAP_FAILED)
        return nullptr;
    /*
     * mmap treats the given address as a hint unless the MAP_FIXED flag is
     * used (which isn't usually what you want, as this overrides existing
     * mappings), so check that the address we got is the address we wanted.
     */
    if (region != desired) {
        if (munmap(region, length))
            MOZ_ASSERT(errno == ENOMEM);
        return nullptr;
    }
    return region;
}

static inline void*
MapMemory(size_t length, int prot = PROT_READ | PROT_WRITE,
          int flags = MAP_PRIVATE | MAP_ANON, int fd = -1, off_t offset = 0)
{
#if defined(__ia64__)
    /*
     * The JS engine assumes that all allocated pointers have their high 17 bits clear,
     * which ia64's mmap doesn't support directly. However, we can emulate it by passing
     * mmap an "addr" parameter with those bits clear. The mmap will return that address,
     * or the nearest available memory above that address, providing a near-guarantee
     * that those bits are clear. If they are not, we return nullptr below to indicate
     * out-of-memory.
     *
     * The addr is chosen as 0x0000070000000000, which still allows about 120TB of virtual
     * address space.
     *
     * See Bug 589735 for more information.
     */
    void* region = mmap((void*)0x0000070000000000, length, prot, flags, fd, offset);
    if (region == MAP_FAILED)
        return nullptr;
    /*
     * If the allocated memory doesn't have its upper 17 bits clear, consider it
     * as out of memory.
     */
    if ((uintptr_t(region) + (length - 1)) & 0xffff800000000000) {
        if (munmap(region, length))
            MOZ_ASSERT(errno == ENOMEM);
        return nullptr;
    }
    return region;
#else
    void* region = MozTaggedAnonymousMmap(nullptr, length, prot, flags, fd, offset, "js-gc-heap");
    if (region == MAP_FAILED)
        return nullptr;
    return region;
#endif
}

void*
MapAlignedPages(size_t size, size_t alignment)
{
    MOZ_ASSERT(size >= alignment);
    MOZ_ASSERT(size % alignment == 0);
    MOZ_ASSERT(size % pageSize == 0);
    MOZ_ASSERT(alignment % allocGranularity == 0);

    void* p = MapMemory(size);

    /* Special case: If we want page alignment, no further work is needed. */
    if (alignment == allocGranularity)
        return p;

    if (OffsetFromAligned(p, alignment) == 0)
        return p;

    void* retainedAddr;
    GetNewChunk(&p, &retainedAddr, size, alignment);
    if (retainedAddr)
        UnmapPages(retainedAddr, size);
    if (p) {
        if (OffsetFromAligned(p, alignment) == 0)
            return p;
        UnmapPages(p, size);
    }

    p = MapAlignedPagesSlow(size, alignment);
    if (!p)
        return MapAlignedPagesLastDitch(size, alignment);

    MOZ_ASSERT(OffsetFromAligned(p, alignment) == 0);
    return p;
}

static void*
MapAlignedPagesSlow(size_t size, size_t alignment)
{
    /* Overallocate and unmap the region's edges. */
    size_t reqSize = size + alignment - pageSize;
    void* region = MapMemory(reqSize);
    if (!region)
        return nullptr;

    void* regionEnd = (void*)(uintptr_t(region) + reqSize);
    void* front;
    void* end;
    if (growthDirection <= 0) {
        size_t offset = OffsetFromAligned(regionEnd, alignment);
        end = (void*)(uintptr_t(regionEnd) - offset);
        front = (void*)(uintptr_t(end) - size);
    } else {
        size_t offset = OffsetFromAligned(region, alignment);
        front = (void*)(uintptr_t(region) + (offset ? alignment - offset : 0));
        end = (void*)(uintptr_t(front) + size);
    }

    if (front != region)
        UnmapPages(region, uintptr_t(front) - uintptr_t(region));
    if (end != regionEnd)
        UnmapPages(end, uintptr_t(regionEnd) - uintptr_t(end));

    return front;
}

/*
 * In a low memory or high fragmentation situation, alignable chunks of the
 * desired size may still be available, even if there are no more contiguous
 * free chunks that meet the |size + alignment - pageSize| requirement of
 * MapAlignedPagesSlow. In this case, try harder to find an alignable chunk
 * by temporarily holding onto the unaligned parts of each chunk until the
 * allocator gives us a chunk that either is, or can be aligned.
 */
static void*
MapAlignedPagesLastDitch(size_t size, size_t alignment)
{
    void* tempMaps[MaxLastDitchAttempts];
    int attempt = 0;
    void* p = MapMemory(size);
    if (OffsetFromAligned(p, alignment) == 0)
        return p;
    for (; attempt < MaxLastDitchAttempts; ++attempt) {
        GetNewChunk(&p, tempMaps + attempt, size, alignment);
        if (OffsetFromAligned(p, alignment) == 0) {
            if (tempMaps[attempt])
                UnmapPages(tempMaps[attempt], size);
            break;
        }
        if (!tempMaps[attempt])
            break; /* Bail if GetNewChunk failed. */
    }
    if (OffsetFromAligned(p, alignment)) {
        UnmapPages(p, size);
        p = nullptr;
    }
    while (--attempt >= 0)
        UnmapPages(tempMaps[attempt], size);
    return p;
}

/*
 * mmap calls don't have to be matched with calls to munmap, so we can unmap
 * just the pages we don't need. However, as we don't know a priori if addresses
 * are handed out in increasing or decreasing order, we have to try both
 * directions (depending on the environment, one will always fail).
 */
static void
GetNewChunk(void** aAddress, void** aRetainedAddr, size_t size, size_t alignment)
{
    void* address = *aAddress;
    void* retainedAddr = nullptr;
    bool addrsGrowDown = growthDirection <= 0;
    int i = 0;
    for (; i < 2; ++i) {
        /* Try the direction indicated by growthDirection. */
        if (addrsGrowDown) {
            size_t offset = OffsetFromAligned(address, alignment);
            void* head = (void*)((uintptr_t)address - offset);
            void* tail = (void*)((uintptr_t)head + size);
            if (MapMemoryAt(head, offset)) {
                UnmapPages(tail, offset);
                if (growthDirection >= -8)
                    --growthDirection;
                address = head;
                break;
            }
        } else {
            size_t offset = alignment - OffsetFromAligned(address, alignment);
            void* head = (void*)((uintptr_t)address + offset);
            void* tail = (void*)((uintptr_t)address + size);
            if (MapMemoryAt(tail, offset)) {
                UnmapPages(address, offset);
                if (growthDirection <= 8)
                    ++growthDirection;
                address = head;
                break;
            }
        }
        /* If we're confident in the growth direction, don't try the other. */
        if (growthDirection < -8 || growthDirection > 8)
            break;
        /* If that failed, try the opposite direction. */
        addrsGrowDown = !addrsGrowDown;
    }
    /* If our current chunk cannot be aligned, see if the next one is aligned. */
    if (OffsetFromAligned(address, alignment)) {
        retainedAddr = address;
        address = MapMemory(size);
    }
    *aAddress = address;
    *aRetainedAddr = retainedAddr;
}

void
UnmapPages(void* p, size_t size)
{
    if (munmap(p, size))
        MOZ_ASSERT(errno == ENOMEM);
}

bool
MarkPagesUnused(void* p, size_t size)
{
    if (!DecommitEnabled())
        return false;

    MOZ_ASSERT(OffsetFromAligned(p, pageSize) == 0);
    int result = madvise(p, size, MADV_DONTNEED);
    return result != -1;
}

bool
MarkPagesInUse(void* p, size_t size)
{
    if (!DecommitEnabled())
        return true;

    MOZ_ASSERT(OffsetFromAligned(p, pageSize) == 0);
    return true;
}

size_t
GetPageFaultCount()
{
    struct rusage usage;
    int err = getrusage(RUSAGE_SELF, &usage);
    if (err)
        return 0;
    return usage.ru_majflt;
}

void*
AllocateMappedContent(int fd, size_t offset, size_t length, size_t alignment)
{
#define NEED_PAGE_ALIGNED 0
    size_t pa_start; // Page aligned starting
    size_t pa_end; // Page aligned ending
    size_t pa_size; // Total page aligned size
    struct stat st;
    uint8_t* buf;

    // Make sure file exists and do sanity check for offset and size.
    if (fstat(fd, &st) < 0 || offset >= (size_t) st.st_size ||
        length == 0 || length > (size_t) st.st_size - offset)
        return nullptr;

    // Check for minimal alignment requirement.
#if NEED_PAGE_ALIGNED
    alignment = std::max(alignment, pageSize);
#endif
    if (offset & (alignment - 1))
        return nullptr;

    // Page aligned starting of the offset.
    pa_start = offset & ~(pageSize - 1);
    // Calculate page aligned ending by adding one page to the page aligned
    // starting of data end position(offset + length - 1).
    pa_end = ((offset + length - 1) & ~(pageSize - 1)) + pageSize;
    pa_size = pa_end - pa_start;

    // Ask for a continuous memory location.
    buf = (uint8_t*) MapMemory(pa_size);
    if (!buf)
        return nullptr;

    buf = (uint8_t*) MapMemoryAt(buf, pa_size, PROT_READ | PROT_WRITE,
                                  MAP_PRIVATE | MAP_FIXED, fd, pa_start);
    if (!buf)
        return nullptr;

    // Reset the data before target file, which we don't need to see.
    memset(buf, 0, offset - pa_start);

    // Reset the data after target file, which we don't need to see.
    memset(buf + (offset - pa_start) + length, 0, pa_end - (offset + length));

    return buf + (offset - pa_start);
}

void
DeallocateMappedContent(void* p, size_t length)
{
    void* pa_start; // Page aligned starting
    size_t total_size; // Total allocated size

    pa_start = (void*)(uintptr_t(p) & ~(pageSize - 1));
    total_size = ((uintptr_t(p) + length) & ~(pageSize - 1)) + pageSize - uintptr_t(pa_start);
    if (munmap(pa_start, total_size))
        MOZ_ASSERT(errno == ENOMEM);
}

#else
#error "Memory mapping functions are not defined for your OS."
#endif

} // namespace gc
} // namespace js