DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef gc_Heap_h
#define gc_Heap_h

#include "mozilla/ArrayUtils.h"
#include "mozilla/Atomics.h"
#include "mozilla/Attributes.h"
#include "mozilla/PodOperations.h"

#include <stddef.h>
#include <stdint.h>

#include "jspubtd.h"
#include "jstypes.h"
#include "jsutil.h"

#include "ds/BitArray.h"
#include "gc/Memory.h"
#include "js/GCAPI.h"
#include "js/HeapAPI.h"
#include "js/TracingAPI.h"

struct JSCompartment;

struct JSRuntime;

namespace JS {
namespace shadow {
struct Runtime;
}
}

namespace js {

class AutoLockGC;
class FreeOp;

#ifdef DEBUG
extern bool
RuntimeFromMainThreadIsHeapMajorCollecting(JS::shadow::Zone* shadowZone);

// Barriers can't be triggered during backend Ion compilation, which may run on
// a helper thread.
extern bool
CurrentThreadIsIonCompiling();
#endif

extern bool
UnmarkGrayCellRecursively(gc::Cell* cell, JSGCTraceKind kind);

namespace gc {

struct Arena;
class ArenaList;
class SortedArenaList;
struct ArenaHeader;
struct Chunk;

extern void
MarkKind(JSTracer* trc, void** thingp, JSGCTraceKind kind);

/*
 * This flag allows an allocation site to request a specific heap based upon the
 * estimated lifetime or lifetime requirements of objects allocated from that
 * site.
 */
enum InitialHeap {
    DefaultHeap,
    TenuredHeap
};

/* The GC allocation kinds. */
enum AllocKind {
    FINALIZE_OBJECT0,
    FINALIZE_OBJECT0_BACKGROUND,
    FINALIZE_OBJECT2,
    FINALIZE_OBJECT2_BACKGROUND,
    FINALIZE_OBJECT4,
    FINALIZE_OBJECT4_BACKGROUND,
    FINALIZE_OBJECT8,
    FINALIZE_OBJECT8_BACKGROUND,
    FINALIZE_OBJECT12,
    FINALIZE_OBJECT12_BACKGROUND,
    FINALIZE_OBJECT16,
    FINALIZE_OBJECT16_BACKGROUND,
    FINALIZE_OBJECT_LAST = FINALIZE_OBJECT16_BACKGROUND,
    FINALIZE_SCRIPT,
    FINALIZE_LAZY_SCRIPT,
    FINALIZE_SHAPE,
    FINALIZE_ACCESSOR_SHAPE,
    FINALIZE_BASE_SHAPE,
    FINALIZE_TYPE_OBJECT,
    FINALIZE_FAT_INLINE_STRING,
    FINALIZE_STRING,
    FINALIZE_EXTERNAL_STRING,
    FINALIZE_SYMBOL,
    FINALIZE_JITCODE,
    FINALIZE_LAST = FINALIZE_JITCODE
};

static const unsigned FINALIZE_LIMIT = FINALIZE_LAST + 1;
static const unsigned FINALIZE_OBJECT_LIMIT = FINALIZE_OBJECT_LAST + 1;

static inline JSGCTraceKind
MapAllocToTraceKind(AllocKind kind)
{
    static const JSGCTraceKind map[] = {
        JSTRACE_OBJECT,     /* FINALIZE_OBJECT0 */
        JSTRACE_OBJECT,     /* FINALIZE_OBJECT0_BACKGROUND */
        JSTRACE_OBJECT,     /* FINALIZE_OBJECT2 */
        JSTRACE_OBJECT,     /* FINALIZE_OBJECT2_BACKGROUND */
        JSTRACE_OBJECT,     /* FINALIZE_OBJECT4 */
        JSTRACE_OBJECT,     /* FINALIZE_OBJECT4_BACKGROUND */
        JSTRACE_OBJECT,     /* FINALIZE_OBJECT8 */
        JSTRACE_OBJECT,     /* FINALIZE_OBJECT8_BACKGROUND */
        JSTRACE_OBJECT,     /* FINALIZE_OBJECT12 */
        JSTRACE_OBJECT,     /* FINALIZE_OBJECT12_BACKGROUND */
        JSTRACE_OBJECT,     /* FINALIZE_OBJECT16 */
        JSTRACE_OBJECT,     /* FINALIZE_OBJECT16_BACKGROUND */
        JSTRACE_SCRIPT,     /* FINALIZE_SCRIPT */
        JSTRACE_LAZY_SCRIPT,/* FINALIZE_LAZY_SCRIPT */
        JSTRACE_SHAPE,      /* FINALIZE_SHAPE */
        JSTRACE_SHAPE,      /* FINALIZE_ACCESSOR_SHAPE */
        JSTRACE_BASE_SHAPE, /* FINALIZE_BASE_SHAPE */
        JSTRACE_TYPE_OBJECT,/* FINALIZE_TYPE_OBJECT */
        JSTRACE_STRING,     /* FINALIZE_FAT_INLINE_STRING */
        JSTRACE_STRING,     /* FINALIZE_STRING */
        JSTRACE_STRING,     /* FINALIZE_EXTERNAL_STRING */
        JSTRACE_SYMBOL,     /* FINALIZE_SYMBOL */
        JSTRACE_JITCODE,    /* FINALIZE_JITCODE */
    };

    static_assert(MOZ_ARRAY_LENGTH(map) == FINALIZE_LIMIT,
                  "AllocKind-to-TraceKind mapping must be in sync");
    return map[kind];
}

/*
 * This must be an upper bound, but we do not need the least upper bound, so
 * we just exclude non-background objects.
 */
static const size_t MAX_BACKGROUND_FINALIZE_KINDS = FINALIZE_LIMIT - FINALIZE_OBJECT_LIMIT / 2;

class TenuredCell;

// A GC cell is the base class for all GC things.
struct Cell
{
  public:
    MOZ_ALWAYS_INLINE bool isTenured() const { return !IsInsideNursery(this); }
    MOZ_ALWAYS_INLINE const TenuredCell& asTenured() const;
    MOZ_ALWAYS_INLINE TenuredCell& asTenured();

    inline JSRuntime* runtimeFromMainThread() const;
    inline JS::shadow::Runtime* shadowRuntimeFromMainThread() const;

    // Note: Unrestricted access to the runtime of a GC thing from an arbitrary
    // thread can easily lead to races. Use this method very carefully.
    inline JSRuntime* runtimeFromAnyThread() const;
    inline JS::shadow::Runtime* shadowRuntimeFromAnyThread() const;

    inline StoreBuffer* storeBuffer() const;

    static MOZ_ALWAYS_INLINE bool needWriteBarrierPre(JS::Zone* zone);

#ifdef DEBUG
    inline bool isAligned() const;
#endif

  protected:
    inline uintptr_t address() const;
    inline Chunk* chunk() const;
};

// A GC TenuredCell gets behaviors that are valid for things in the Tenured
// heap, such as access to the arena header and mark bits.
class TenuredCell : public Cell
{
  public:
    // Construct a TenuredCell from a void*, making various sanity assertions.
    static MOZ_ALWAYS_INLINE TenuredCell* fromPointer(void* ptr);
    static MOZ_ALWAYS_INLINE const TenuredCell* fromPointer(const void* ptr);

    // Mark bit management.
    MOZ_ALWAYS_INLINE bool isMarked(uint32_t color = BLACK) const;
    MOZ_ALWAYS_INLINE bool markIfUnmarked(uint32_t color = BLACK) const;
    MOZ_ALWAYS_INLINE void unmark(uint32_t color) const;
    MOZ_ALWAYS_INLINE void copyMarkBitsFrom(const TenuredCell* src);

    // Note: this is in TenuredCell because JSObject subclasses are sometimes
    // used tagged.
    static MOZ_ALWAYS_INLINE bool isNullLike(const Cell* thing) { return !thing; }

    // Access to the arena header.
    inline ArenaHeader* arenaHeader() const;
    inline AllocKind getAllocKind() const;
    inline JSGCTraceKind getTraceKind() const;
    inline JS::Zone* zone() const;
    inline JS::Zone* zoneFromAnyThread() const;
    inline bool isInsideZone(JS::Zone* zone) const;

    MOZ_ALWAYS_INLINE JS::shadow::Zone* shadowZone() const {
        return JS::shadow::Zone::asShadowZone(zone());
    }
    MOZ_ALWAYS_INLINE JS::shadow::Zone* shadowZoneFromAnyThread() const {
        return JS::shadow::Zone::asShadowZone(zoneFromAnyThread());
    }

    static MOZ_ALWAYS_INLINE void readBarrier(TenuredCell* thing);
    static MOZ_ALWAYS_INLINE void writeBarrierPre(TenuredCell* thing);

    static MOZ_ALWAYS_INLINE void writeBarrierPost(TenuredCell* thing, void* cellp);
    static MOZ_ALWAYS_INLINE void writeBarrierPostRelocate(TenuredCell* thing, void* cellp);
    static MOZ_ALWAYS_INLINE void writeBarrierPostRemove(TenuredCell* thing, void* cellp);

#ifdef DEBUG
    inline bool isAligned() const;
#endif
};

/*
 * The mark bitmap has one bit per each GC cell. For multi-cell GC things this
 * wastes space but allows to avoid expensive devisions by thing's size when
 * accessing the bitmap. In addition this allows to use some bits for colored
 * marking during the cycle GC.
 */
const size_t ArenaCellCount = size_t(1) << (ArenaShift - CellShift);
const size_t ArenaBitmapBits = ArenaCellCount;
const size_t ArenaBitmapBytes = ArenaBitmapBits / 8;
const size_t ArenaBitmapWords = ArenaBitmapBits / JS_BITS_PER_WORD;

/*
 * A FreeSpan represents a contiguous sequence of free cells in an Arena. It
 * can take two forms.
 *
 * - In an empty span, |first| and |last| are both zero.
 *
 * - In a non-empty span, |first| is the address of the first free thing in the
 *   span, and |last| is the address of the last free thing in the span.
 *   Furthermore, the memory pointed to by |last| holds a FreeSpan structure
 *   that points to the next span (which may be empty); this works because
 *   sizeof(FreeSpan) is less than the smallest thingSize.
 */
class FreeSpan
{
    friend class ArenaCellIterImpl;
    friend class CompactFreeSpan;
    friend class FreeList;

    uintptr_t   first;
    uintptr_t   last;

  public:
    // This inits just |first| and |last|; if the span is non-empty it doesn't
    // do anything with the next span stored at |last|.
    void initBoundsUnchecked(uintptr_t first, uintptr_t last) {
        this->first = first;
        this->last = last;
    }

    void initBounds(uintptr_t first, uintptr_t last) {
        initBoundsUnchecked(first, last);
        checkSpan();
    }

    void initAsEmpty() {
        first = 0;
        last = 0;
        MOZ_ASSERT(isEmpty());
    }

    // This sets |first| and |last|, and also sets the next span stored at
    // |last| as empty. (As a result, |firstArg| and |lastArg| cannot represent
    // an empty span.)
    void initFinal(uintptr_t firstArg, uintptr_t lastArg, size_t thingSize) {
        first = firstArg;
        last = lastArg;
        FreeSpan* lastSpan = reinterpret_cast<FreeSpan*>(last);
        lastSpan->initAsEmpty();
        MOZ_ASSERT(!isEmpty());
        checkSpan(thingSize);
    }

    bool isEmpty() const {
        checkSpan();
        return !first;
    }

    static size_t offsetOfFirst() {
        return offsetof(FreeSpan, first);
    }

    static size_t offsetOfLast() {
        return offsetof(FreeSpan, last);
    }

    // Like nextSpan(), but no checking of the following span is done.
    FreeSpan* nextSpanUnchecked() const {
        return reinterpret_cast<FreeSpan*>(last);
    }

    const FreeSpan* nextSpan() const {
        MOZ_ASSERT(!isEmpty());
        return nextSpanUnchecked();
    }

    uintptr_t arenaAddress() const {
        MOZ_ASSERT(!isEmpty());
        return first & ~ArenaMask;
    }

#ifdef DEBUG
    bool isWithinArena(uintptr_t arenaAddr) const {
        MOZ_ASSERT(!(arenaAddr & ArenaMask));
        MOZ_ASSERT(!isEmpty());
        return arenaAddress() == arenaAddr;
    }
#endif

    size_t length(size_t thingSize) const {
        checkSpan();
        MOZ_ASSERT((last - first) % thingSize == 0);
        return (last - first) / thingSize + 1;
    }

    bool inFreeList(uintptr_t thing) {
        for (const FreeSpan* span = this; !span->isEmpty(); span = span->nextSpan()) {
            /* If the thing comes before the current span, it's not free. */
            if (thing < span->first)
                return false;

            /* If we find it before the end of the span, it's free. */
            if (thing <= span->last)
                return true;
        }
        return false;
    }

  private:
    // Some callers can pass in |thingSize| easily, and we can do stronger
    // checking in that case.
    void checkSpan(size_t thingSize = 0) const {
#ifdef DEBUG
        if (!first || !last) {
            MOZ_ASSERT(!first && !last);
            // An empty span.
            return;
        }

        // |first| and |last| must be ordered appropriately, belong to the same
        // arena, and be suitably aligned.
        MOZ_ASSERT(first <= last);
        MOZ_ASSERT((first & ~ArenaMask) == (last & ~ArenaMask));
        MOZ_ASSERT((last - first) % (thingSize ? thingSize : CellSize) == 0);

        // If there's a following span, it must be from the same arena, it must
        // have a higher address, and the gap must be at least 2*thingSize.
        FreeSpan* next = reinterpret_cast<FreeSpan*>(last);
        if (next->first) {
            MOZ_ASSERT(next->last);
            MOZ_ASSERT((first & ~ArenaMask) == (next->first & ~ArenaMask));
            MOZ_ASSERT(thingSize
                       ? last + 2 * thingSize <= next->first
                       : last < next->first);
        }
#endif
    }
};

class CompactFreeSpan
{
    uint16_t firstOffset_;
    uint16_t lastOffset_;

  public:
    CompactFreeSpan(size_t firstOffset, size_t lastOffset)
      : firstOffset_(firstOffset)
      , lastOffset_(lastOffset)
    {}

    void initAsEmpty() {
        firstOffset_ = 0;
        lastOffset_ = 0;
    }

    bool operator==(const CompactFreeSpan& other) const {
        return firstOffset_ == other.firstOffset_ &&
               lastOffset_  == other.lastOffset_;
    }

    void compact(FreeSpan span) {
        if (span.isEmpty()) {
            initAsEmpty();
        } else {
            static_assert(ArenaShift < 16, "Check that we can pack offsets into uint16_t.");
            uintptr_t arenaAddr = span.arenaAddress();
            firstOffset_ = span.first - arenaAddr;
            lastOffset_  = span.last  - arenaAddr;
        }
    }

    bool isEmpty() const {
        MOZ_ASSERT(!!firstOffset_ == !!lastOffset_);
        return !firstOffset_;
    }

    FreeSpan decompact(uintptr_t arenaAddr) const {
        MOZ_ASSERT(!(arenaAddr & ArenaMask));
        FreeSpan decodedSpan;
        if (isEmpty()) {
            decodedSpan.initAsEmpty();
        } else {
            MOZ_ASSERT(firstOffset_ <= lastOffset_);
            MOZ_ASSERT(lastOffset_ < ArenaSize);
            decodedSpan.initBounds(arenaAddr + firstOffset_, arenaAddr + lastOffset_);
        }
        return decodedSpan;
    }
};

class FreeList
{
    // Although |head| is private, it is exposed to the JITs via the
    // offsetOf{First,Last}() and addressOfFirstLast() methods below.
    // Therefore, any change in the representation of |head| will require
    // updating the relevant JIT code.
    FreeSpan head;

  public:
    FreeList() {}

    static size_t offsetOfFirst() {
        return offsetof(FreeList, head) + offsetof(FreeSpan, first);
    }

    static size_t offsetOfLast() {
        return offsetof(FreeList, head) + offsetof(FreeSpan, last);
    }

    void* addressOfFirst() const {
        return (void*)&head.first;
    }

    void* addressOfLast() const {
        return (void*)&head.last;
    }

    void initAsEmpty() {
        head.initAsEmpty();
    }

    FreeSpan* getHead() { return &head; }
    void setHead(FreeSpan* span) { head = *span; }

    bool isEmpty() const {
        return head.isEmpty();
    }

#ifdef DEBUG
    uintptr_t arenaAddress() const {
        MOZ_ASSERT(!isEmpty());
        return head.arenaAddress();
    }
#endif

    ArenaHeader* arenaHeader() const {
        MOZ_ASSERT(!isEmpty());
        return reinterpret_cast<ArenaHeader*>(head.arenaAddress());
    }

#ifdef DEBUG
    bool isSameNonEmptySpan(const FreeSpan& another) const {
        MOZ_ASSERT(!isEmpty());
        MOZ_ASSERT(!another.isEmpty());
        return head.first == another.first && head.last == another.last;
    }
#endif

    MOZ_ALWAYS_INLINE TenuredCell* allocate(size_t thingSize) {
        MOZ_ASSERT(thingSize % CellSize == 0);
        head.checkSpan(thingSize);
        uintptr_t thing = head.first;
        if (thing < head.last) {
            // We have two or more things in the free list head, so we can do a
            // simple bump-allocate.
            head.first = thing + thingSize;
        } else if (MOZ_LIKELY(thing)) {
            // We have one thing in the free list head. Use it, but first
            // update the free list head to point to the subseqent span (which
            // may be empty).
            setHead(reinterpret_cast<FreeSpan*>(thing));
        } else {
            // The free list head is empty.
            return nullptr;
        }
        head.checkSpan(thingSize);
        JS_EXTRA_POISON(reinterpret_cast<void*>(thing), JS_ALLOCATED_TENURED_PATTERN, thingSize);
        return reinterpret_cast<TenuredCell*>(thing);
    }
};

/* Every arena has a header. */
struct ArenaHeader
{
    friend struct FreeLists;

    JS::Zone* zone;

    /*
     * ArenaHeader::next has two purposes: when unallocated, it points to the
     * next available Arena's header. When allocated, it points to the next
     * arena of the same size class and compartment.
     */
    ArenaHeader* next;

  private:
    /*
     * The first span of free things in the arena. We encode it as a
     * CompactFreeSpan rather than a FreeSpan to minimize the header size.
     */
    CompactFreeSpan firstFreeSpan;

    /*
     * One of AllocKind constants or FINALIZE_LIMIT when the arena does not
     * contain any GC things and is on the list of empty arenas in the GC
     * chunk. The latter allows to quickly check if the arena is allocated
     * during the conservative GC scanning without searching the arena in the
     * list.
     *
     * We use 8 bits for the allocKind so the compiler can use byte-level memory
     * instructions to access it.
     */
    size_t       allocKind          : 8;

    /*
     * When collecting we sometimes need to keep an auxillary list of arenas,
     * for which we use the following fields.  This happens for several reasons:
     *
     * When recursive marking uses too much stack the marking is delayed and the
     * corresponding arenas are put into a stack. To distinguish the bottom of
     * the stack from the arenas not present in the stack we use the
     * markOverflow flag to tag arenas on the stack.
     *
     * Delayed marking is also used for arenas that we allocate into during an
     * incremental GC. In this case, we intend to mark all the objects in the
     * arena, and it's faster to do this marking in bulk.
     *
     * When sweeping we keep track of which arenas have been allocated since the
     * end of the mark phase.  This allows us to tell whether a pointer to an
     * unmarked object is yet to be finalized or has already been reallocated.
     * We set the allocatedDuringIncremental flag for this and clear it at the
     * end of the sweep phase.
     *
     * To minimize the ArenaHeader size we record the next linkage as
     * arenaAddress() >> ArenaShift and pack it with the allocKind field and the
     * flags.
     */
  public:
    size_t       hasDelayedMarking  : 1;
    size_t       allocatedDuringIncremental : 1;
    size_t       markOverflow : 1;
    size_t       auxNextLink : JS_BITS_PER_WORD - 8 - 1 - 1 - 1;
    static_assert(ArenaShift >= 8 + 1 + 1 + 1,
                  "ArenaHeader::auxNextLink packing assumes that ArenaShift has enough bits to "
                  "cover allocKind and hasDelayedMarking.");

    inline uintptr_t address() const;
    inline Chunk* chunk() const;

    bool allocated() const {
        MOZ_ASSERT(allocKind <= size_t(FINALIZE_LIMIT));
        return allocKind < size_t(FINALIZE_LIMIT);
    }

    void init(JS::Zone* zoneArg, AllocKind kind) {
        MOZ_ASSERT(!allocated());
        MOZ_ASSERT(!markOverflow);
        MOZ_ASSERT(!allocatedDuringIncremental);
        MOZ_ASSERT(!hasDelayedMarking);
        zone = zoneArg;

        static_assert(FINALIZE_LIMIT <= 255, "We must be able to fit the allockind into uint8_t.");
        allocKind = size_t(kind);

        /*
         * The firstFreeSpan is initially marked as empty (and thus the arena
         * is marked as full). See allocateFromArenaInline().
         */
        firstFreeSpan.initAsEmpty();
    }

    void setAsNotAllocated() {
        allocKind = size_t(FINALIZE_LIMIT);
        markOverflow = 0;
        allocatedDuringIncremental = 0;
        hasDelayedMarking = 0;
        auxNextLink = 0;
    }

    inline uintptr_t arenaAddress() const;
    inline Arena* getArena();

    AllocKind getAllocKind() const {
        MOZ_ASSERT(allocated());
        return AllocKind(allocKind);
    }

    inline size_t getThingSize() const;

    bool hasFreeThings() const {
        return !firstFreeSpan.isEmpty();
    }

    inline bool isEmpty() const;

    void setAsFullyUsed() {
        firstFreeSpan.initAsEmpty();
    }

    inline FreeSpan getFirstFreeSpan() const;
    inline void setFirstFreeSpan(const FreeSpan* span);

#ifdef DEBUG
    void checkSynchronizedWithFreeList() const;
#endif

    inline ArenaHeader* getNextDelayedMarking() const;
    inline void setNextDelayedMarking(ArenaHeader* aheader);
    inline void unsetDelayedMarking();

    inline ArenaHeader* getNextAllocDuringSweep() const;
    inline void setNextAllocDuringSweep(ArenaHeader* aheader);
    inline void unsetAllocDuringSweep();

    inline void setNextArenaToUpdate(ArenaHeader* aheader);
    inline ArenaHeader* getNextArenaToUpdateAndUnlink();

    void unmarkAll();

#ifdef JSGC_COMPACTING
    size_t countUsedCells();
    size_t countFreeCells();
#endif
};
static_assert(ArenaZoneOffset == offsetof(ArenaHeader, zone),
              "The hardcoded API zone offset must match the actual offset.");

struct Arena
{
    /*
     * Layout of an arena:
     * An arena is 4K in size and 4K-aligned. It starts with the ArenaHeader
     * descriptor followed by some pad bytes. The remainder of the arena is
     * filled with the array of T things. The pad bytes ensure that the thing
     * array ends exactly at the end of the arena.
     *
     * +-------------+-----+----+----+-----+----+
     * | ArenaHeader | pad | T0 | T1 | ... | Tn |
     * +-------------+-----+----+----+-----+----+
     *
     * <----------------------------------------> = ArenaSize bytes
     * <-------------------> = first thing offset
     */
    ArenaHeader aheader;
    uint8_t     data[ArenaSize - sizeof(ArenaHeader)];

  private:
    static JS_FRIEND_DATA(const uint32_t) ThingSizes[];
    static JS_FRIEND_DATA(const uint32_t) FirstThingOffsets[];

  public:
    static void staticAsserts();

    static size_t thingSize(AllocKind kind) {
        return ThingSizes[kind];
    }

    static size_t firstThingOffset(AllocKind kind) {
        return FirstThingOffsets[kind];
    }

    static size_t thingsPerArena(size_t thingSize) {
        MOZ_ASSERT(thingSize % CellSize == 0);

        /* We should be able to fit FreeSpan in any GC thing. */
        MOZ_ASSERT(thingSize >= sizeof(FreeSpan));

        return (ArenaSize - sizeof(ArenaHeader)) / thingSize;
    }

    static size_t thingsSpan(size_t thingSize) {
        return thingsPerArena(thingSize) * thingSize;
    }

    static bool isAligned(uintptr_t thing, size_t thingSize) {
        /* Things ends at the arena end. */
        uintptr_t tailOffset = (ArenaSize - thing) & ArenaMask;
        return tailOffset % thingSize == 0;
    }

    uintptr_t address() const {
        return aheader.address();
    }

    uintptr_t thingsStart(AllocKind thingKind) {
        return address() + firstThingOffset(thingKind);
    }

    uintptr_t thingsEnd() {
        return address() + ArenaSize;
    }

    void setAsFullyUnused(AllocKind thingKind);

    template <typename T>
    size_t finalize(FreeOp* fop, AllocKind thingKind, size_t thingSize);
};

static_assert(sizeof(Arena) == ArenaSize, "The hardcoded arena size must match the struct size.");

inline size_t
ArenaHeader::getThingSize() const
{
    MOZ_ASSERT(allocated());
    return Arena::thingSize(getAllocKind());
}

/*
 * The tail of the chunk info is shared between all chunks in the system, both
 * nursery and tenured. This structure is locatable from any GC pointer by
 * aligning to 1MiB.
 */
struct ChunkTrailer
{
    /* The index the chunk in the nursery, or LocationTenuredHeap. */
    uint32_t        location;
    uint32_t        padding;

    /* The store buffer for writes to things in this chunk or nullptr. */
    StoreBuffer*    storeBuffer;

    JSRuntime*      runtime;
};

static_assert(sizeof(ChunkTrailer) == 2 * sizeof(uintptr_t) + sizeof(uint64_t),
              "ChunkTrailer size is incorrect.");

/* The chunk header (located at the end of the chunk to preserve arena alignment). */
struct ChunkInfo
{
    void init() {
        next = prev = nullptr;
        age = 0;
    }

  private:
    friend class ChunkPool;
    Chunk*          next;
    Chunk*          prev;

  public:
    /* Free arenas are linked together with aheader.next. */
    ArenaHeader*    freeArenasHead;

#if JS_BITS_PER_WORD == 32
    /*
     * Calculating sizes and offsets is simpler if sizeof(ChunkInfo) is
     * architecture-independent.
     */
    char            padding[20];
#endif

    /*
     * Decommitted arenas are tracked by a bitmap in the chunk header. We use
     * this offset to start our search iteration close to a decommitted arena
     * that we can allocate.
     */
    uint32_t        lastDecommittedArenaOffset;

    /* Number of free arenas, either committed or decommitted. */
    uint32_t        numArenasFree;

    /* Number of free, committed arenas. */
    uint32_t        numArenasFreeCommitted;

    /* Number of GC cycles this chunk has survived. */
    uint32_t        age;

    /* Information shared by all Chunk types. */
    ChunkTrailer    trailer;
};

/*
 * Calculating ArenasPerChunk:
 *
 * In order to figure out how many Arenas will fit in a chunk, we need to know
 * how much extra space is available after we allocate the header data. This
 * is a problem because the header size depends on the number of arenas in the
 * chunk. The two dependent fields are bitmap and decommittedArenas.
 *
 * For the mark bitmap, we know that each arena will use a fixed number of full
 * bytes: ArenaBitmapBytes. The full size of the header data is this number
 * multiplied by the eventual number of arenas we have in the header. We,
 * conceptually, distribute this header data among the individual arenas and do
 * not include it in the header. This way we do not have to worry about its
 * variable size: it gets attached to the variable number we are computing.
 *
 * For the decommitted arena bitmap, we only have 1 bit per arena, so this
 * technique will not work. Instead, we observe that we do not have enough
 * header info to fill 8 full arenas: it is currently 4 on 64bit, less on
 * 32bit. Thus, with current numbers, we need 64 bytes for decommittedArenas.
 * This will not become 63 bytes unless we double the data required in the
 * header. Therefore, we just compute the number of bytes required to track
 * every possible arena and do not worry about slop bits, since there are too
 * few to usefully allocate.
 *
 * To actually compute the number of arenas we can allocate in a chunk, we
 * divide the amount of available space less the header info (not including
 * the mark bitmap which is distributed into the arena size) by the size of
 * the arena (with the mark bitmap bytes it uses).
 */
const size_t BytesPerArenaWithHeader = ArenaSize + ArenaBitmapBytes;
const size_t ChunkDecommitBitmapBytes = ChunkSize / ArenaSize / JS_BITS_PER_BYTE;
const size_t ChunkBytesAvailable = ChunkSize - sizeof(ChunkInfo) - ChunkDecommitBitmapBytes;
const size_t ArenasPerChunk = ChunkBytesAvailable / BytesPerArenaWithHeader;

#ifdef JS_GC_SMALL_CHUNK_SIZE
static_assert(ArenasPerChunk == 62, "Do not accidentally change our heap's density.");
#else
static_assert(ArenasPerChunk == 252, "Do not accidentally change our heap's density.");
#endif

/* A chunk bitmap contains enough mark bits for all the cells in a chunk. */
struct ChunkBitmap
{
    volatile uintptr_t bitmap[ArenaBitmapWords * ArenasPerChunk];

  public:
    ChunkBitmap() { }

    MOZ_ALWAYS_INLINE void getMarkWordAndMask(const Cell* cell, uint32_t color,
                                              uintptr_t** wordp, uintptr_t* maskp)
    {
        detail::GetGCThingMarkWordAndMask(uintptr_t(cell), color, wordp, maskp);
    }

    MOZ_ALWAYS_INLINE MOZ_TSAN_BLACKLIST bool isMarked(const Cell* cell, uint32_t color) {
        uintptr_t* word, mask;
        getMarkWordAndMask(cell, color, &word, &mask);
        return *word & mask;
    }

    MOZ_ALWAYS_INLINE bool markIfUnmarked(const Cell* cell, uint32_t color) {
        uintptr_t* word, mask;
        getMarkWordAndMask(cell, BLACK, &word, &mask);
        if (*word & mask)
            return false;
        *word |= mask;
        if (color != BLACK) {
            /*
             * We use getMarkWordAndMask to recalculate both mask and word as
             * doing just mask << color may overflow the mask.
             */
            getMarkWordAndMask(cell, color, &word, &mask);
            if (*word & mask)
                return false;
            *word |= mask;
        }
        return true;
    }

    MOZ_ALWAYS_INLINE void unmark(const Cell* cell, uint32_t color) {
        uintptr_t* word, mask;
        getMarkWordAndMask(cell, color, &word, &mask);
        *word &= ~mask;
    }

    MOZ_ALWAYS_INLINE void copyMarkBit(Cell* dst, const TenuredCell* src, uint32_t color) {
        uintptr_t* word, mask;
        getMarkWordAndMask(dst, color, &word, &mask);
        *word = (*word & ~mask) | (src->isMarked(color) ? mask : 0);
    }

    void clear() {
        memset((void*)bitmap, 0, sizeof(bitmap));
    }

    uintptr_t* arenaBits(ArenaHeader* aheader) {
        static_assert(ArenaBitmapBits == ArenaBitmapWords * JS_BITS_PER_WORD,
                      "We assume that the part of the bitmap corresponding to the arena "
                      "has the exact number of words so we do not need to deal with a word "
                      "that covers bits from two arenas.");

        uintptr_t* word, unused;
        getMarkWordAndMask(reinterpret_cast<Cell*>(aheader->address()), BLACK, &word, &unused);
        return word;
    }
};

static_assert(ArenaBitmapBytes * ArenasPerChunk == sizeof(ChunkBitmap),
              "Ensure our ChunkBitmap actually covers all arenas.");
static_assert(js::gc::ChunkMarkBitmapBits == ArenaBitmapBits * ArenasPerChunk,
              "Ensure that the mark bitmap has the right number of bits.");

typedef BitArray<ArenasPerChunk> PerArenaBitmap;

const size_t ChunkPadSize = ChunkSize
                            - (sizeof(Arena) * ArenasPerChunk)
                            - sizeof(ChunkBitmap)
                            - sizeof(PerArenaBitmap)
                            - sizeof(ChunkInfo);
static_assert(ChunkPadSize < BytesPerArenaWithHeader,
              "If the chunk padding is larger than an arena, we should have one more arena.");

/*
 * Chunks contain arenas and associated data structures (mark bitmap, delayed
 * marking state).
 */
struct Chunk
{
    Arena           arenas[ArenasPerChunk];

    /* Pad to full size to ensure cache alignment of ChunkInfo. */
    uint8_t         padding[ChunkPadSize];

    ChunkBitmap     bitmap;
    PerArenaBitmap  decommittedArenas;
    ChunkInfo       info;

    static Chunk* fromAddress(uintptr_t addr) {
        addr &= ~ChunkMask;
        return reinterpret_cast<Chunk*>(addr);
    }

    static bool withinArenasRange(uintptr_t addr) {
        uintptr_t offset = addr & ChunkMask;
        return offset < ArenasPerChunk * ArenaSize;
    }

    static size_t arenaIndex(uintptr_t addr) {
        MOZ_ASSERT(withinArenasRange(addr));
        return (addr & ChunkMask) >> ArenaShift;
    }

    uintptr_t address() const {
        uintptr_t addr = reinterpret_cast<uintptr_t>(this);
        MOZ_ASSERT(!(addr & ChunkMask));
        return addr;
    }

    bool unused() const {
        return info.numArenasFree == ArenasPerChunk;
    }

    bool hasAvailableArenas() const {
        return info.numArenasFree != 0;
    }

    ArenaHeader* allocateArena(JSRuntime* rt, JS::Zone* zone, AllocKind kind,
                               const AutoLockGC& lock);

    enum ArenaDecommitState { IsCommitted = false, IsDecommitted = true };
    void releaseArena(JSRuntime* rt, ArenaHeader* aheader, const AutoLockGC& lock,
                      ArenaDecommitState state = IsCommitted);
    void recycleArena(ArenaHeader* aheader, SortedArenaList& dest, AllocKind thingKind,
                      size_t thingsPerArena);

    static Chunk* allocate(JSRuntime* rt);

    void decommitAllArenas(JSRuntime* rt);

  private:
    inline void init(JSRuntime* rt);

    /* Search for a decommitted arena to allocate. */
    unsigned findDecommittedArenaOffset();
    ArenaHeader* fetchNextDecommittedArena();

    void addArenaToFreeList(JSRuntime* rt, ArenaHeader* aheader);
    void addArenaToDecommittedList(JSRuntime* rt, const ArenaHeader* aheader);

  public:
    /* Unlink and return the freeArenasHead. */
    inline ArenaHeader* fetchNextFreeArena(JSRuntime* rt);
};

static_assert(sizeof(Chunk) == ChunkSize,
              "Ensure the hardcoded chunk size definition actually matches the struct.");
static_assert(js::gc::ChunkMarkBitmapOffset == offsetof(Chunk, bitmap),
              "The hardcoded API bitmap offset must match the actual offset.");
static_assert(js::gc::ChunkRuntimeOffset == offsetof(Chunk, info) +
                                            offsetof(ChunkInfo, trailer) +
                                            offsetof(ChunkTrailer, runtime),
              "The hardcoded API runtime offset must match the actual offset.");
static_assert(js::gc::ChunkLocationOffset == offsetof(Chunk, info) +
                                             offsetof(ChunkInfo, trailer) +
                                             offsetof(ChunkTrailer, location),
              "The hardcoded API location offset must match the actual offset.");

/*
 * Tracks the used sizes for owned heap data and automatically maintains the
 * memory usage relationship between GCRuntime and Zones.
 */
class HeapUsage
{
    /*
     * A heap usage that contains our parent's heap usage, or null if this is
     * the top-level usage container.
     */
    HeapUsage* parent_;

    /*
     * The approximate number of bytes in use on the GC heap, to the nearest
     * ArenaSize. This does not include any malloc data. It also does not
     * include not-actively-used addresses that are still reserved at the OS
     * level for GC usage. It is atomic because it is updated by both the main
     * and GC helper threads.
     */
    mozilla::Atomic<size_t, mozilla::ReleaseAcquire> gcBytes_;

  public:
    explicit HeapUsage(HeapUsage* parent)
      : parent_(parent),
        gcBytes_(0)
    {}

    size_t gcBytes() const { return gcBytes_; }

    void addGCArena() {
        gcBytes_ += ArenaSize;
        if (parent_)
            parent_->addGCArena();
    }
    void removeGCArena() {
        MOZ_ASSERT(gcBytes_ >= ArenaSize);
        gcBytes_ -= ArenaSize;
        if (parent_)
            parent_->removeGCArena();
    }

    /* Pair to adoptArenas. Adopts the attendant usage statistics. */
    void adopt(HeapUsage& other) {
        gcBytes_ += other.gcBytes_;
        other.gcBytes_ = 0;
    }
};

inline uintptr_t
ArenaHeader::address() const
{
    uintptr_t addr = reinterpret_cast<uintptr_t>(this);
    MOZ_ASSERT(!(addr & ArenaMask));
    MOZ_ASSERT(Chunk::withinArenasRange(addr));
    return addr;
}

inline Chunk*
ArenaHeader::chunk() const
{
    return Chunk::fromAddress(address());
}

inline uintptr_t
ArenaHeader::arenaAddress() const
{
    return address();
}

inline Arena*
ArenaHeader::getArena()
{
    return reinterpret_cast<Arena*>(arenaAddress());
}

inline bool
ArenaHeader::isEmpty() const
{
    /* Arena is empty if its first span covers the whole arena. */
    MOZ_ASSERT(allocated());
    size_t firstThingOffset = Arena::firstThingOffset(getAllocKind());
    size_t lastThingOffset = ArenaSize - getThingSize();
    const CompactFreeSpan emptyCompactSpan(firstThingOffset, lastThingOffset);
    return firstFreeSpan == emptyCompactSpan;
}

FreeSpan
ArenaHeader::getFirstFreeSpan() const
{
#ifdef DEBUG
    checkSynchronizedWithFreeList();
#endif
    return firstFreeSpan.decompact(arenaAddress());
}

void
ArenaHeader::setFirstFreeSpan(const FreeSpan* span)
{
    MOZ_ASSERT_IF(!span->isEmpty(), span->isWithinArena(arenaAddress()));
    firstFreeSpan.compact(*span);
}

inline ArenaHeader*
ArenaHeader::getNextDelayedMarking() const
{
    MOZ_ASSERT(hasDelayedMarking);
    return &reinterpret_cast<Arena*>(auxNextLink << ArenaShift)->aheader;
}

inline void
ArenaHeader::setNextDelayedMarking(ArenaHeader* aheader)
{
    MOZ_ASSERT(!(uintptr_t(aheader) & ArenaMask));
    MOZ_ASSERT(!auxNextLink && !hasDelayedMarking);
    hasDelayedMarking = 1;
    auxNextLink = aheader->arenaAddress() >> ArenaShift;
}

inline void
ArenaHeader::unsetDelayedMarking()
{
    MOZ_ASSERT(hasDelayedMarking);
    hasDelayedMarking = 0;
    auxNextLink = 0;
}

inline ArenaHeader*
ArenaHeader::getNextAllocDuringSweep() const
{
    MOZ_ASSERT(allocatedDuringIncremental);
    return &reinterpret_cast<Arena*>(auxNextLink << ArenaShift)->aheader;
}

inline void
ArenaHeader::setNextAllocDuringSweep(ArenaHeader* aheader)
{
    MOZ_ASSERT(!auxNextLink && !allocatedDuringIncremental);
    allocatedDuringIncremental = 1;
    auxNextLink = aheader->arenaAddress() >> ArenaShift;
}

inline void
ArenaHeader::unsetAllocDuringSweep()
{
    MOZ_ASSERT(allocatedDuringIncremental);
    allocatedDuringIncremental = 0;
    auxNextLink = 0;
}

inline ArenaHeader*
ArenaHeader::getNextArenaToUpdateAndUnlink()
{
    MOZ_ASSERT(!hasDelayedMarking && !allocatedDuringIncremental && !markOverflow);
    ArenaHeader* next = &reinterpret_cast<Arena*>(auxNextLink << ArenaShift)->aheader;
    auxNextLink = 0;
    return next;
}

inline void
ArenaHeader::setNextArenaToUpdate(ArenaHeader* aheader)
{
    MOZ_ASSERT(!hasDelayedMarking && !allocatedDuringIncremental && !markOverflow);
    MOZ_ASSERT(!auxNextLink);
    auxNextLink = aheader->arenaAddress() >> ArenaShift;
}

static void
AssertValidColor(const TenuredCell* thing, uint32_t color)
{
#ifdef DEBUG
    ArenaHeader* aheader = thing->arenaHeader();
    MOZ_ASSERT(color < aheader->getThingSize() / CellSize);
#endif
}

MOZ_ALWAYS_INLINE const TenuredCell&
Cell::asTenured() const
{
    MOZ_ASSERT(isTenured());
    return *static_cast<const TenuredCell*>(this);
}

MOZ_ALWAYS_INLINE TenuredCell&
Cell::asTenured()
{
    MOZ_ASSERT(isTenured());
    return *static_cast<TenuredCell*>(this);
}

inline JSRuntime*
Cell::runtimeFromMainThread() const
{
    JSRuntime* rt = chunk()->info.trailer.runtime;
    MOZ_ASSERT(CurrentThreadCanAccessRuntime(rt));
    return rt;
}

inline JS::shadow::Runtime*
Cell::shadowRuntimeFromMainThread() const
{
    return reinterpret_cast<JS::shadow::Runtime*>(runtimeFromMainThread());
}

inline JSRuntime*
Cell::runtimeFromAnyThread() const
{
    return chunk()->info.trailer.runtime;
}

inline JS::shadow::Runtime*
Cell::shadowRuntimeFromAnyThread() const
{
    return reinterpret_cast<JS::shadow::Runtime*>(runtimeFromAnyThread());
}

inline uintptr_t
Cell::address() const
{
    uintptr_t addr = uintptr_t(this);
    MOZ_ASSERT(addr % CellSize == 0);
    MOZ_ASSERT(Chunk::withinArenasRange(addr));
    return addr;
}

Chunk*
Cell::chunk() const
{
    uintptr_t addr = uintptr_t(this);
    MOZ_ASSERT(addr % CellSize == 0);
    addr &= ~ChunkMask;
    return reinterpret_cast<Chunk*>(addr);
}

inline StoreBuffer*
Cell::storeBuffer() const
{
    return chunk()->info.trailer.storeBuffer;
}

inline bool
InFreeList(ArenaHeader* aheader, void* thing)
{
    if (!aheader->hasFreeThings())
        return false;

    FreeSpan firstSpan(aheader->getFirstFreeSpan());
    uintptr_t addr = reinterpret_cast<uintptr_t>(thing);

    MOZ_ASSERT(Arena::isAligned(addr, aheader->getThingSize()));

    return firstSpan.inFreeList(addr);
}

/* static */ MOZ_ALWAYS_INLINE bool
Cell::needWriteBarrierPre(JS::Zone* zone) {
    return JS::shadow::Zone::asShadowZone(zone)->needsIncrementalBarrier();
}

/* static */ MOZ_ALWAYS_INLINE TenuredCell*
TenuredCell::fromPointer(void* ptr)
{
    MOZ_ASSERT(static_cast<TenuredCell*>(ptr)->isTenured());
    return static_cast<TenuredCell*>(ptr);
}

/* static */ MOZ_ALWAYS_INLINE const TenuredCell*
TenuredCell::fromPointer(const void* ptr)
{
    MOZ_ASSERT(static_cast<const TenuredCell*>(ptr)->isTenured());
    return static_cast<const TenuredCell*>(ptr);
}

bool
TenuredCell::isMarked(uint32_t color /* = BLACK */) const
{
    MOZ_ASSERT(arenaHeader()->allocated());
    AssertValidColor(this, color);
    return chunk()->bitmap.isMarked(this, color);
}

bool
TenuredCell::markIfUnmarked(uint32_t color /* = BLACK */) const
{
    AssertValidColor(this, color);
    return chunk()->bitmap.markIfUnmarked(this, color);
}

void
TenuredCell::unmark(uint32_t color) const
{
    MOZ_ASSERT(color != BLACK);
    AssertValidColor(this, color);
    chunk()->bitmap.unmark(this, color);
}

void
TenuredCell::copyMarkBitsFrom(const TenuredCell* src)
{
    ChunkBitmap& bitmap = chunk()->bitmap;
    bitmap.copyMarkBit(this, src, BLACK);
    bitmap.copyMarkBit(this, src, GRAY);
}

inline ArenaHeader*
TenuredCell::arenaHeader() const
{
    MOZ_ASSERT(isTenured());
    uintptr_t addr = address();
    addr &= ~ArenaMask;
    return reinterpret_cast<ArenaHeader*>(addr);
}

AllocKind
TenuredCell::getAllocKind() const
{
    return arenaHeader()->getAllocKind();
}

JSGCTraceKind
TenuredCell::getTraceKind() const
{
    return MapAllocToTraceKind(getAllocKind());
}

JS::Zone*
TenuredCell::zone() const
{
    JS::Zone* zone = arenaHeader()->zone;
    MOZ_ASSERT(CurrentThreadCanAccessZone(zone));
    return zone;
}

JS::Zone*
TenuredCell::zoneFromAnyThread() const
{
    return arenaHeader()->zone;
}

bool
TenuredCell::isInsideZone(JS::Zone* zone) const
{
    return zone == arenaHeader()->zone;
}

/* static */ MOZ_ALWAYS_INLINE void
TenuredCell::readBarrier(TenuredCell* thing)
{
    MOZ_ASSERT(!CurrentThreadIsIonCompiling());
    MOZ_ASSERT(!isNullLike(thing));
    JS::shadow::Zone* shadowZone = thing->shadowZoneFromAnyThread();
    if (shadowZone->needsIncrementalBarrier()) {
        MOZ_ASSERT(!RuntimeFromMainThreadIsHeapMajorCollecting(shadowZone));
        void* tmp = thing;
        shadowZone->barrierTracer()->setTracingName("read barrier");
        MarkKind(shadowZone->barrierTracer(), &tmp,
                         MapAllocToTraceKind(thing->getAllocKind()));
        MOZ_ASSERT(tmp == thing);
    }
    if (thing->isMarked(js::gc::GRAY))
        UnmarkGrayCellRecursively(thing, thing->getTraceKind());
}

/* static */ MOZ_ALWAYS_INLINE void
TenuredCell::writeBarrierPre(TenuredCell* thing)
{
    MOZ_ASSERT(!CurrentThreadIsIonCompiling());
    if (isNullLike(thing) || !thing->shadowRuntimeFromAnyThread()->needsIncrementalBarrier())
        return;

    JS::shadow::Zone* shadowZone = thing->shadowZoneFromAnyThread();
    if (shadowZone->needsIncrementalBarrier()) {
        MOZ_ASSERT(!RuntimeFromMainThreadIsHeapMajorCollecting(shadowZone));
        void* tmp = thing;
        shadowZone->barrierTracer()->setTracingName("pre barrier");
        MarkKind(shadowZone->barrierTracer(), &tmp,
                         MapAllocToTraceKind(thing->getAllocKind()));
        MOZ_ASSERT(tmp == thing);
    }
}

static MOZ_ALWAYS_INLINE void
AssertValidToSkipBarrier(TenuredCell* thing)
{
    MOZ_ASSERT(!IsInsideNursery(thing));
    MOZ_ASSERT_IF(thing, MapAllocToTraceKind(thing->getAllocKind()) != JSTRACE_OBJECT);
}

/* static */ MOZ_ALWAYS_INLINE void
TenuredCell::writeBarrierPost(TenuredCell* thing, void* cellp)
{
    AssertValidToSkipBarrier(thing);
}

/* static */ MOZ_ALWAYS_INLINE void
TenuredCell::writeBarrierPostRelocate(TenuredCell* thing, void* cellp)
{
    AssertValidToSkipBarrier(thing);
}

/* static */ MOZ_ALWAYS_INLINE void
TenuredCell::writeBarrierPostRemove(TenuredCell* thing, void* cellp)
{
    AssertValidToSkipBarrier(thing);
}

#ifdef DEBUG
bool
Cell::isAligned() const
{
    if (!isTenured())
        return true;
    return asTenured().isAligned();
}

bool
TenuredCell::isAligned() const
{
    return Arena::isAligned(address(), arenaHeader()->getThingSize());
}
#endif

} /* namespace gc */
} /* namespace js */

#endif /* gc_Heap_h */