DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
/*
 * Copyright 2011 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkMatrix44.h"

static inline bool eq4(const SkMScalar* SK_RESTRICT a,
                      const SkMScalar* SK_RESTRICT b) {
    return (a[0] == b[0]) & (a[1] == b[1]) & (a[2] == b[2]) & (a[3] == b[3]);
}

bool SkMatrix44::operator==(const SkMatrix44& other) const {
    if (this == &other) {
        return true;
    }

    if (this->isTriviallyIdentity() && other.isTriviallyIdentity()) {
        return true;
    }

    const SkMScalar* SK_RESTRICT a = &fMat[0][0];
    const SkMScalar* SK_RESTRICT b = &other.fMat[0][0];

#if 0
    for (int i = 0; i < 16; ++i) {
        if (a[i] != b[i]) {
            return false;
        }
    }
    return true;
#else
    // to reduce branch instructions, we compare 4 at a time.
    // see bench/Matrix44Bench.cpp for test.
    if (!eq4(&a[0], &b[0])) {
        return false;
    }
    if (!eq4(&a[4], &b[4])) {
        return false;
    }
    if (!eq4(&a[8], &b[8])) {
        return false;
    }
    return eq4(&a[12], &b[12]);
#endif
}

///////////////////////////////////////////////////////////////////////////////

int SkMatrix44::computeTypeMask() const {
    unsigned mask = 0;

    if (0 != perspX() || 0 != perspY() || 0 != perspZ() || 1 != fMat[3][3]) {
        return kTranslate_Mask | kScale_Mask | kAffine_Mask | kPerspective_Mask;
    }

    if (0 != transX() || 0 != transY() || 0 != transZ()) {
        mask |= kTranslate_Mask;
    }

    if (1 != scaleX() || 1 != scaleY() || 1 != scaleZ()) {
        mask |= kScale_Mask;
    }

    if (0 != fMat[1][0] || 0 != fMat[0][1] || 0 != fMat[0][2] ||
        0 != fMat[2][0] || 0 != fMat[1][2] || 0 != fMat[2][1]) {
            mask |= kAffine_Mask;
    }

    return mask;
}

///////////////////////////////////////////////////////////////////////////////

void SkMatrix44::asColMajorf(float dst[]) const {
    const SkMScalar* src = &fMat[0][0];
#ifdef SK_MSCALAR_IS_DOUBLE
    for (int i = 0; i < 16; ++i) {
        dst[i] = SkMScalarToFloat(src[i]);
    }
#elif defined SK_MSCALAR_IS_FLOAT
    memcpy(dst, src, 16 * sizeof(float));
#endif
}

void SkMatrix44::asColMajord(double dst[]) const {
    const SkMScalar* src = &fMat[0][0];
#ifdef SK_MSCALAR_IS_DOUBLE
    memcpy(dst, src, 16 * sizeof(double));
#elif defined SK_MSCALAR_IS_FLOAT
    for (int i = 0; i < 16; ++i) {
        dst[i] = SkMScalarToDouble(src[i]);
    }
#endif
}

void SkMatrix44::asRowMajorf(float dst[]) const {
    const SkMScalar* src = &fMat[0][0];
    for (int i = 0; i < 4; ++i) {
        dst[0] = SkMScalarToFloat(src[0]);
        dst[4] = SkMScalarToFloat(src[1]);
        dst[8] = SkMScalarToFloat(src[2]);
        dst[12] = SkMScalarToFloat(src[3]);
        src += 4;
        dst += 1;
    }
}

void SkMatrix44::asRowMajord(double dst[]) const {
    const SkMScalar* src = &fMat[0][0];
    for (int i = 0; i < 4; ++i) {
        dst[0] = SkMScalarToDouble(src[0]);
        dst[4] = SkMScalarToDouble(src[1]);
        dst[8] = SkMScalarToDouble(src[2]);
        dst[12] = SkMScalarToDouble(src[3]);
        src += 4;
        dst += 1;
    }
}

void SkMatrix44::setColMajorf(const float src[]) {
    SkMScalar* dst = &fMat[0][0];
#ifdef SK_MSCALAR_IS_DOUBLE
    for (int i = 0; i < 16; ++i) {
        dst[i] = SkMScalarToFloat(src[i]);
    }
#elif defined SK_MSCALAR_IS_FLOAT
    memcpy(dst, src, 16 * sizeof(float));
#endif

    this->dirtyTypeMask();
}

void SkMatrix44::setColMajord(const double src[]) {
    SkMScalar* dst = &fMat[0][0];
#ifdef SK_MSCALAR_IS_DOUBLE
    memcpy(dst, src, 16 * sizeof(double));
#elif defined SK_MSCALAR_IS_FLOAT
    for (int i = 0; i < 16; ++i) {
        dst[i] = SkDoubleToMScalar(src[i]);
    }
#endif

    this->dirtyTypeMask();
}

void SkMatrix44::setRowMajorf(const float src[]) {
    SkMScalar* dst = &fMat[0][0];
    for (int i = 0; i < 4; ++i) {
        dst[0] = SkMScalarToFloat(src[0]);
        dst[4] = SkMScalarToFloat(src[1]);
        dst[8] = SkMScalarToFloat(src[2]);
        dst[12] = SkMScalarToFloat(src[3]);
        src += 4;
        dst += 1;
    }
    this->dirtyTypeMask();
}

void SkMatrix44::setRowMajord(const double src[]) {
    SkMScalar* dst = &fMat[0][0];
    for (int i = 0; i < 4; ++i) {
        dst[0] = SkDoubleToMScalar(src[0]);
        dst[4] = SkDoubleToMScalar(src[1]);
        dst[8] = SkDoubleToMScalar(src[2]);
        dst[12] = SkDoubleToMScalar(src[3]);
        src += 4;
        dst += 1;
    }
    this->dirtyTypeMask();
}

///////////////////////////////////////////////////////////////////////////////

const SkMatrix44& SkMatrix44::I() {
    static const SkMatrix44 gIdentity44(kIdentity_Constructor);
    return gIdentity44;
}

void SkMatrix44::setIdentity() {
    fMat[0][0] = 1;
    fMat[0][1] = 0;
    fMat[0][2] = 0;
    fMat[0][3] = 0;
    fMat[1][0] = 0;
    fMat[1][1] = 1;
    fMat[1][2] = 0;
    fMat[1][3] = 0;
    fMat[2][0] = 0;
    fMat[2][1] = 0;
    fMat[2][2] = 1;
    fMat[2][3] = 0;
    fMat[3][0] = 0;
    fMat[3][1] = 0;
    fMat[3][2] = 0;
    fMat[3][3] = 1;
    this->setTypeMask(kIdentity_Mask);
}

void SkMatrix44::set3x3(SkMScalar m00, SkMScalar m01, SkMScalar m02,
                        SkMScalar m10, SkMScalar m11, SkMScalar m12,
                        SkMScalar m20, SkMScalar m21, SkMScalar m22) {
    fMat[0][0] = m00; fMat[0][1] = m01; fMat[0][2] = m02; fMat[0][3] = 0;
    fMat[1][0] = m10; fMat[1][1] = m11; fMat[1][2] = m12; fMat[1][3] = 0;
    fMat[2][0] = m20; fMat[2][1] = m21; fMat[2][2] = m22; fMat[2][3] = 0;
    fMat[3][0] = 0;   fMat[3][1] = 0;   fMat[3][2] = 0;   fMat[3][3] = 1;
    this->dirtyTypeMask();
}

///////////////////////////////////////////////////////////////////////////////

void SkMatrix44::setTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz) {
    this->setIdentity();

    if (!dx && !dy && !dz) {
        return;
    }

    fMat[3][0] = dx;
    fMat[3][1] = dy;
    fMat[3][2] = dz;
    this->setTypeMask(kTranslate_Mask);
}

void SkMatrix44::preTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz) {
    if (!dx && !dy && !dz) {
        return;
    }

    for (int i = 0; i < 4; ++i) {
        fMat[3][i] = fMat[0][i] * dx + fMat[1][i] * dy + fMat[2][i] * dz + fMat[3][i];
    }
    this->dirtyTypeMask();
}

void SkMatrix44::postTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz) {
    if (!dx && !dy && !dz) {
        return;
    }

    if (this->getType() & kPerspective_Mask) {
        for (int i = 0; i < 4; ++i) {
            fMat[i][0] += fMat[i][3] * dx;
            fMat[i][1] += fMat[i][3] * dy;
            fMat[i][2] += fMat[i][3] * dz;
        }
    } else {
        fMat[3][0] += dx;
        fMat[3][1] += dy;
        fMat[3][2] += dz;
        this->dirtyTypeMask();
    }
}

///////////////////////////////////////////////////////////////////////////////

void SkMatrix44::setScale(SkMScalar sx, SkMScalar sy, SkMScalar sz) {
    this->setIdentity();

    if (1 == sx && 1 == sy && 1 == sz) {
        return;
    }

    fMat[0][0] = sx;
    fMat[1][1] = sy;
    fMat[2][2] = sz;
    this->setTypeMask(kScale_Mask);
}

void SkMatrix44::preScale(SkMScalar sx, SkMScalar sy, SkMScalar sz) {
    if (1 == sx && 1 == sy && 1 == sz) {
        return;
    }

    // The implementation matrix * pureScale can be shortcut
    // by knowing that pureScale components effectively scale
    // the columns of the original matrix.
    for (int i = 0; i < 4; i++) {
        fMat[0][i] *= sx;
        fMat[1][i] *= sy;
        fMat[2][i] *= sz;
    }
    this->dirtyTypeMask();
}

void SkMatrix44::postScale(SkMScalar sx, SkMScalar sy, SkMScalar sz) {
    if (1 == sx && 1 == sy && 1 == sz) {
        return;
    }

    for (int i = 0; i < 4; i++) {
        fMat[i][0] *= sx;
        fMat[i][1] *= sy;
        fMat[i][2] *= sz;
    }
    this->dirtyTypeMask();
}

///////////////////////////////////////////////////////////////////////////////

void SkMatrix44::setRotateAbout(SkMScalar x, SkMScalar y, SkMScalar z,
                                SkMScalar radians) {
    double len2 = (double)x * x + (double)y * y + (double)z * z;
    if (1 != len2) {
        if (0 == len2) {
            this->setIdentity();
            return;
        }
        double scale = 1 / sqrt(len2);
        x = SkDoubleToMScalar(x * scale);
        y = SkDoubleToMScalar(y * scale);
        z = SkDoubleToMScalar(z * scale);
    }
    this->setRotateAboutUnit(x, y, z, radians);
}

void SkMatrix44::setRotateAboutUnit(SkMScalar x, SkMScalar y, SkMScalar z,
                                    SkMScalar radians) {
    double c = cos(radians);
    double s = sin(radians);
    double C = 1 - c;
    double xs = x * s;
    double ys = y * s;
    double zs = z * s;
    double xC = x * C;
    double yC = y * C;
    double zC = z * C;
    double xyC = x * yC;
    double yzC = y * zC;
    double zxC = z * xC;

    // if you're looking at wikipedia, remember that we're column major.
    this->set3x3(SkDoubleToMScalar(x * xC + c),     // scale x
                 SkDoubleToMScalar(xyC + zs),       // skew x
                 SkDoubleToMScalar(zxC - ys),       // trans x

                 SkDoubleToMScalar(xyC - zs),       // skew y
                 SkDoubleToMScalar(y * yC + c),     // scale y
                 SkDoubleToMScalar(yzC + xs),       // trans y

                 SkDoubleToMScalar(zxC + ys),       // persp x
                 SkDoubleToMScalar(yzC - xs),       // persp y
                 SkDoubleToMScalar(z * zC + c));    // persp 2
}

///////////////////////////////////////////////////////////////////////////////

static bool bits_isonly(int value, int mask) {
    return 0 == (value & ~mask);
}

void SkMatrix44::setConcat(const SkMatrix44& a, const SkMatrix44& b) {
    const SkMatrix44::TypeMask a_mask = a.getType();
    const SkMatrix44::TypeMask b_mask = b.getType();

    if (kIdentity_Mask == a_mask) {
        *this = b;
        return;
    }
    if (kIdentity_Mask == b_mask) {
        *this = a;
        return;
    }

    bool useStorage = (this == &a || this == &b);
    SkMScalar storage[16];
    SkMScalar* result = useStorage ? storage : &fMat[0][0];

    // Both matrices are at most scale+translate
    if (bits_isonly(a_mask | b_mask, kScale_Mask | kTranslate_Mask)) {
        result[0] = a.fMat[0][0] * b.fMat[0][0];
        result[1] = result[2] = result[3] = result[4] = 0;
        result[5] = a.fMat[1][1] * b.fMat[1][1];
        result[6] = result[7] = result[8] = result[9] = 0;
        result[10] = a.fMat[2][2] * b.fMat[2][2];
        result[11] = 0;
        result[12] = a.fMat[0][0] * b.fMat[3][0] + a.fMat[3][0];
        result[13] = a.fMat[1][1] * b.fMat[3][1] + a.fMat[3][1];
        result[14] = a.fMat[2][2] * b.fMat[3][2] + a.fMat[3][2];
        result[15] = 1;
    } else {
        for (int j = 0; j < 4; j++) {
            for (int i = 0; i < 4; i++) {
                double value = 0;
                for (int k = 0; k < 4; k++) {
                    value += SkMScalarToDouble(a.fMat[k][i]) * b.fMat[j][k];
                }
                *result++ = SkDoubleToMScalar(value);
            }
        }
    }

    if (useStorage) {
        memcpy(fMat, storage, sizeof(storage));
    }
    this->dirtyTypeMask();
}

///////////////////////////////////////////////////////////////////////////////

/** We always perform the calculation in doubles, to avoid prematurely losing
    precision along the way. This relies on the compiler automatically
    promoting our SkMScalar values to double (if needed).
 */
double SkMatrix44::determinant() const {
    if (this->isIdentity()) {
        return 1;
    }
    if (this->isScaleTranslate()) {
        return fMat[0][0] * fMat[1][1] * fMat[2][2] * fMat[3][3];
    }

    double a00 = fMat[0][0];
    double a01 = fMat[0][1];
    double a02 = fMat[0][2];
    double a03 = fMat[0][3];
    double a10 = fMat[1][0];
    double a11 = fMat[1][1];
    double a12 = fMat[1][2];
    double a13 = fMat[1][3];
    double a20 = fMat[2][0];
    double a21 = fMat[2][1];
    double a22 = fMat[2][2];
    double a23 = fMat[2][3];
    double a30 = fMat[3][0];
    double a31 = fMat[3][1];
    double a32 = fMat[3][2];
    double a33 = fMat[3][3];

    double b00 = a00 * a11 - a01 * a10;
    double b01 = a00 * a12 - a02 * a10;
    double b02 = a00 * a13 - a03 * a10;
    double b03 = a01 * a12 - a02 * a11;
    double b04 = a01 * a13 - a03 * a11;
    double b05 = a02 * a13 - a03 * a12;
    double b06 = a20 * a31 - a21 * a30;
    double b07 = a20 * a32 - a22 * a30;
    double b08 = a20 * a33 - a23 * a30;
    double b09 = a21 * a32 - a22 * a31;
    double b10 = a21 * a33 - a23 * a31;
    double b11 = a22 * a33 - a23 * a32;

    // Calculate the determinant
    return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
}

///////////////////////////////////////////////////////////////////////////////

bool SkMatrix44::invert(SkMatrix44* inverse) const {
    if (this->isIdentity()) {
        if (inverse) {
            inverse->setIdentity();
        }
        return true;
    }

    if (this->isTranslate()) {
        if (inverse) {
            inverse->setTranslate(-fMat[3][0], -fMat[3][1], -fMat[3][2]);
        }
        return true;
    }

    if (this->isScaleTranslate()) {
        if (0 == fMat[0][0] * fMat[1][1] * fMat[2][2]) {
            return false;
        }

        if (inverse) {
            double invXScale = 1 / fMat[0][0];
            double invYScale = 1 / fMat[1][1];
            double invZScale = 1 / fMat[2][2];

            inverse->fMat[0][0] = invXScale;
            inverse->fMat[0][1] = 0;
            inverse->fMat[0][2] = 0;
            inverse->fMat[0][3] = 0;

            inverse->fMat[1][0] = 0;
            inverse->fMat[1][1] = invYScale;
            inverse->fMat[1][2] = 0;
            inverse->fMat[1][3] = 0;

            inverse->fMat[2][0] = 0;
            inverse->fMat[2][1] = 0;
            inverse->fMat[2][2] = invZScale;
            inverse->fMat[2][3] = 0;

            inverse->fMat[3][0] = -fMat[3][0] * invXScale;
            inverse->fMat[3][1] = -fMat[3][1] * invYScale;
            inverse->fMat[3][2] = -fMat[3][2] * invZScale;
            inverse->fMat[3][3] = 1;

            inverse->setTypeMask(this->getType());
        }

        return true;
    }

    double a00 = fMat[0][0];
    double a01 = fMat[0][1];
    double a02 = fMat[0][2];
    double a03 = fMat[0][3];
    double a10 = fMat[1][0];
    double a11 = fMat[1][1];
    double a12 = fMat[1][2];
    double a13 = fMat[1][3];
    double a20 = fMat[2][0];
    double a21 = fMat[2][1];
    double a22 = fMat[2][2];
    double a23 = fMat[2][3];
    double a30 = fMat[3][0];
    double a31 = fMat[3][1];
    double a32 = fMat[3][2];
    double a33 = fMat[3][3];

    if (!(this->getType() & kPerspective_Mask)) {
        // If we know the matrix has no perspective, then the perspective
        // component is (0, 0, 0, 1). We can use this information to save a lot
        // of arithmetic that would otherwise be spent to compute the inverse
        // of a general matrix.

        SkASSERT(a03 == 0);
        SkASSERT(a13 == 0);
        SkASSERT(a23 == 0);
        SkASSERT(a33 == 1);

        double b00 = a00 * a11 - a01 * a10;
        double b01 = a00 * a12 - a02 * a10;
        double b03 = a01 * a12 - a02 * a11;
        double b06 = a20 * a31 - a21 * a30;
        double b07 = a20 * a32 - a22 * a30;
        double b08 = a20;
        double b09 = a21 * a32 - a22 * a31;
        double b10 = a21;
        double b11 = a22;

        // Calculate the determinant
        double det = b00 * b11 - b01 * b10 + b03 * b08;

        double invdet = 1.0 / det;
        // If det is zero, we want to return false. However, we also want to return false
        // if 1/det overflows to infinity (i.e. det is denormalized). Both of these are
        // handled by checking that 1/det is finite.
        if (!sk_float_isfinite(invdet)) {
            return false;
        }
        if (NULL == inverse) {
            return true;
        }

        b00 *= invdet;
        b01 *= invdet;
        b03 *= invdet;
        b06 *= invdet;
        b07 *= invdet;
        b08 *= invdet;
        b09 *= invdet;
        b10 *= invdet;
        b11 *= invdet;

        inverse->fMat[0][0] = SkDoubleToMScalar(a11 * b11 - a12 * b10);
        inverse->fMat[0][1] = SkDoubleToMScalar(a02 * b10 - a01 * b11);
        inverse->fMat[0][2] = SkDoubleToMScalar(b03);
        inverse->fMat[0][3] = 0;
        inverse->fMat[1][0] = SkDoubleToMScalar(a12 * b08 - a10 * b11);
        inverse->fMat[1][1] = SkDoubleToMScalar(a00 * b11 - a02 * b08);
        inverse->fMat[1][2] = SkDoubleToMScalar(-b01);
        inverse->fMat[1][3] = 0;
        inverse->fMat[2][0] = SkDoubleToMScalar(a10 * b10 - a11 * b08);
        inverse->fMat[2][1] = SkDoubleToMScalar(a01 * b08 - a00 * b10);
        inverse->fMat[2][2] = SkDoubleToMScalar(b00);
        inverse->fMat[2][3] = 0;
        inverse->fMat[3][0] = SkDoubleToMScalar(a11 * b07 - a10 * b09 - a12 * b06);
        inverse->fMat[3][1] = SkDoubleToMScalar(a00 * b09 - a01 * b07 + a02 * b06);
        inverse->fMat[3][2] = SkDoubleToMScalar(a31 * b01 - a30 * b03 - a32 * b00);
        inverse->fMat[3][3] = 1;

        inverse->setTypeMask(this->getType());
        return true;
    }

    double b00 = a00 * a11 - a01 * a10;
    double b01 = a00 * a12 - a02 * a10;
    double b02 = a00 * a13 - a03 * a10;
    double b03 = a01 * a12 - a02 * a11;
    double b04 = a01 * a13 - a03 * a11;
    double b05 = a02 * a13 - a03 * a12;
    double b06 = a20 * a31 - a21 * a30;
    double b07 = a20 * a32 - a22 * a30;
    double b08 = a20 * a33 - a23 * a30;
    double b09 = a21 * a32 - a22 * a31;
    double b10 = a21 * a33 - a23 * a31;
    double b11 = a22 * a33 - a23 * a32;

    // Calculate the determinant
    double det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;

    double invdet = 1.0 / det;
    // If det is zero, we want to return false. However, we also want to return false
    // if 1/det overflows to infinity (i.e. det is denormalized). Both of these are
    // handled by checking that 1/det is finite.
    if (!sk_float_isfinite(invdet)) {
        return false;
    }
    if (NULL == inverse) {
        return true;
    }

    b00 *= invdet;
    b01 *= invdet;
    b02 *= invdet;
    b03 *= invdet;
    b04 *= invdet;
    b05 *= invdet;
    b06 *= invdet;
    b07 *= invdet;
    b08 *= invdet;
    b09 *= invdet;
    b10 *= invdet;
    b11 *= invdet;

    inverse->fMat[0][0] = SkDoubleToMScalar(a11 * b11 - a12 * b10 + a13 * b09);
    inverse->fMat[0][1] = SkDoubleToMScalar(a02 * b10 - a01 * b11 - a03 * b09);
    inverse->fMat[0][2] = SkDoubleToMScalar(a31 * b05 - a32 * b04 + a33 * b03);
    inverse->fMat[0][3] = SkDoubleToMScalar(a22 * b04 - a21 * b05 - a23 * b03);
    inverse->fMat[1][0] = SkDoubleToMScalar(a12 * b08 - a10 * b11 - a13 * b07);
    inverse->fMat[1][1] = SkDoubleToMScalar(a00 * b11 - a02 * b08 + a03 * b07);
    inverse->fMat[1][2] = SkDoubleToMScalar(a32 * b02 - a30 * b05 - a33 * b01);
    inverse->fMat[1][3] = SkDoubleToMScalar(a20 * b05 - a22 * b02 + a23 * b01);
    inverse->fMat[2][0] = SkDoubleToMScalar(a10 * b10 - a11 * b08 + a13 * b06);
    inverse->fMat[2][1] = SkDoubleToMScalar(a01 * b08 - a00 * b10 - a03 * b06);
    inverse->fMat[2][2] = SkDoubleToMScalar(a30 * b04 - a31 * b02 + a33 * b00);
    inverse->fMat[2][3] = SkDoubleToMScalar(a21 * b02 - a20 * b04 - a23 * b00);
    inverse->fMat[3][0] = SkDoubleToMScalar(a11 * b07 - a10 * b09 - a12 * b06);
    inverse->fMat[3][1] = SkDoubleToMScalar(a00 * b09 - a01 * b07 + a02 * b06);
    inverse->fMat[3][2] = SkDoubleToMScalar(a31 * b01 - a30 * b03 - a32 * b00);
    inverse->fMat[3][3] = SkDoubleToMScalar(a20 * b03 - a21 * b01 + a22 * b00);
    inverse->dirtyTypeMask();

    return true;
}

///////////////////////////////////////////////////////////////////////////////

void SkMatrix44::transpose() {
    SkTSwap(fMat[0][1], fMat[1][0]);
    SkTSwap(fMat[0][2], fMat[2][0]);
    SkTSwap(fMat[0][3], fMat[3][0]);
    SkTSwap(fMat[1][2], fMat[2][1]);
    SkTSwap(fMat[1][3], fMat[3][1]);
    SkTSwap(fMat[2][3], fMat[3][2]);

    if (!this->isTriviallyIdentity()) {
        this->dirtyTypeMask();
    }
}

///////////////////////////////////////////////////////////////////////////////

void SkMatrix44::mapScalars(const SkScalar src[4], SkScalar dst[4]) const {
    SkScalar storage[4];
    SkScalar* result = (src == dst) ? storage : dst;

    for (int i = 0; i < 4; i++) {
        SkMScalar value = 0;
        for (int j = 0; j < 4; j++) {
            value += fMat[j][i] * src[j];
        }
        result[i] = SkMScalarToScalar(value);
    }

    if (storage == result) {
        memcpy(dst, storage, sizeof(storage));
    }
}

#ifdef SK_MSCALAR_IS_DOUBLE

void SkMatrix44::mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const {
    SkMScalar storage[4];
    SkMScalar* result = (src == dst) ? storage : dst;

    for (int i = 0; i < 4; i++) {
        SkMScalar value = 0;
        for (int j = 0; j < 4; j++) {
            value += fMat[j][i] * src[j];
        }
        result[i] = value;
    }

    if (storage == result) {
        memcpy(dst, storage, sizeof(storage));
    }
}

#endif

typedef void (*Map2Procf)(const SkMScalar mat[][4], const float src2[], int count, float dst4[]);
typedef void (*Map2Procd)(const SkMScalar mat[][4], const double src2[], int count, double dst4[]);

static void map2_if(const SkMScalar mat[][4], const float* SK_RESTRICT src2,
                    int count, float* SK_RESTRICT dst4) {
    for (int i = 0; i < count; ++i) {
        dst4[0] = src2[0];
        dst4[1] = src2[1];
        dst4[2] = 0;
        dst4[3] = 1;
        src2 += 2;
        dst4 += 4;
    }
}

static void map2_id(const SkMScalar mat[][4], const double* SK_RESTRICT src2,
                    int count, double* SK_RESTRICT dst4) {
    for (int i = 0; i < count; ++i) {
        dst4[0] = src2[0];
        dst4[1] = src2[1];
        dst4[2] = 0;
        dst4[3] = 1;
        src2 += 2;
        dst4 += 4;
    }
}

static void map2_tf(const SkMScalar mat[][4], const float* SK_RESTRICT src2,
                    int count, float* SK_RESTRICT dst4) {
    const float mat30 = SkMScalarToFloat(mat[3][0]);
    const float mat31 = SkMScalarToFloat(mat[3][1]);
    const float mat32 = SkMScalarToFloat(mat[3][2]);
    for (int n = 0; n < count; ++n) {
        dst4[0] = src2[0] + mat30;
        dst4[1] = src2[1] + mat31;
        dst4[2] = mat32;
        dst4[3] = 1;
        src2 += 2;
        dst4 += 4;
    }
}

static void map2_td(const SkMScalar mat[][4], const double* SK_RESTRICT src2,
                    int count, double* SK_RESTRICT dst4) {
    for (int n = 0; n < count; ++n) {
        dst4[0] = src2[0] + mat[3][0];
        dst4[1] = src2[1] + mat[3][1];
        dst4[2] = mat[3][2];
        dst4[3] = 1;
        src2 += 2;
        dst4 += 4;
    }
}

static void map2_sf(const SkMScalar mat[][4], const float* SK_RESTRICT src2,
                    int count, float* SK_RESTRICT dst4) {
    const float mat32 = SkMScalarToFloat(mat[3][2]);
    for (int n = 0; n < count; ++n) {
        dst4[0] = SkMScalarToFloat(mat[0][0] * src2[0] + mat[3][0]);
        dst4[1] = SkMScalarToFloat(mat[1][1] * src2[1] + mat[3][1]);
        dst4[2] = mat32;
        dst4[3] = 1;
        src2 += 2;
        dst4 += 4;
    }
}

static void map2_sd(const SkMScalar mat[][4], const double* SK_RESTRICT src2,
                    int count, double* SK_RESTRICT dst4) {
    for (int n = 0; n < count; ++n) {
        dst4[0] = mat[0][0] * src2[0] + mat[3][0];
        dst4[1] = mat[1][1] * src2[1] + mat[3][1];
        dst4[2] = mat[3][2];
        dst4[3] = 1;
        src2 += 2;
        dst4 += 4;
    }
}

static void map2_af(const SkMScalar mat[][4], const float* SK_RESTRICT src2,
                    int count, float* SK_RESTRICT dst4) {
    SkMScalar r;
    for (int n = 0; n < count; ++n) {
        SkMScalar sx = SkFloatToMScalar(src2[0]);
        SkMScalar sy = SkFloatToMScalar(src2[1]);
        r = mat[0][0] * sx + mat[1][0] * sy + mat[3][0];
        dst4[0] = SkMScalarToFloat(r);
        r = mat[0][1] * sx + mat[1][1] * sy + mat[3][1];
        dst4[1] = SkMScalarToFloat(r);
        r = mat[0][2] * sx + mat[1][2] * sy + mat[3][2];
        dst4[2] = SkMScalarToFloat(r);
        dst4[3] = 1;
        src2 += 2;
        dst4 += 4;
    }
}

static void map2_ad(const SkMScalar mat[][4], const double* SK_RESTRICT src2,
                    int count, double* SK_RESTRICT dst4) {
    for (int n = 0; n < count; ++n) {
        double sx = src2[0];
        double sy = src2[1];
        dst4[0] = mat[0][0] * sx + mat[1][0] * sy + mat[3][0];
        dst4[1] = mat[0][1] * sx + mat[1][1] * sy + mat[3][1];
        dst4[2] = mat[0][2] * sx + mat[1][2] * sy + mat[3][2];
        dst4[3] = 1;
        src2 += 2;
        dst4 += 4;
    }
}

static void map2_pf(const SkMScalar mat[][4], const float* SK_RESTRICT src2,
                    int count, float* SK_RESTRICT dst4) {
    SkMScalar r;
    for (int n = 0; n < count; ++n) {
        SkMScalar sx = SkFloatToMScalar(src2[0]);
        SkMScalar sy = SkFloatToMScalar(src2[1]);
        for (int i = 0; i < 4; i++) {
            r = mat[0][i] * sx + mat[1][i] * sy + mat[3][i];
            dst4[i] = SkMScalarToFloat(r);
        }
        src2 += 2;
        dst4 += 4;
    }
}

static void map2_pd(const SkMScalar mat[][4], const double* SK_RESTRICT src2,
                    int count, double* SK_RESTRICT dst4) {
    for (int n = 0; n < count; ++n) {
        double sx = src2[0];
        double sy = src2[1];
        for (int i = 0; i < 4; i++) {
            dst4[i] = mat[0][i] * sx + mat[1][i] * sy + mat[3][i];
        }
        src2 += 2;
        dst4 += 4;
    }
}

void SkMatrix44::map2(const float src2[], int count, float dst4[]) const {
    static const Map2Procf gProc[] = {
        map2_if, map2_tf, map2_sf, map2_sf, map2_af, map2_af, map2_af, map2_af
    };

    TypeMask mask = this->getType();
    Map2Procf proc = (mask & kPerspective_Mask) ? map2_pf : gProc[mask];
    proc(fMat, src2, count, dst4);
}

void SkMatrix44::map2(const double src2[], int count, double dst4[]) const {
    static const Map2Procd gProc[] = {
        map2_id, map2_td, map2_sd, map2_sd, map2_ad, map2_ad, map2_ad, map2_ad
    };

    TypeMask mask = this->getType();
    Map2Procd proc = (mask & kPerspective_Mask) ? map2_pd : gProc[mask];
    proc(fMat, src2, count, dst4);
}

///////////////////////////////////////////////////////////////////////////////

void SkMatrix44::dump() const {
    static const char* format =
        "[%g %g %g %g][%g %g %g %g][%g %g %g %g][%g %g %g %g]\n";
#if 0
    SkDebugf(format,
             fMat[0][0], fMat[1][0], fMat[2][0], fMat[3][0],
             fMat[0][1], fMat[1][1], fMat[2][1], fMat[3][1],
             fMat[0][2], fMat[1][2], fMat[2][2], fMat[3][2],
             fMat[0][3], fMat[1][3], fMat[2][3], fMat[3][3]);
#else
    SkDebugf(format,
             fMat[0][0], fMat[0][1], fMat[0][2], fMat[0][3],
             fMat[1][0], fMat[1][1], fMat[1][2], fMat[1][3],
             fMat[2][0], fMat[2][1], fMat[2][2], fMat[2][3],
             fMat[3][0], fMat[3][1], fMat[3][2], fMat[3][3]);
#endif
}

///////////////////////////////////////////////////////////////////////////////

static void initFromMatrix(SkMScalar dst[4][4], const SkMatrix& src) {
    dst[0][0] = SkScalarToMScalar(src[SkMatrix::kMScaleX]);
    dst[1][0] = SkScalarToMScalar(src[SkMatrix::kMSkewX]);
    dst[2][0] = 0;
    dst[3][0] = SkScalarToMScalar(src[SkMatrix::kMTransX]);
    dst[0][1] = SkScalarToMScalar(src[SkMatrix::kMSkewY]);
    dst[1][1] = SkScalarToMScalar(src[SkMatrix::kMScaleY]);
    dst[2][1] = 0;
    dst[3][1] = SkScalarToMScalar(src[SkMatrix::kMTransY]);
    dst[0][2] = 0;
    dst[1][2] = 0;
    dst[2][2] = 1;
    dst[3][2] = 0;
    dst[0][3] = SkScalarToMScalar(src[SkMatrix::kMPersp0]);
    dst[1][3] = SkScalarToMScalar(src[SkMatrix::kMPersp1]);
    dst[2][3] = 0;
    dst[3][3] = SkScalarToMScalar(src[SkMatrix::kMPersp2]);
}

SkMatrix44::SkMatrix44(const SkMatrix& src) {
    initFromMatrix(fMat, src);
}

SkMatrix44& SkMatrix44::operator=(const SkMatrix& src) {
    initFromMatrix(fMat, src);

    if (src.isIdentity()) {
        this->setTypeMask(kIdentity_Mask);
    } else {
        this->dirtyTypeMask();
    }
    return *this;
}

SkMatrix44::operator SkMatrix() const {
    SkMatrix dst;

    dst[SkMatrix::kMScaleX]  = SkMScalarToScalar(fMat[0][0]);
    dst[SkMatrix::kMSkewX]  = SkMScalarToScalar(fMat[1][0]);
    dst[SkMatrix::kMTransX] = SkMScalarToScalar(fMat[3][0]);

    dst[SkMatrix::kMSkewY]  = SkMScalarToScalar(fMat[0][1]);
    dst[SkMatrix::kMScaleY] = SkMScalarToScalar(fMat[1][1]);
    dst[SkMatrix::kMTransY] = SkMScalarToScalar(fMat[3][1]);

    dst[SkMatrix::kMPersp0] = SkMScalarToScalar(fMat[0][3]);
    dst[SkMatrix::kMPersp1] = SkMScalarToScalar(fMat[1][3]);
    dst[SkMatrix::kMPersp2] = SkMScalarToScalar(fMat[3][3]);

    return dst;
}