DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
/*
 * Copyright 2006-2012 The Android Open Source Project
 * Copyright 2012 Mozilla Foundation
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkBitmap.h"
#include "SkCanvas.h"
#include "SkColor.h"
#include "SkColorPriv.h"
#include "SkFDot6.h"
#include "SkFontHost_FreeType_common.h"
#include "SkPath.h"

#include <ft2build.h>
#include FT_FREETYPE_H
#include FT_BITMAP_H
#include FT_IMAGE_H
#include FT_OUTLINE_H
// In the past, FT_GlyphSlot_Own_Bitmap was defined in this header file.
#include FT_SYNTHESIS_H

// FT_LOAD_COLOR and the corresponding FT_Pixel_Mode::FT_PIXEL_MODE_BGRA
// were introduced in FreeType 2.5.0.
// The following may be removed once FreeType 2.5.0 is required to build.
#ifndef FT_LOAD_COLOR
#    define FT_LOAD_COLOR ( 1L << 20 )
#    define FT_PIXEL_MODE_BGRA 7
#endif

//#define SK_SHOW_TEXT_BLIT_COVERAGE

static FT_Pixel_Mode compute_pixel_mode(SkMask::Format format) {
    switch (format) {
        case SkMask::kBW_Format:
            return FT_PIXEL_MODE_MONO;
        case SkMask::kA8_Format:
        default:
            return FT_PIXEL_MODE_GRAY;
    }
}

///////////////////////////////////////////////////////////////////////////////

static uint16_t packTriple(U8CPU r, U8CPU g, U8CPU b) {
#ifdef SK_SHOW_TEXT_BLIT_COVERAGE
    r = SkTMax(r, (U8CPU)0x40);
    g = SkTMax(g, (U8CPU)0x40);
    b = SkTMax(b, (U8CPU)0x40);
#endif
    return SkPack888ToRGB16(r, g, b);
}

static uint16_t grayToRGB16(U8CPU gray) {
#ifdef SK_SHOW_TEXT_BLIT_COVERAGE
    gray = SkTMax(gray, (U8CPU)0x40);
#endif
    return SkPack888ToRGB16(gray, gray, gray);
}

static int bittst(const uint8_t data[], int bitOffset) {
    SkASSERT(bitOffset >= 0);
    int lowBit = data[bitOffset >> 3] >> (~bitOffset & 7);
    return lowBit & 1;
}

/**
 *  Copies a FT_Bitmap into an SkMask with the same dimensions.
 *
 *  FT_PIXEL_MODE_MONO
 *  FT_PIXEL_MODE_GRAY
 *  FT_PIXEL_MODE_LCD
 *  FT_PIXEL_MODE_LCD_V
 */
template<bool APPLY_PREBLEND>
static void copyFT2LCD16(const FT_Bitmap& bitmap, const SkMask& mask, int lcdIsBGR,
                         const uint8_t* tableR, const uint8_t* tableG, const uint8_t* tableB)
{
    SkASSERT(SkMask::kLCD16_Format == mask.fFormat);
    if (FT_PIXEL_MODE_LCD != bitmap.pixel_mode) {
        SkASSERT(mask.fBounds.width() == bitmap.width);
    }
    if (FT_PIXEL_MODE_LCD_V != bitmap.pixel_mode) {
        SkASSERT(mask.fBounds.height() == bitmap.rows);
    }

    const uint8_t* src = bitmap.buffer;
    uint16_t* dst = reinterpret_cast<uint16_t*>(mask.fImage);
    const size_t dstRB = mask.fRowBytes;

    const int width = mask.fBounds.width();
    const int height = mask.fBounds.height();

    switch (bitmap.pixel_mode) {
        case FT_PIXEL_MODE_MONO:
            for (int y = height; y --> 0;) {
                for (int x = 0; x < width; ++x) {
                    dst[x] = -bittst(src, x);
                }
                dst = (uint16_t*)((char*)dst + dstRB);
                src += bitmap.pitch;
            }
            break;
        case FT_PIXEL_MODE_GRAY:
            for (int y = height; y --> 0;) {
                for (int x = 0; x < width; ++x) {
                    dst[x] = grayToRGB16(src[x]);
                }
                dst = (uint16_t*)((char*)dst + dstRB);
                src += bitmap.pitch;
            }
            break;
        case FT_PIXEL_MODE_LCD:
            SkASSERT(3 * mask.fBounds.width() == bitmap.width);
            for (int y = height; y --> 0;) {
                const uint8_t* triple = src;
                if (lcdIsBGR) {
                    for (int x = 0; x < width; x++) {
                        dst[x] = packTriple(sk_apply_lut_if<APPLY_PREBLEND>(triple[2], tableR),
                                            sk_apply_lut_if<APPLY_PREBLEND>(triple[1], tableG),
                                            sk_apply_lut_if<APPLY_PREBLEND>(triple[0], tableB));
                        triple += 3;
                    }
                } else {
                    for (int x = 0; x < width; x++) {
                        dst[x] = packTriple(sk_apply_lut_if<APPLY_PREBLEND>(triple[0], tableR),
                                            sk_apply_lut_if<APPLY_PREBLEND>(triple[1], tableG),
                                            sk_apply_lut_if<APPLY_PREBLEND>(triple[2], tableB));
                        triple += 3;
                    }
                }
                src += bitmap.pitch;
                dst = (uint16_t*)((char*)dst + dstRB);
            }
            break;
        case FT_PIXEL_MODE_LCD_V:
            SkASSERT(3 * mask.fBounds.height() == bitmap.rows);
            for (int y = height; y --> 0;) {
                const uint8_t* srcR = src;
                const uint8_t* srcG = srcR + bitmap.pitch;
                const uint8_t* srcB = srcG + bitmap.pitch;
                if (lcdIsBGR) {
                    SkTSwap(srcR, srcB);
                }
                for (int x = 0; x < width; x++) {
                    dst[x] = packTriple(sk_apply_lut_if<APPLY_PREBLEND>(*srcR++, tableR),
                                        sk_apply_lut_if<APPLY_PREBLEND>(*srcG++, tableG),
                                        sk_apply_lut_if<APPLY_PREBLEND>(*srcB++, tableB));
                }
                src += 3 * bitmap.pitch;
                dst = (uint16_t*)((char*)dst + dstRB);
            }
            break;
        default:
            SkDEBUGF(("FT_Pixel_Mode %d", bitmap.pixel_mode));
            SkDEBUGFAIL("unsupported FT_Pixel_Mode for LCD16");
            break;
    }
}

/**
 *  Copies a FT_Bitmap into an SkMask with the same dimensions.
 *
 *  Yes, No, Never Requested, Never Produced
 *
 *                        kBW kA8 k3D kARGB32 kLCD16 kLCD32
 *  FT_PIXEL_MODE_MONO     Y   Y  NR     N       Y     NR
 *  FT_PIXEL_MODE_GRAY     N   Y  NR     N       Y     NR
 *  FT_PIXEL_MODE_GRAY2   NP  NP  NR    NP      NP     NR
 *  FT_PIXEL_MODE_GRAY4   NP  NP  NR    NP      NP     NR
 *  FT_PIXEL_MODE_LCD     NP  NP  NR    NP      NP     NR
 *  FT_PIXEL_MODE_LCD_V   NP  NP  NR    NP      NP     NR
 *  FT_PIXEL_MODE_BGRA     N   N  NR     Y       N     NR
 *
 *  TODO: All of these N need to be Y or otherwise ruled out.
 */
static void copyFTBitmap(const FT_Bitmap& srcFTBitmap, SkMask& dstMask) {
    SkASSERT(dstMask.fBounds.width() == srcFTBitmap.width);
    SkASSERT(dstMask.fBounds.height() == srcFTBitmap.rows);

    const uint8_t* src = reinterpret_cast<const uint8_t*>(srcFTBitmap.buffer);
    const FT_Pixel_Mode srcFormat = static_cast<FT_Pixel_Mode>(srcFTBitmap.pixel_mode);
    // FT_Bitmap::pitch is an int and allowed to be negative.
    const int srcPitch = srcFTBitmap.pitch;
    const size_t srcRowBytes = SkTAbs(srcPitch);

    uint8_t* dst = dstMask.fImage;
    const SkMask::Format dstFormat = static_cast<SkMask::Format>(dstMask.fFormat);
    const size_t dstRowBytes = dstMask.fRowBytes;

    const size_t width = srcFTBitmap.width;
    const size_t height = srcFTBitmap.rows;

    if (SkMask::kLCD16_Format == dstFormat) {
        copyFT2LCD16<false>(srcFTBitmap, dstMask, false, NULL, NULL, NULL);
        return;
    }

    if ((FT_PIXEL_MODE_MONO == srcFormat && SkMask::kBW_Format == dstFormat) ||
        (FT_PIXEL_MODE_GRAY == srcFormat && SkMask::kA8_Format == dstFormat))
    {
        size_t commonRowBytes = SkTMin(srcRowBytes, dstRowBytes);
        for (size_t y = height; y --> 0;) {
            memcpy(dst, src, commonRowBytes);
            src += srcPitch;
            dst += dstRowBytes;
        }
    } else if (FT_PIXEL_MODE_MONO == srcFormat && SkMask::kA8_Format == dstFormat) {
        for (size_t y = height; y --> 0;) {
            uint8_t byte = 0;
            int bits = 0;
            const uint8_t* src_row = src;
            uint8_t* dst_row = dst;
            for (size_t x = width; x --> 0;) {
                if (0 == bits) {
                    byte = *src_row++;
                    bits = 8;
                }
                *dst_row++ = byte & 0x80 ? 0xff : 0x00;
                bits--;
                byte <<= 1;
            }
            src += srcPitch;
            dst += dstRowBytes;
        }
    } else if (FT_PIXEL_MODE_BGRA == srcFormat && SkMask::kARGB32_Format == dstFormat) {
        // FT_PIXEL_MODE_BGRA is pre-multiplied.
        for (size_t y = height; y --> 0;) {
            const uint8_t* src_row = src;
            SkPMColor* dst_row = reinterpret_cast<SkPMColor*>(dst);
            for (size_t x = 0; x < width; ++x) {
                uint8_t b = *src_row++;
                uint8_t g = *src_row++;
                uint8_t r = *src_row++;
                uint8_t a = *src_row++;
                *dst_row++ = SkPackARGB32(a, r, g, b);
#ifdef SK_SHOW_TEXT_BLIT_COVERAGE
                *(dst_row-1) = SkFourByteInterp256(*(dst_row-1), SK_ColorWHITE, 0x40);
#endif
            }
            src += srcPitch;
            dst += dstRowBytes;
        }
    } else {
        SkDEBUGF(("FT_Pixel_Mode %d, SkMask::Format %d\n", srcFormat, dstFormat));
        SkDEBUGFAIL("unsupported combination of FT_Pixel_Mode and SkMask::Format");
    }
}

static inline int convert_8_to_1(unsigned byte) {
    SkASSERT(byte <= 0xFF);
    // Arbitrary decision that making the cutoff at 1/4 instead of 1/2 in general looks better.
    return (byte >> 6) != 0;
}

static uint8_t pack_8_to_1(const uint8_t alpha[8]) {
    unsigned bits = 0;
    for (int i = 0; i < 8; ++i) {
        bits <<= 1;
        bits |= convert_8_to_1(alpha[i]);
    }
    return SkToU8(bits);
}

static void packA8ToA1(const SkMask& mask, const uint8_t* src, size_t srcRB) {
    const int height = mask.fBounds.height();
    const int width = mask.fBounds.width();
    const int octs = width >> 3;
    const int leftOverBits = width & 7;

    uint8_t* dst = mask.fImage;
    const int dstPad = mask.fRowBytes - SkAlign8(width)/8;
    SkASSERT(dstPad >= 0);

    const int srcPad = srcRB - width;
    SkASSERT(srcPad >= 0);

    for (int y = 0; y < height; ++y) {
        for (int i = 0; i < octs; ++i) {
            *dst++ = pack_8_to_1(src);
            src += 8;
        }
        if (leftOverBits > 0) {
            unsigned bits = 0;
            int shift = 7;
            for (int i = 0; i < leftOverBits; ++i, --shift) {
                bits |= convert_8_to_1(*src++) << shift;
            }
            *dst++ = bits;
        }
        src += srcPad;
        dst += dstPad;
    }
}

inline SkMask::Format SkMaskFormat_for_SkColorType(SkColorType colorType) {
    switch (colorType) {
        case kAlpha_8_SkColorType:
            return SkMask::kA8_Format;
        case kN32_SkColorType:
            return SkMask::kARGB32_Format;
        default:
            SkDEBUGFAIL("unsupported SkBitmap::Config");
            return SkMask::kA8_Format;
    }
}

inline SkColorType SkColorType_for_FTPixelMode(FT_Pixel_Mode pixel_mode) {
    switch (pixel_mode) {
        case FT_PIXEL_MODE_MONO:
        case FT_PIXEL_MODE_GRAY:
            return kAlpha_8_SkColorType;
        case FT_PIXEL_MODE_BGRA:
            return kN32_SkColorType;
        default:
            SkDEBUGFAIL("unsupported FT_PIXEL_MODE");
            return kAlpha_8_SkColorType;
    }
}

inline SkColorType SkColorType_for_SkMaskFormat(SkMask::Format format) {
    switch (format) {
        case SkMask::kBW_Format:
        case SkMask::kA8_Format:
        case SkMask::kLCD16_Format:
            return kAlpha_8_SkColorType;
        case SkMask::kARGB32_Format:
            return kN32_SkColorType;
        default:
            SkDEBUGFAIL("unsupported destination SkBitmap::Config");
            return kAlpha_8_SkColorType;
    }
}

void SkScalerContext_FreeType_Base::generateGlyphImage(FT_Face face, const SkGlyph& glyph) {
    const bool doBGR = SkToBool(fRec.fFlags & SkScalerContext::kLCD_BGROrder_Flag);
    const bool doVert = SkToBool(fRec.fFlags & SkScalerContext::kLCD_Vertical_Flag);

    switch ( face->glyph->format ) {
        case FT_GLYPH_FORMAT_OUTLINE: {
            FT_Outline* outline = &face->glyph->outline;
            FT_BBox     bbox;
            FT_Bitmap   target;

            int dx = 0, dy = 0;
            if (fRec.fFlags & SkScalerContext::kSubpixelPositioning_Flag) {
                dx = SkFixedToFDot6(glyph.getSubXFixed());
                dy = SkFixedToFDot6(glyph.getSubYFixed());
                // negate dy since freetype-y-goes-up and skia-y-goes-down
                dy = -dy;
            }
            FT_Outline_Get_CBox(outline, &bbox);
            /*
                what we really want to do for subpixel is
                    offset(dx, dy)
                    compute_bounds
                    offset(bbox & !63)
                but that is two calls to offset, so we do the following, which
                achieves the same thing with only one offset call.
            */
            FT_Outline_Translate(outline, dx - ((bbox.xMin + dx) & ~63),
                                          dy - ((bbox.yMin + dy) & ~63));

            if (SkMask::kLCD16_Format == glyph.fMaskFormat) {
                FT_Render_Glyph(face->glyph, doVert ? FT_RENDER_MODE_LCD_V : FT_RENDER_MODE_LCD);
                SkMask mask;
                glyph.toMask(&mask);
                if (fPreBlend.isApplicable()) {
                    copyFT2LCD16<true>(face->glyph->bitmap, mask, doBGR,
                                       fPreBlend.fR, fPreBlend.fG, fPreBlend.fB);
                } else {
                    copyFT2LCD16<false>(face->glyph->bitmap, mask, doBGR,
                                        fPreBlend.fR, fPreBlend.fG, fPreBlend.fB);
                }
            } else {
                target.width = glyph.fWidth;
                target.rows = glyph.fHeight;
                target.pitch = glyph.rowBytes();
                target.buffer = reinterpret_cast<uint8_t*>(glyph.fImage);
                target.pixel_mode = compute_pixel_mode( (SkMask::Format)fRec.fMaskFormat);
                target.num_grays = 256;

                memset(glyph.fImage, 0, glyph.rowBytes() * glyph.fHeight);
                FT_Outline_Get_Bitmap(face->glyph->library, outline, &target);
            }
        } break;

        case FT_GLYPH_FORMAT_BITMAP: {
            FT_Pixel_Mode pixel_mode = static_cast<FT_Pixel_Mode>(face->glyph->bitmap.pixel_mode);
            SkMask::Format maskFormat = static_cast<SkMask::Format>(glyph.fMaskFormat);

            // Assume that the other formats do not exist.
            SkASSERT(FT_PIXEL_MODE_MONO == pixel_mode ||
                     FT_PIXEL_MODE_GRAY == pixel_mode ||
                     FT_PIXEL_MODE_BGRA == pixel_mode);

            // These are the only formats this ScalerContext should request.
            SkASSERT(SkMask::kBW_Format == maskFormat ||
                     SkMask::kA8_Format == maskFormat ||
                     SkMask::kARGB32_Format == maskFormat ||
                     SkMask::kLCD16_Format == maskFormat);

            if (fRec.fFlags & SkScalerContext::kEmbolden_Flag &&
                !(face->style_flags & FT_STYLE_FLAG_BOLD))
            {
                FT_GlyphSlot_Own_Bitmap(face->glyph);
                FT_Bitmap_Embolden(face->glyph->library, &face->glyph->bitmap,
                                   kBitmapEmboldenStrength, 0);
            }

            // If no scaling needed, directly copy glyph bitmap.
            if (glyph.fWidth == face->glyph->bitmap.width &&
                glyph.fHeight == face->glyph->bitmap.rows &&
                glyph.fTop == -face->glyph->bitmap_top &&
                glyph.fLeft == face->glyph->bitmap_left)
            {
                SkMask dstMask;
                glyph.toMask(&dstMask);
                copyFTBitmap(face->glyph->bitmap, dstMask);
                break;
            }

            // Otherwise, scale the bitmap.

            // Copy the FT_Bitmap into an SkBitmap (either A8 or ARGB)
            SkBitmap unscaledBitmap;
            unscaledBitmap.allocPixels(SkImageInfo::Make(face->glyph->bitmap.width,
                                                         face->glyph->bitmap.rows,
                                                         SkColorType_for_FTPixelMode(pixel_mode),
                                                         kPremul_SkAlphaType));

            SkMask unscaledBitmapAlias;
            unscaledBitmapAlias.fImage = reinterpret_cast<uint8_t*>(unscaledBitmap.getPixels());
            unscaledBitmapAlias.fBounds.set(0, 0, unscaledBitmap.width(), unscaledBitmap.height());
            unscaledBitmapAlias.fRowBytes = unscaledBitmap.rowBytes();
            unscaledBitmapAlias.fFormat = SkMaskFormat_for_SkColorType(unscaledBitmap.colorType());
            copyFTBitmap(face->glyph->bitmap, unscaledBitmapAlias);

            // Wrap the glyph's mask in a bitmap, unless the glyph's mask is BW or LCD.
            // BW requires an A8 target for resizing, which can then be down sampled.
            // LCD should use a 4x A8 target, which will then be down sampled.
            // For simplicity, LCD uses A8 and is replicated.
            int bitmapRowBytes = 0;
            if (SkMask::kBW_Format != maskFormat && SkMask::kLCD16_Format != maskFormat) {
                bitmapRowBytes = glyph.rowBytes();
            }
            SkBitmap dstBitmap;
            dstBitmap.setInfo(SkImageInfo::Make(glyph.fWidth, glyph.fHeight,
                                                SkColorType_for_SkMaskFormat(maskFormat),
                                                kPremul_SkAlphaType),
                              bitmapRowBytes);
            if (SkMask::kBW_Format == maskFormat || SkMask::kLCD16_Format == maskFormat) {
                dstBitmap.allocPixels();
            } else {
                dstBitmap.setPixels(glyph.fImage);
            }

            // Scale unscaledBitmap into dstBitmap.
            SkCanvas canvas(dstBitmap);
            canvas.clear(SK_ColorTRANSPARENT);
            canvas.scale(SkIntToScalar(glyph.fWidth) / SkIntToScalar(face->glyph->bitmap.width),
                         SkIntToScalar(glyph.fHeight) / SkIntToScalar(face->glyph->bitmap.rows));
            SkPaint paint;
            paint.setFilterLevel(SkPaint::kLow_FilterLevel);
            canvas.drawBitmap(unscaledBitmap, 0, 0, &paint);

            // If the destination is BW or LCD, convert from A8.
            if (SkMask::kBW_Format == maskFormat) {
                // Copy the A8 dstBitmap into the A1 glyph.fImage.
                SkMask dstMask;
                glyph.toMask(&dstMask);
                packA8ToA1(dstMask, dstBitmap.getAddr8(0, 0), dstBitmap.rowBytes());
            } else if (SkMask::kLCD16_Format == maskFormat) {
                // Copy the A8 dstBitmap into the LCD16 glyph.fImage.
                uint8_t* src = dstBitmap.getAddr8(0, 0);
                uint16_t* dst = reinterpret_cast<uint16_t*>(glyph.fImage);
                for (int y = dstBitmap.height(); y --> 0;) {
                    for (int x = 0; x < dstBitmap.width(); ++x) {
                        dst[x] = grayToRGB16(src[x]);
                    }
                    dst = (uint16_t*)((char*)dst + glyph.rowBytes());
                    src += dstBitmap.rowBytes();
                }
            }

        } break;

        default:
            SkDEBUGFAIL("unknown glyph format");
            memset(glyph.fImage, 0, glyph.rowBytes() * glyph.fHeight);
            return;
    }

// We used to always do this pre-USE_COLOR_LUMINANCE, but with colorlum,
// it is optional
#if defined(SK_GAMMA_APPLY_TO_A8)
    if (SkMask::kA8_Format == glyph.fMaskFormat && fPreBlend.isApplicable()) {
        uint8_t* SK_RESTRICT dst = (uint8_t*)glyph.fImage;
        unsigned rowBytes = glyph.rowBytes();

        for (int y = glyph.fHeight - 1; y >= 0; --y) {
            for (int x = glyph.fWidth - 1; x >= 0; --x) {
                dst[x] = fPreBlend.fG[dst[x]];
            }
            dst += rowBytes;
        }
    }
#endif
}

///////////////////////////////////////////////////////////////////////////////

static int move_proc(const FT_Vector* pt, void* ctx) {
    SkPath* path = (SkPath*)ctx;
    path->close();  // to close the previous contour (if any)
    path->moveTo(SkFDot6ToScalar(pt->x), -SkFDot6ToScalar(pt->y));
    return 0;
}

static int line_proc(const FT_Vector* pt, void* ctx) {
    SkPath* path = (SkPath*)ctx;
    path->lineTo(SkFDot6ToScalar(pt->x), -SkFDot6ToScalar(pt->y));
    return 0;
}

static int quad_proc(const FT_Vector* pt0, const FT_Vector* pt1,
                     void* ctx) {
    SkPath* path = (SkPath*)ctx;
    path->quadTo(SkFDot6ToScalar(pt0->x), -SkFDot6ToScalar(pt0->y),
                 SkFDot6ToScalar(pt1->x), -SkFDot6ToScalar(pt1->y));
    return 0;
}

static int cubic_proc(const FT_Vector* pt0, const FT_Vector* pt1,
                      const FT_Vector* pt2, void* ctx) {
    SkPath* path = (SkPath*)ctx;
    path->cubicTo(SkFDot6ToScalar(pt0->x), -SkFDot6ToScalar(pt0->y),
                  SkFDot6ToScalar(pt1->x), -SkFDot6ToScalar(pt1->y),
                  SkFDot6ToScalar(pt2->x), -SkFDot6ToScalar(pt2->y));
    return 0;
}

void SkScalerContext_FreeType_Base::generateGlyphPath(FT_Face face,
                                                      SkPath* path)
{
    FT_Outline_Funcs    funcs;

    funcs.move_to   = move_proc;
    funcs.line_to   = line_proc;
    funcs.conic_to  = quad_proc;
    funcs.cubic_to  = cubic_proc;
    funcs.shift     = 0;
    funcs.delta     = 0;

    FT_Error err = FT_Outline_Decompose(&face->glyph->outline, &funcs, path);

    if (err != 0) {
        path->reset();
        return;
    }

    path->close();
}