DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "SkReduceOrder.h"

int SkReduceOrder::reduce(const SkDLine& line) {
    fLine[0] = line[0];
    int different = line[0] != line[1];
    fLine[1] = line[different];
    return 1 + different;
}

static int coincident_line(const SkDQuad& quad, SkDQuad& reduction) {
    reduction[0] = reduction[1] = quad[0];
    return 1;
}

static int reductionLineCount(const SkDQuad& reduction) {
    return 1 + !reduction[0].approximatelyEqual(reduction[1]);
}

static int vertical_line(const SkDQuad& quad, SkDQuad& reduction) {
    reduction[0] = quad[0];
    reduction[1] = quad[2];
    return reductionLineCount(reduction);
}

static int horizontal_line(const SkDQuad& quad, SkDQuad& reduction) {
    reduction[0] = quad[0];
    reduction[1] = quad[2];
    return reductionLineCount(reduction);
}

static int check_linear(const SkDQuad& quad,
        int minX, int maxX, int minY, int maxY, SkDQuad& reduction) {
    int startIndex = 0;
    int endIndex = 2;
    while (quad[startIndex].approximatelyEqual(quad[endIndex])) {
        --endIndex;
        if (endIndex == 0) {
            SkDebugf("%s shouldn't get here if all four points are about equal", __FUNCTION__);
            SkASSERT(0);
        }
    }
    if (!quad.isLinear(startIndex, endIndex)) {
        return 0;
    }
    // four are colinear: return line formed by outside
    reduction[0] = quad[0];
    reduction[1] = quad[2];
    return reductionLineCount(reduction);
}

// reduce to a quadratic or smaller
// look for identical points
// look for all four points in a line
    // note that three points in a line doesn't simplify a cubic
// look for approximation with single quadratic
    // save approximation with multiple quadratics for later
int SkReduceOrder::reduce(const SkDQuad& quad) {
    int index, minX, maxX, minY, maxY;
    int minXSet, minYSet;
    minX = maxX = minY = maxY = 0;
    minXSet = minYSet = 0;
    for (index = 1; index < 3; ++index) {
        if (quad[minX].fX > quad[index].fX) {
            minX = index;
        }
        if (quad[minY].fY > quad[index].fY) {
            minY = index;
        }
        if (quad[maxX].fX < quad[index].fX) {
            maxX = index;
        }
        if (quad[maxY].fY < quad[index].fY) {
            maxY = index;
        }
    }
    for (index = 0; index < 3; ++index) {
        if (AlmostEqualUlps(quad[index].fX, quad[minX].fX)) {
            minXSet |= 1 << index;
        }
        if (AlmostEqualUlps(quad[index].fY, quad[minY].fY)) {
            minYSet |= 1 << index;
        }
    }
    if (minXSet == 0x7) {  // test for vertical line
        if (minYSet == 0x7) {  // return 1 if all four are coincident
            return coincident_line(quad, fQuad);
        }
        return vertical_line(quad, fQuad);
    }
    if (minYSet == 0xF) {  // test for horizontal line
        return horizontal_line(quad, fQuad);
    }
    int result = check_linear(quad, minX, maxX, minY, maxY, fQuad);
    if (result) {
        return result;
    }
    fQuad = quad;
    return 3;
}

////////////////////////////////////////////////////////////////////////////////////

static int coincident_line(const SkDCubic& cubic, SkDCubic& reduction) {
    reduction[0] = reduction[1] = cubic[0];
    return 1;
}

static int reductionLineCount(const SkDCubic& reduction) {
    return 1 + !reduction[0].approximatelyEqual(reduction[1]);
}

static int vertical_line(const SkDCubic& cubic, SkDCubic& reduction) {
    reduction[0] = cubic[0];
    reduction[1] = cubic[3];
    return reductionLineCount(reduction);
}

static int horizontal_line(const SkDCubic& cubic, SkDCubic& reduction) {
    reduction[0] = cubic[0];
    reduction[1] = cubic[3];
    return reductionLineCount(reduction);
}

// check to see if it is a quadratic or a line
static int check_quadratic(const SkDCubic& cubic, SkDCubic& reduction) {
    double dx10 = cubic[1].fX - cubic[0].fX;
    double dx23 = cubic[2].fX - cubic[3].fX;
    double midX = cubic[0].fX + dx10 * 3 / 2;
    double sideAx = midX - cubic[3].fX;
    double sideBx = dx23 * 3 / 2;
    if (approximately_zero(sideAx) ? !approximately_equal(sideAx, sideBx)
            : !AlmostEqualUlps(sideAx, sideBx)) {
        return 0;
    }
    double dy10 = cubic[1].fY - cubic[0].fY;
    double dy23 = cubic[2].fY - cubic[3].fY;
    double midY = cubic[0].fY + dy10 * 3 / 2;
    double sideAy = midY - cubic[3].fY;
    double sideBy = dy23 * 3 / 2;
    if (approximately_zero(sideAy) ? !approximately_equal(sideAy, sideBy)
            : !AlmostEqualUlps(sideAy, sideBy)) {
        return 0;
    }
    reduction[0] = cubic[0];
    reduction[1].fX = midX;
    reduction[1].fY = midY;
    reduction[2] = cubic[3];
    return 3;
}

static int check_linear(const SkDCubic& cubic,
        int minX, int maxX, int minY, int maxY, SkDCubic& reduction) {
    int startIndex = 0;
    int endIndex = 3;
    while (cubic[startIndex].approximatelyEqual(cubic[endIndex])) {
        --endIndex;
        if (endIndex == 0) {
            endIndex = 3;
            break;
        }
    }
    if (!cubic.isLinear(startIndex, endIndex)) {
        return 0;
    }
    // four are colinear: return line formed by outside
    reduction[0] = cubic[0];
    reduction[1] = cubic[3];
    return reductionLineCount(reduction);
}

/* food for thought:
http://objectmix.com/graphics/132906-fast-precision-driven-cubic-quadratic-piecewise-degree-reduction-algos-2-a.html

Given points c1, c2, c3 and c4 of a cubic Bezier, the points of the
corresponding quadratic Bezier are (given in convex combinations of
points):

q1 = (11/13)c1 + (3/13)c2 -(3/13)c3 + (2/13)c4
q2 = -c1 + (3/2)c2 + (3/2)c3 - c4
q3 = (2/13)c1 - (3/13)c2 + (3/13)c3 + (11/13)c4

Of course, this curve does not interpolate the end-points, but it would
be interesting to see the behaviour of such a curve in an applet.

--
Kalle Rutanen
http://kaba.hilvi.org

*/

// reduce to a quadratic or smaller
// look for identical points
// look for all four points in a line
    // note that three points in a line doesn't simplify a cubic
// look for approximation with single quadratic
    // save approximation with multiple quadratics for later
int SkReduceOrder::reduce(const SkDCubic& cubic, Quadratics allowQuadratics) {
    int index, minX, maxX, minY, maxY;
    int minXSet, minYSet;
    minX = maxX = minY = maxY = 0;
    minXSet = minYSet = 0;
    for (index = 1; index < 4; ++index) {
        if (cubic[minX].fX > cubic[index].fX) {
            minX = index;
        }
        if (cubic[minY].fY > cubic[index].fY) {
            minY = index;
        }
        if (cubic[maxX].fX < cubic[index].fX) {
            maxX = index;
        }
        if (cubic[maxY].fY < cubic[index].fY) {
            maxY = index;
        }
    }
    for (index = 0; index < 4; ++index) {
        double cx = cubic[index].fX;
        double cy = cubic[index].fY;
        double denom = SkTMax(fabs(cx), SkTMax(fabs(cy),
                SkTMax(fabs(cubic[minX].fX), fabs(cubic[minY].fY))));
        if (denom == 0) {
            minXSet |= 1 << index;
            minYSet |= 1 << index;
            continue;
        }
        double inv = 1 / denom;
        if (approximately_equal_half(cx * inv, cubic[minX].fX * inv)) {
            minXSet |= 1 << index;
        }
        if (approximately_equal_half(cy * inv, cubic[minY].fY * inv)) {
            minYSet |= 1 << index;
        }
    }
    if (minXSet == 0xF) {  // test for vertical line
        if (minYSet == 0xF) {  // return 1 if all four are coincident
            return coincident_line(cubic, fCubic);
        }
        return vertical_line(cubic, fCubic);
    }
    if (minYSet == 0xF) {  // test for horizontal line
        return horizontal_line(cubic, fCubic);
    }
    int result = check_linear(cubic, minX, maxX, minY, maxY, fCubic);
    if (result) {
        return result;
    }
    if (allowQuadratics == SkReduceOrder::kAllow_Quadratics
            && (result = check_quadratic(cubic, fCubic))) {
        return result;
    }
    fCubic = cubic;
    return 4;
}

SkPath::Verb SkReduceOrder::Quad(const SkPoint a[3], SkPoint* reducePts) {
    SkDQuad quad;
    quad.set(a);
    SkReduceOrder reducer;
    int order = reducer.reduce(quad);
    if (order == 2) {  // quad became line
        for (int index = 0; index < order; ++index) {
            *reducePts++ = reducer.fLine[index].asSkPoint();
        }
    }
    return SkPathOpsPointsToVerb(order - 1);
}

SkPath::Verb SkReduceOrder::Cubic(const SkPoint a[4], SkPoint* reducePts) {
    SkDCubic cubic;
    cubic.set(a);
    SkReduceOrder reducer;
    int order = reducer.reduce(cubic, kAllow_Quadratics);
    if (order == 2 || order == 3) {  // cubic became line or quad
        for (int index = 0; index < order; ++index) {
            *reducePts++ = reducer.fQuad[index].asSkPoint();
        }
    }
    return SkPathOpsPointsToVerb(order - 1);
}