DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#ifndef SkPathOpsTypes_DEFINED
#define SkPathOpsTypes_DEFINED

#include <float.h>  // for FLT_EPSILON
#include <math.h>   // for fabs, sqrt

#include "SkFloatingPoint.h"
#include "SkPath.h"
#include "SkPathOps.h"
#include "SkPathOpsDebug.h"
#include "SkScalar.h"

enum SkPathOpsMask {
    kWinding_PathOpsMask = -1,
    kNo_PathOpsMask = 0,
    kEvenOdd_PathOpsMask = 1
};

// Use Almost Equal when comparing coordinates. Use epsilon to compare T values.
bool AlmostEqualUlps(float a, float b);
inline bool AlmostEqualUlps(double a, double b) {
    return AlmostEqualUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
}

// Use Almost Dequal when comparing should not special case denormalized values.
bool AlmostDequalUlps(float a, float b);
bool AlmostDequalUlps(double a, double b);

bool NotAlmostEqualUlps(float a, float b);
inline bool NotAlmostEqualUlps(double a, double b) {
    return NotAlmostEqualUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
}

bool NotAlmostDequalUlps(float a, float b);
inline bool NotAlmostDequalUlps(double a, double b) {
    return NotAlmostDequalUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
}

// Use Almost Bequal when comparing coordinates in conjunction with between.
bool AlmostBequalUlps(float a, float b);
inline bool AlmostBequalUlps(double a, double b) {
    return AlmostBequalUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
}

bool AlmostPequalUlps(float a, float b);
inline bool AlmostPequalUlps(double a, double b) {
    return AlmostPequalUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
}

bool RoughlyEqualUlps(float a, float b);
inline bool RoughlyEqualUlps(double a, double b) {
    return RoughlyEqualUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
}

bool AlmostLessUlps(float a, float b);
inline bool AlmostLessUlps(double a, double b) {
    return AlmostLessUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
}

bool AlmostLessOrEqualUlps(float a, float b);
inline bool AlmostLessOrEqualUlps(double a, double b) {
    return AlmostLessOrEqualUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
}

bool AlmostBetweenUlps(float a, float b, float c);
inline bool AlmostBetweenUlps(double a, double b, double c) {
    return AlmostBetweenUlps(SkDoubleToScalar(a), SkDoubleToScalar(b), SkDoubleToScalar(c));
}

int UlpsDistance(float a, float b);
inline int UlpsDistance(double a, double b) {
    return UlpsDistance(SkDoubleToScalar(a), SkDoubleToScalar(b));
}

// FLT_EPSILON == 1.19209290E-07 == 1 / (2 ^ 23)
// DBL_EPSILON == 2.22045e-16
const double FLT_EPSILON_CUBED = FLT_EPSILON * FLT_EPSILON * FLT_EPSILON;
const double FLT_EPSILON_HALF = FLT_EPSILON / 2;
const double FLT_EPSILON_DOUBLE = FLT_EPSILON * 2;
const double FLT_EPSILON_ORDERABLE_ERR = FLT_EPSILON * 16;
const double FLT_EPSILON_SQUARED = FLT_EPSILON * FLT_EPSILON;
const double FLT_EPSILON_SQRT = sqrt(FLT_EPSILON);
const double FLT_EPSILON_INVERSE = 1 / FLT_EPSILON;
const double DBL_EPSILON_ERR = DBL_EPSILON * 4;  // FIXME: tune -- allow a few bits of error
const double DBL_EPSILON_SUBDIVIDE_ERR = DBL_EPSILON * 16;
const double ROUGH_EPSILON = FLT_EPSILON * 64;
const double MORE_ROUGH_EPSILON = FLT_EPSILON * 256;
const double WAY_ROUGH_EPSILON = FLT_EPSILON * 2048;

inline bool zero_or_one(double x) {
    return x == 0 || x == 1;
}

inline bool approximately_zero(double x) {
    return fabs(x) < FLT_EPSILON;
}

inline bool precisely_zero(double x) {
    return fabs(x) < DBL_EPSILON_ERR;
}

inline bool precisely_subdivide_zero(double x) {
    return fabs(x) < DBL_EPSILON_SUBDIVIDE_ERR;
}

inline bool approximately_zero(float x) {
    return fabs(x) < FLT_EPSILON;
}

inline bool approximately_zero_cubed(double x) {
    return fabs(x) < FLT_EPSILON_CUBED;
}

inline bool approximately_zero_half(double x) {
    return fabs(x) < FLT_EPSILON_HALF;
}

inline bool approximately_zero_double(double x) {
    return fabs(x) < FLT_EPSILON_DOUBLE;
}

inline bool approximately_zero_orderable(double x) {
    return fabs(x) < FLT_EPSILON_ORDERABLE_ERR;
}

inline bool approximately_zero_squared(double x) {
    return fabs(x) < FLT_EPSILON_SQUARED;
}

inline bool approximately_zero_sqrt(double x) {
    return fabs(x) < FLT_EPSILON_SQRT;
}

inline bool roughly_zero(double x) {
    return fabs(x) < ROUGH_EPSILON;
}

inline bool approximately_zero_inverse(double x) {
    return fabs(x) > FLT_EPSILON_INVERSE;
}

// OPTIMIZATION: if called multiple times with the same denom, we want to pass 1/y instead
inline bool approximately_zero_when_compared_to(double x, double y) {
    return x == 0 || fabs(x) < fabs(y * FLT_EPSILON);
}

// Use this for comparing Ts in the range of 0 to 1. For general numbers (larger and smaller) use
// AlmostEqualUlps instead.
inline bool approximately_equal(double x, double y) {
    return approximately_zero(x - y);
}

inline bool precisely_equal(double x, double y) {
    return precisely_zero(x - y);
}

inline bool precisely_subdivide_equal(double x, double y) {
    return precisely_subdivide_zero(x - y);
}

inline bool approximately_equal_half(double x, double y) {
    return approximately_zero_half(x - y);
}

inline bool approximately_equal_double(double x, double y) {
    return approximately_zero_double(x - y);
}

inline bool approximately_equal_orderable(double x, double y) {
    return approximately_zero_orderable(x - y);
}

inline bool approximately_equal_squared(double x, double y) {
    return approximately_equal(x, y);
}

inline bool approximately_greater(double x, double y) {
    return x - FLT_EPSILON >= y;
}

inline bool approximately_greater_double(double x, double y) {
    return x - FLT_EPSILON_DOUBLE >= y;
}

inline bool approximately_greater_orderable(double x, double y) {
    return x - FLT_EPSILON_ORDERABLE_ERR >= y;
}

inline bool approximately_greater_or_equal(double x, double y) {
    return x + FLT_EPSILON > y;
}

inline bool approximately_greater_or_equal_double(double x, double y) {
    return x + FLT_EPSILON_DOUBLE > y;
}

inline bool approximately_greater_or_equal_orderable(double x, double y) {
    return x + FLT_EPSILON_ORDERABLE_ERR > y;
}

inline bool approximately_lesser(double x, double y) {
    return x + FLT_EPSILON <= y;
}

inline bool approximately_lesser_double(double x, double y) {
    return x + FLT_EPSILON_DOUBLE <= y;
}

inline bool approximately_lesser_orderable(double x, double y) {
    return x + FLT_EPSILON_ORDERABLE_ERR <= y;
}

inline bool approximately_lesser_or_equal(double x, double y) {
    return x - FLT_EPSILON < y;
}

inline bool approximately_lesser_or_equal_double(double x, double y) {
    return x - FLT_EPSILON_DOUBLE < y;
}

inline bool approximately_lesser_or_equal_orderable(double x, double y) {
    return x - FLT_EPSILON_ORDERABLE_ERR < y;
}

inline bool approximately_greater_than_one(double x) {
    return x > 1 - FLT_EPSILON;
}

inline bool precisely_greater_than_one(double x) {
    return x > 1 - DBL_EPSILON_ERR;
}

inline bool approximately_less_than_zero(double x) {
    return x < FLT_EPSILON;
}

inline bool precisely_less_than_zero(double x) {
    return x < DBL_EPSILON_ERR;
}

inline bool approximately_negative(double x) {
    return x < FLT_EPSILON;
}

inline bool approximately_negative_orderable(double x) {
    return x < FLT_EPSILON_ORDERABLE_ERR;
}

inline bool precisely_negative(double x) {
    return x < DBL_EPSILON_ERR;
}

inline bool approximately_one_or_less(double x) {
    return x < 1 + FLT_EPSILON;
}

inline bool approximately_one_or_less_double(double x) {
    return x < 1 + FLT_EPSILON_DOUBLE;
}

inline bool approximately_positive(double x) {
    return x > -FLT_EPSILON;
}

inline bool approximately_positive_squared(double x) {
    return x > -(FLT_EPSILON_SQUARED);
}

inline bool approximately_zero_or_more(double x) {
    return x > -FLT_EPSILON;
}

inline bool approximately_zero_or_more_double(double x) {
    return x > -FLT_EPSILON_DOUBLE;
}

inline bool approximately_between_orderable(double a, double b, double c) {
    return a <= c
            ? approximately_negative_orderable(a - b) && approximately_negative_orderable(b - c)
            : approximately_negative_orderable(b - a) && approximately_negative_orderable(c - b);
}

inline bool approximately_between(double a, double b, double c) {
    return a <= c ? approximately_negative(a - b) && approximately_negative(b - c)
            : approximately_negative(b - a) && approximately_negative(c - b);
}

inline bool precisely_between(double a, double b, double c) {
    return a <= c ? precisely_negative(a - b) && precisely_negative(b - c)
            : precisely_negative(b - a) && precisely_negative(c - b);
}

// returns true if (a <= b <= c) || (a >= b >= c)
inline bool between(double a, double b, double c) {
    SkASSERT(((a <= b && b <= c) || (a >= b && b >= c)) == ((a - b) * (c - b) <= 0));
    return (a - b) * (c - b) <= 0;
}

inline bool roughly_equal(double x, double y) {
    return fabs(x - y) < ROUGH_EPSILON;
}

inline bool more_roughly_equal(double x, double y) {
    return fabs(x - y) < MORE_ROUGH_EPSILON;
}

inline bool way_roughly_equal(double x, double y) {
    return fabs(x - y) < WAY_ROUGH_EPSILON;
}

struct SkDPoint;
struct SkDVector;
struct SkDLine;
struct SkDQuad;
struct SkDTriangle;
struct SkDCubic;
struct SkDRect;

inline SkPath::Verb SkPathOpsPointsToVerb(int points) {
    int verb = (1 << points) >> 1;
#ifdef SK_DEBUG
    switch (points) {
        case 0: SkASSERT(SkPath::kMove_Verb == verb); break;
        case 1: SkASSERT(SkPath::kLine_Verb == verb); break;
        case 2: SkASSERT(SkPath::kQuad_Verb == verb); break;
        case 3: SkASSERT(SkPath::kCubic_Verb == verb); break;
        default: SkDEBUGFAIL("should not be here");
    }
#endif
    return (SkPath::Verb)verb;
}

inline int SkPathOpsVerbToPoints(SkPath::Verb verb) {
    int points = (int) verb - ((int) verb >> 2);
#ifdef SK_DEBUG
    switch (verb) {
        case SkPath::kLine_Verb: SkASSERT(1 == points); break;
        case SkPath::kQuad_Verb: SkASSERT(2 == points); break;
        case SkPath::kCubic_Verb: SkASSERT(3 == points); break;
        default: SkDEBUGFAIL("should not get here");
    }
#endif
    return points;
}

inline double SkDInterp(double A, double B, double t) {
    return A + (B - A) * t;
}

double SkDCubeRoot(double x);

/* Returns -1 if negative, 0 if zero, 1 if positive
*/
inline int SkDSign(double x) {
    return (x > 0) - (x < 0);
}

/* Returns 0 if negative, 1 if zero, 2 if positive
*/
inline int SKDSide(double x) {
    return (x > 0) + (x >= 0);
}

/* Returns 1 if negative, 2 if zero, 4 if positive
*/
inline int SkDSideBit(double x) {
    return 1 << SKDSide(x);
}

inline double SkPinT(double t) {
    return precisely_less_than_zero(t) ? 0 : precisely_greater_than_one(t) ? 1 : t;
}

#endif