DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "SkAddIntersections.h"
#include "SkOpEdgeBuilder.h"
#include "SkPathOpsCommon.h"
#include "SkPathWriter.h"

static SkOpSegment* findChaseOp(SkTDArray<SkOpSpan*>& chase, int* tIndex, int* endIndex) {
    while (chase.count()) {
        SkOpSpan* span;
        chase.pop(&span);
        const SkOpSpan& backPtr = span->fOther->span(span->fOtherIndex);
        SkOpSegment* segment = backPtr.fOther;
        *tIndex = backPtr.fOtherIndex;
        bool sortable = true;
        bool done = true;
        *endIndex = -1;
        if (const SkOpAngle* last = segment->activeAngle(*tIndex, tIndex, endIndex, &done,
                &sortable)) {
            if (last->unorderable()) {
                continue;
            }
            *tIndex = last->start();
            *endIndex = last->end();
   #if TRY_ROTATE
            *chase.insert(0) = span;
   #else
            *chase.append() = span;
   #endif
            return last->segment();
        }
        if (done) {
            continue;
        }
        if (!sortable) {
            continue;
        }
        // find first angle, initialize winding to computed fWindSum
        const SkOpAngle* angle = segment->spanToAngle(*tIndex, *endIndex);
        if (!angle) {
            continue;
        }
        const SkOpAngle* firstAngle = angle;
        SkDEBUGCODE(bool loop = false);
        int winding;
        do {
            angle = angle->next();
            SkASSERT(angle != firstAngle || !loop);
            SkDEBUGCODE(loop |= angle == firstAngle);
            segment = angle->segment();
            winding = segment->windSum(angle);
        } while (winding == SK_MinS32);
        int sumMiWinding = segment->updateWindingReverse(angle);
        int sumSuWinding = segment->updateOppWindingReverse(angle);
        if (segment->operand()) {
            SkTSwap<int>(sumMiWinding, sumSuWinding);
        }
        SkOpSegment* first = NULL;
        while ((angle = angle->next()) != firstAngle) {
            segment = angle->segment();
            int start = angle->start();
            int end = angle->end();
            int maxWinding, sumWinding, oppMaxWinding, oppSumWinding;
            segment->setUpWindings(start, end, &sumMiWinding, &sumSuWinding,
                    &maxWinding, &sumWinding, &oppMaxWinding, &oppSumWinding);
            if (!segment->done(angle)) {
                if (!first) {
                    first = segment;
                    *tIndex = start;
                    *endIndex = end;
                }
                // OPTIMIZATION: should this also add to the chase?
                (void) segment->markAngle(maxWinding, sumWinding, oppMaxWinding,
                    oppSumWinding, angle);
            }
        }
        if (first) {
       #if TRY_ROTATE
            *chase.insert(0) = span;
       #else
            *chase.append() = span;
       #endif
            return first;
        }
    }
    return NULL;
}

/*
static bool windingIsActive(int winding, int oppWinding, int spanWinding, int oppSpanWinding,
        bool windingIsOp, PathOp op) {
    bool active = windingIsActive(winding, spanWinding);
    if (!active) {
        return false;
    }
    if (oppSpanWinding && windingIsActive(oppWinding, oppSpanWinding)) {
        switch (op) {
            case kIntersect_Op:
            case kUnion_Op:
                return true;
            case kDifference_Op: {
                int absSpan = abs(spanWinding);
                int absOpp = abs(oppSpanWinding);
                return windingIsOp ? absSpan < absOpp : absSpan > absOpp;
            }
            case kXor_Op:
                return spanWinding != oppSpanWinding;
            default:
                SkASSERT(0);
        }
    }
    bool opActive = oppWinding != 0;
    return gOpLookup[op][opActive][windingIsOp];
}
*/

static bool bridgeOp(SkTArray<SkOpContour*, true>& contourList, const SkPathOp op,
        const int xorMask, const int xorOpMask, SkPathWriter* simple) {
    bool firstContour = true;
    bool unsortable = false;
    bool topUnsortable = false;
    bool firstPass = true;
    SkPoint lastTopLeft;
    SkPoint topLeft = {SK_ScalarMin, SK_ScalarMin};
    do {
        int index, endIndex;
        bool topDone;
        bool onlyVertical = false;
        lastTopLeft = topLeft;
        SkOpSegment* current = FindSortableTop(contourList, SkOpAngle::kBinarySingle, &firstContour,
                &index, &endIndex, &topLeft, &topUnsortable, &topDone, &onlyVertical, firstPass);
        if (!current) {
            if ((!topUnsortable || firstPass) && !topDone) {
                SkASSERT(topLeft.fX != SK_ScalarMin && topLeft.fY != SK_ScalarMin);
                if (lastTopLeft.fX == SK_ScalarMin && lastTopLeft.fY == SK_ScalarMin) {
                    if (firstPass) {
                        firstPass = false;
                    } else {
                        break;
                    }
                }
                topLeft.fX = topLeft.fY = SK_ScalarMin;
                continue;
            }
            break;
        } else if (onlyVertical) {
            break;
        }
        firstPass = !topUnsortable || lastTopLeft != topLeft;
        SkTDArray<SkOpSpan*> chase;
        do {
            if (current->activeOp(index, endIndex, xorMask, xorOpMask, op)) {
                do {
                    if (!unsortable && current->done()) {
                        break;
                    }
                    SkASSERT(unsortable || !current->done());
                    int nextStart = index;
                    int nextEnd = endIndex;
                    SkOpSegment* next = current->findNextOp(&chase, &nextStart, &nextEnd,
                            &unsortable, op, xorMask, xorOpMask);
                    if (!next) {
                        if (!unsortable && simple->hasMove()
                                && current->verb() != SkPath::kLine_Verb
                                && !simple->isClosed()) {
                            current->addCurveTo(index, endIndex, simple, true);
                    #if DEBUG_ACTIVE_SPANS
                            if (!simple->isClosed()) {
                                DebugShowActiveSpans(contourList);
                            }
                    #endif
//                            SkASSERT(simple->isClosed());
                        }
                        break;
                    }
        #if DEBUG_FLOW
            SkDebugf("%s current id=%d from=(%1.9g,%1.9g) to=(%1.9g,%1.9g)\n", __FUNCTION__,
                    current->debugID(), current->xyAtT(index).fX, current->xyAtT(index).fY,
                    current->xyAtT(endIndex).fX, current->xyAtT(endIndex).fY);
        #endif
                    current->addCurveTo(index, endIndex, simple, true);
                    current = next;
                    index = nextStart;
                    endIndex = nextEnd;
                } while (!simple->isClosed() && (!unsortable
                        || !current->done(SkMin32(index, endIndex))));
                if (current->activeWinding(index, endIndex) && !simple->isClosed()) {
                    // FIXME : add to simplify, xor cpaths
                    int min = SkMin32(index, endIndex);
                    if (!unsortable && !simple->isEmpty()) {
                        unsortable = current->checkSmall(min);
                    }
                    if (!current->done(min)) {
                        current->addCurveTo(index, endIndex, simple, true);
                        current->markDoneBinary(min);
                    }
                }
                simple->close();
            } else {
                SkOpSpan* last = current->markAndChaseDoneBinary(index, endIndex);
                if (last && !last->fChased && !last->fLoop) {
                    last->fChased = true;
                    SkASSERT(!SkPathOpsDebug::ChaseContains(chase, last));
                    *chase.append() = last;
#if DEBUG_WINDING
                    SkDebugf("%s chase.append id=%d windSum=%d small=%d\n", __FUNCTION__,
                            last->fOther->span(last->fOtherIndex).fOther->debugID(), last->fWindSum,
                            last->fSmall);
#endif
                }
            }
            current = findChaseOp(chase, &index, &endIndex);
        #if DEBUG_ACTIVE_SPANS
            DebugShowActiveSpans(contourList);
        #endif
            if (!current) {
                break;
            }
        } while (true);
    } while (true);
    return simple->someAssemblyRequired();
}

// pretty picture:
// https://docs.google.com/a/google.com/drawings/d/1sPV8rPfpEFXymBp3iSbDRWAycp1b-7vD9JP2V-kn9Ss/edit?usp=sharing
static const SkPathOp gOpInverse[kReverseDifference_PathOp + 1][2][2] = {
//                  inside minuend                               outside minuend
//     inside subtrahend     outside subtrahend      inside subtrahend     outside subtrahend
    {{ kDifference_PathOp,    kIntersect_PathOp }, { kUnion_PathOp, kReverseDifference_PathOp }},
    {{ kIntersect_PathOp,    kDifference_PathOp }, { kReverseDifference_PathOp, kUnion_PathOp }},
    {{ kUnion_PathOp, kReverseDifference_PathOp }, { kDifference_PathOp,    kIntersect_PathOp }},
    {{ kXOR_PathOp,                 kXOR_PathOp }, { kXOR_PathOp,                 kXOR_PathOp }},
    {{ kReverseDifference_PathOp, kUnion_PathOp }, { kIntersect_PathOp,    kDifference_PathOp }},
};

static const bool gOutInverse[kReverseDifference_PathOp + 1][2][2] = {
    {{ false, false }, { true, false }},  // diff
    {{ false, false }, { false, true }},  // sect
    {{ false, true }, { true, true }},    // union
    {{ false, true }, { true, false }},   // xor
    {{ false, true }, { false, false }},  // rev diff
};

bool Op(const SkPath& one, const SkPath& two, SkPathOp op, SkPath* result) {
#if DEBUG_SHOW_TEST_NAME
    char* debugName = DEBUG_FILENAME_STRING;
    if (debugName && debugName[0]) {
        SkPathOpsDebug::BumpTestName(debugName);
        SkPathOpsDebug::ShowPath(one, two, op, debugName);
    }
#endif
    op = gOpInverse[op][one.isInverseFillType()][two.isInverseFillType()];
    SkPath::FillType fillType = gOutInverse[op][one.isInverseFillType()][two.isInverseFillType()]
            ? SkPath::kInverseEvenOdd_FillType : SkPath::kEvenOdd_FillType;
    const SkPath* minuend = &one;
    const SkPath* subtrahend = &two;
    if (op == kReverseDifference_PathOp) {
        minuend = &two;
        subtrahend = &one;
        op = kDifference_PathOp;
    }
#if DEBUG_SORT || DEBUG_SWAP_TOP
    SkPathOpsDebug::gSortCount = SkPathOpsDebug::gSortCountDefault;
#endif
    // turn path into list of segments
    SkTArray<SkOpContour> contours;
    // FIXME: add self-intersecting cubics' T values to segment
    SkOpEdgeBuilder builder(*minuend, contours);
    const int xorMask = builder.xorMask();
    builder.addOperand(*subtrahend);
    if (!builder.finish()) {
        return false;
    }
    result->reset();
    result->setFillType(fillType);
    const int xorOpMask = builder.xorMask();
    SkTArray<SkOpContour*, true> contourList;
    MakeContourList(contours, contourList, xorMask == kEvenOdd_PathOpsMask,
            xorOpMask == kEvenOdd_PathOpsMask);
    SkOpContour** currentPtr = contourList.begin();
    if (!currentPtr) {
        return true;
    }
    SkOpContour** listEnd = contourList.end();
    // find all intersections between segments
    do {
        SkOpContour** nextPtr = currentPtr;
        SkOpContour* current = *currentPtr++;
        if (current->containsCubics()) {
            AddSelfIntersectTs(current);
        }
        SkOpContour* next;
        do {
            next = *nextPtr++;
        } while (AddIntersectTs(current, next) && nextPtr != listEnd);
    } while (currentPtr != listEnd);
    // eat through coincident edges

    int total = 0;
    int index;
    for (index = 0; index < contourList.count(); ++index) {
        total += contourList[index]->segments().count();
    }
    if (!HandleCoincidence(&contourList, total)) {
        return false;
    }
    // construct closed contours
    SkPathWriter wrapper(*result);
    bridgeOp(contourList, op, xorMask, xorOpMask, &wrapper);
    {  // if some edges could not be resolved, assemble remaining fragments
        SkPath temp;
        temp.setFillType(fillType);
        SkPathWriter assembled(temp);
        Assemble(wrapper, &assembled);
        *result = *assembled.nativePath();
        result->setFillType(fillType);
    }
    return true;
}