DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "SkLineParameters.h"
#include "SkPathOpsCubic.h"
#include "SkPathOpsLine.h"
#include "SkPathOpsQuad.h"
#include "SkPathOpsRect.h"
#include "SkTSort.h"

const int SkDCubic::gPrecisionUnit = 256;  // FIXME: test different values in test framework

// give up when changing t no longer moves point
// also, copy point rather than recompute it when it does change
double SkDCubic::binarySearch(double min, double max, double axisIntercept,
        SearchAxis xAxis) const {
    double t = (min + max) / 2;
    double step = (t - min) / 2;
    SkDPoint cubicAtT = ptAtT(t);
    double calcPos = (&cubicAtT.fX)[xAxis];
    double calcDist = calcPos - axisIntercept;
    do {
        double priorT = t - step;
        SkASSERT(priorT >= min);
        SkDPoint lessPt = ptAtT(priorT);
        if (approximately_equal(lessPt.fX, cubicAtT.fX)
                && approximately_equal(lessPt.fY, cubicAtT.fY)) {
            return -1;  // binary search found no point at this axis intercept
        }
        double lessDist = (&lessPt.fX)[xAxis] - axisIntercept;
#if DEBUG_CUBIC_BINARY_SEARCH
        SkDebugf("t=%1.9g calc=%1.9g dist=%1.9g step=%1.9g less=%1.9g\n", t, calcPos, calcDist,
                step, lessDist);
#endif
        double lastStep = step;
        step /= 2;
        if (calcDist > 0 ? calcDist > lessDist : calcDist < lessDist) {
            t = priorT;
        } else {
            double nextT = t + lastStep;
            SkASSERT(nextT <= max);
            SkDPoint morePt = ptAtT(nextT);
            if (approximately_equal(morePt.fX, cubicAtT.fX)
                    && approximately_equal(morePt.fY, cubicAtT.fY)) {
                return -1;  // binary search found no point at this axis intercept
            }
            double moreDist = (&morePt.fX)[xAxis] - axisIntercept;
            if (calcDist > 0 ? calcDist <= moreDist : calcDist >= moreDist) {
                continue;
            }
            t = nextT;
        }
        SkDPoint testAtT = ptAtT(t);
        cubicAtT = testAtT;
        calcPos = (&cubicAtT.fX)[xAxis];
        calcDist = calcPos - axisIntercept;
    } while (!approximately_equal(calcPos, axisIntercept));
    return t;
}

// FIXME: cache keep the bounds and/or precision with the caller?
double SkDCubic::calcPrecision() const {
    SkDRect dRect;
    dRect.setBounds(*this);  // OPTIMIZATION: just use setRawBounds ?
    double width = dRect.fRight - dRect.fLeft;
    double height = dRect.fBottom - dRect.fTop;
    return (width > height ? width : height) / gPrecisionUnit;
}

bool SkDCubic::clockwise() const {
    double sum = (fPts[0].fX - fPts[3].fX) * (fPts[0].fY + fPts[3].fY);
    for (int idx = 0; idx < 3; ++idx) {
        sum += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx].fY);
    }
    return sum <= 0;
}

void SkDCubic::Coefficients(const double* src, double* A, double* B, double* C, double* D) {
    *A = src[6];  // d
    *B = src[4] * 3;  // 3*c
    *C = src[2] * 3;  // 3*b
    *D = src[0];  // a
    *A -= *D - *C + *B;     // A =   -a + 3*b - 3*c + d
    *B += 3 * *D - 2 * *C;  // B =  3*a - 6*b + 3*c
    *C -= 3 * *D;           // C = -3*a + 3*b
}

bool SkDCubic::controlsContainedByEnds() const {
    SkDVector startTan = fPts[1] - fPts[0];
    if (startTan.fX == 0 && startTan.fY == 0) {
        startTan = fPts[2] - fPts[0];
    }
    SkDVector endTan = fPts[2] - fPts[3];
    if (endTan.fX == 0 && endTan.fY == 0) {
        endTan = fPts[1] - fPts[3];
    }
    if (startTan.dot(endTan) >= 0) {
        return false;
    }
    SkDLine startEdge = {{fPts[0], fPts[0]}};
    startEdge[1].fX -= startTan.fY;
    startEdge[1].fY += startTan.fX;
    SkDLine endEdge = {{fPts[3], fPts[3]}};
    endEdge[1].fX -= endTan.fY;
    endEdge[1].fY += endTan.fX;
    double leftStart1 = startEdge.isLeft(fPts[1]);
    if (leftStart1 * startEdge.isLeft(fPts[2]) < 0) {
        return false;
    }
    double leftEnd1 = endEdge.isLeft(fPts[1]);
    if (leftEnd1 * endEdge.isLeft(fPts[2]) < 0) {
        return false;
    }
    return leftStart1 * leftEnd1 >= 0;
}

bool SkDCubic::endsAreExtremaInXOrY() const {
    return (between(fPts[0].fX, fPts[1].fX, fPts[3].fX)
            && between(fPts[0].fX, fPts[2].fX, fPts[3].fX))
            || (between(fPts[0].fY, fPts[1].fY, fPts[3].fY)
            && between(fPts[0].fY, fPts[2].fY, fPts[3].fY));
}

bool SkDCubic::isLinear(int startIndex, int endIndex) const {
    SkLineParameters lineParameters;
    lineParameters.cubicEndPoints(*this, startIndex, endIndex);
    // FIXME: maybe it's possible to avoid this and compare non-normalized
    lineParameters.normalize();
    double distance = lineParameters.controlPtDistance(*this, 1);
    if (!approximately_zero(distance)) {
        return false;
    }
    distance = lineParameters.controlPtDistance(*this, 2);
    return approximately_zero(distance);
}

bool SkDCubic::monotonicInY() const {
    return between(fPts[0].fY, fPts[1].fY, fPts[3].fY)
            && between(fPts[0].fY, fPts[2].fY, fPts[3].fY);
}

int SkDCubic::searchRoots(double extremeTs[6], int extrema, double axisIntercept,
        SearchAxis xAxis, double* validRoots) const {
    extrema += findInflections(&extremeTs[extrema]);
    extremeTs[extrema++] = 0;
    extremeTs[extrema] = 1;
    SkTQSort(extremeTs, extremeTs + extrema);
    int validCount = 0;
    for (int index = 0; index < extrema; ) {
        double min = extremeTs[index];
        double max = extremeTs[++index];
        if (min == max) {
            continue;
        }
        double newT = binarySearch(min, max, axisIntercept, xAxis);
        if (newT >= 0) {
            validRoots[validCount++] = newT;
        }
    }
    return validCount;
}

bool SkDCubic::serpentine() const {
#if 0  // FIXME: enabling this fixes cubicOp114 but breaks cubicOp58d and cubicOp53d
    double tValues[2];
    // OPTIMIZATION : another case where caching the present of cubic inflections would be useful
    return findInflections(tValues) > 1;
#endif
    if (!controlsContainedByEnds()) {
        return false;
    }
    double wiggle = (fPts[0].fX - fPts[2].fX) * (fPts[0].fY + fPts[2].fY);
    for (int idx = 0; idx < 2; ++idx) {
        wiggle += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx].fY);
    }
    double waggle = (fPts[1].fX - fPts[3].fX) * (fPts[1].fY + fPts[3].fY);
    for (int idx = 1; idx < 3; ++idx) {
        waggle += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx].fY);
    }
    return wiggle * waggle < 0;
}

// cubic roots

static const double PI = 3.141592653589793;

// from SkGeometry.cpp (and Numeric Solutions, 5.6)
int SkDCubic::RootsValidT(double A, double B, double C, double D, double t[3]) {
    double s[3];
    int realRoots = RootsReal(A, B, C, D, s);
    int foundRoots = SkDQuad::AddValidTs(s, realRoots, t);
    return foundRoots;
}

int SkDCubic::RootsReal(double A, double B, double C, double D, double s[3]) {
#ifdef SK_DEBUG
    // create a string mathematica understands
    // GDB set print repe 15 # if repeated digits is a bother
    //     set print elements 400 # if line doesn't fit
    char str[1024];
    sk_bzero(str, sizeof(str));
    SK_SNPRINTF(str, sizeof(str), "Solve[%1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]",
            A, B, C, D);
    SkPathOpsDebug::MathematicaIze(str, sizeof(str));
#if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA
    SkDebugf("%s\n", str);
#endif
#endif
    if (approximately_zero(A)
            && approximately_zero_when_compared_to(A, B)
            && approximately_zero_when_compared_to(A, C)
            && approximately_zero_when_compared_to(A, D)) {  // we're just a quadratic
        return SkDQuad::RootsReal(B, C, D, s);
    }
    if (approximately_zero_when_compared_to(D, A)
            && approximately_zero_when_compared_to(D, B)
            && approximately_zero_when_compared_to(D, C)) {  // 0 is one root
        int num = SkDQuad::RootsReal(A, B, C, s);
        for (int i = 0; i < num; ++i) {
            if (approximately_zero(s[i])) {
                return num;
            }
        }
        s[num++] = 0;
        return num;
    }
    if (approximately_zero(A + B + C + D)) {  // 1 is one root
        int num = SkDQuad::RootsReal(A, A + B, -D, s);
        for (int i = 0; i < num; ++i) {
            if (AlmostDequalUlps(s[i], 1)) {
                return num;
            }
        }
        s[num++] = 1;
        return num;
    }
    double a, b, c;
    {
        double invA = 1 / A;
        a = B * invA;
        b = C * invA;
        c = D * invA;
    }
    double a2 = a * a;
    double Q = (a2 - b * 3) / 9;
    double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
    double R2 = R * R;
    double Q3 = Q * Q * Q;
    double R2MinusQ3 = R2 - Q3;
    double adiv3 = a / 3;
    double r;
    double* roots = s;
    if (R2MinusQ3 < 0) {   // we have 3 real roots
        double theta = acos(R / sqrt(Q3));
        double neg2RootQ = -2 * sqrt(Q);

        r = neg2RootQ * cos(theta / 3) - adiv3;
        *roots++ = r;

        r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3;
        if (!AlmostDequalUlps(s[0], r)) {
            *roots++ = r;
        }
        r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3;
        if (!AlmostDequalUlps(s[0], r) && (roots - s == 1 || !AlmostDequalUlps(s[1], r))) {
            *roots++ = r;
        }
    } else {  // we have 1 real root
        double sqrtR2MinusQ3 = sqrt(R2MinusQ3);
        double A = fabs(R) + sqrtR2MinusQ3;
        A = SkDCubeRoot(A);
        if (R > 0) {
            A = -A;
        }
        if (A != 0) {
            A += Q / A;
        }
        r = A - adiv3;
        *roots++ = r;
        if (AlmostDequalUlps((double) R2, (double) Q3)) {
            r = -A / 2 - adiv3;
            if (!AlmostDequalUlps(s[0], r)) {
                *roots++ = r;
            }
        }
    }
    return static_cast<int>(roots - s);
}

// from http://www.cs.sunysb.edu/~qin/courses/geometry/4.pdf
// c(t)  = a(1-t)^3 + 3bt(1-t)^2 + 3c(1-t)t^2 + dt^3
// c'(t) = -3a(1-t)^2 + 3b((1-t)^2 - 2t(1-t)) + 3c(2t(1-t) - t^2) + 3dt^2
//       = 3(b-a)(1-t)^2 + 6(c-b)t(1-t) + 3(d-c)t^2
static double derivative_at_t(const double* src, double t) {
    double one_t = 1 - t;
    double a = src[0];
    double b = src[2];
    double c = src[4];
    double d = src[6];
    return 3 * ((b - a) * one_t * one_t + 2 * (c - b) * t * one_t + (d - c) * t * t);
}

// OPTIMIZE? compute t^2, t(1-t), and (1-t)^2 and pass them to another version of derivative at t?
SkDVector SkDCubic::dxdyAtT(double t) const {
    SkDVector result = { derivative_at_t(&fPts[0].fX, t), derivative_at_t(&fPts[0].fY, t) };
    return result;
}

// OPTIMIZE? share code with formulate_F1DotF2
int SkDCubic::findInflections(double tValues[]) const {
    double Ax = fPts[1].fX - fPts[0].fX;
    double Ay = fPts[1].fY - fPts[0].fY;
    double Bx = fPts[2].fX - 2 * fPts[1].fX + fPts[0].fX;
    double By = fPts[2].fY - 2 * fPts[1].fY + fPts[0].fY;
    double Cx = fPts[3].fX + 3 * (fPts[1].fX - fPts[2].fX) - fPts[0].fX;
    double Cy = fPts[3].fY + 3 * (fPts[1].fY - fPts[2].fY) - fPts[0].fY;
    return SkDQuad::RootsValidT(Bx * Cy - By * Cx, Ax * Cy - Ay * Cx, Ax * By - Ay * Bx, tValues);
}

static void formulate_F1DotF2(const double src[], double coeff[4]) {
    double a = src[2] - src[0];
    double b = src[4] - 2 * src[2] + src[0];
    double c = src[6] + 3 * (src[2] - src[4]) - src[0];
    coeff[0] = c * c;
    coeff[1] = 3 * b * c;
    coeff[2] = 2 * b * b + c * a;
    coeff[3] = a * b;
}

/** SkDCubic'(t) = At^2 + Bt + C, where
    A = 3(-a + 3(b - c) + d)
    B = 6(a - 2b + c)
    C = 3(b - a)
    Solve for t, keeping only those that fit between 0 < t < 1
*/
int SkDCubic::FindExtrema(double a, double b, double c, double d, double tValues[2]) {
    // we divide A,B,C by 3 to simplify
    double A = d - a + 3*(b - c);
    double B = 2*(a - b - b + c);
    double C = b - a;

    return SkDQuad::RootsValidT(A, B, C, tValues);
}

/*  from SkGeometry.cpp
    Looking for F' dot F'' == 0

    A = b - a
    B = c - 2b + a
    C = d - 3c + 3b - a

    F' = 3Ct^2 + 6Bt + 3A
    F'' = 6Ct + 6B

    F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
*/
int SkDCubic::findMaxCurvature(double tValues[]) const {
    double coeffX[4], coeffY[4];
    int i;
    formulate_F1DotF2(&fPts[0].fX, coeffX);
    formulate_F1DotF2(&fPts[0].fY, coeffY);
    for (i = 0; i < 4; i++) {
        coeffX[i] = coeffX[i] + coeffY[i];
    }
    return RootsValidT(coeffX[0], coeffX[1], coeffX[2], coeffX[3], tValues);
}

SkDPoint SkDCubic::top(double startT, double endT) const {
    SkDCubic sub = subDivide(startT, endT);
    SkDPoint topPt = sub[0];
    if (topPt.fY > sub[3].fY || (topPt.fY == sub[3].fY && topPt.fX > sub[3].fX)) {
        topPt = sub[3];
    }
    double extremeTs[2];
    if (!sub.monotonicInY()) {
        int roots = FindExtrema(sub[0].fY, sub[1].fY, sub[2].fY, sub[3].fY, extremeTs);
        for (int index = 0; index < roots; ++index) {
            double t = startT + (endT - startT) * extremeTs[index];
            SkDPoint mid = ptAtT(t);
            if (topPt.fY > mid.fY || (topPt.fY == mid.fY && topPt.fX > mid.fX)) {
                topPt = mid;
            }
        }
    }
    return topPt;
}

SkDPoint SkDCubic::ptAtT(double t) const {
    if (0 == t) {
        return fPts[0];
    }
    if (1 == t) {
        return fPts[3];
    }
    double one_t = 1 - t;
    double one_t2 = one_t * one_t;
    double a = one_t2 * one_t;
    double b = 3 * one_t2 * t;
    double t2 = t * t;
    double c = 3 * one_t * t2;
    double d = t2 * t;
    SkDPoint result = {a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX + d * fPts[3].fX,
            a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY + d * fPts[3].fY};
    return result;
}

/*
 Given a cubic c, t1, and t2, find a small cubic segment.

 The new cubic is defined as points A, B, C, and D, where
 s1 = 1 - t1
 s2 = 1 - t2
 A = c[0]*s1*s1*s1 + 3*c[1]*s1*s1*t1 + 3*c[2]*s1*t1*t1 + c[3]*t1*t1*t1
 D = c[0]*s2*s2*s2 + 3*c[1]*s2*s2*t2 + 3*c[2]*s2*t2*t2 + c[3]*t2*t2*t2

 We don't have B or C. So We define two equations to isolate them.
 First, compute two reference T values 1/3 and 2/3 from t1 to t2:

 c(at (2*t1 + t2)/3) == E
 c(at (t1 + 2*t2)/3) == F

 Next, compute where those values must be if we know the values of B and C:

 _12   =  A*2/3 + B*1/3
 12_   =  A*1/3 + B*2/3
 _23   =  B*2/3 + C*1/3
 23_   =  B*1/3 + C*2/3
 _34   =  C*2/3 + D*1/3
 34_   =  C*1/3 + D*2/3
 _123  = (A*2/3 + B*1/3)*2/3 + (B*2/3 + C*1/3)*1/3 = A*4/9 + B*4/9 + C*1/9
 123_  = (A*1/3 + B*2/3)*1/3 + (B*1/3 + C*2/3)*2/3 = A*1/9 + B*4/9 + C*4/9
 _234  = (B*2/3 + C*1/3)*2/3 + (C*2/3 + D*1/3)*1/3 = B*4/9 + C*4/9 + D*1/9
 234_  = (B*1/3 + C*2/3)*1/3 + (C*1/3 + D*2/3)*2/3 = B*1/9 + C*4/9 + D*4/9
 _1234 = (A*4/9 + B*4/9 + C*1/9)*2/3 + (B*4/9 + C*4/9 + D*1/9)*1/3
       =  A*8/27 + B*12/27 + C*6/27 + D*1/27
       =  E
 1234_ = (A*1/9 + B*4/9 + C*4/9)*1/3 + (B*1/9 + C*4/9 + D*4/9)*2/3
       =  A*1/27 + B*6/27 + C*12/27 + D*8/27
       =  F
 E*27  =  A*8    + B*12   + C*6     + D
 F*27  =  A      + B*6    + C*12    + D*8

Group the known values on one side:

 M       = E*27 - A*8 - D     = B*12 + C* 6
 N       = F*27 - A   - D*8   = B* 6 + C*12
 M*2 - N = B*18
 N*2 - M = C*18
 B       = (M*2 - N)/18
 C       = (N*2 - M)/18
 */

static double interp_cubic_coords(const double* src, double t) {
    double ab = SkDInterp(src[0], src[2], t);
    double bc = SkDInterp(src[2], src[4], t);
    double cd = SkDInterp(src[4], src[6], t);
    double abc = SkDInterp(ab, bc, t);
    double bcd = SkDInterp(bc, cd, t);
    double abcd = SkDInterp(abc, bcd, t);
    return abcd;
}

SkDCubic SkDCubic::subDivide(double t1, double t2) const {
    if (t1 == 0 || t2 == 1) {
        if (t1 == 0 && t2 == 1) {
            return *this;
        }
        SkDCubicPair pair = chopAt(t1 == 0 ? t2 : t1);
        SkDCubic dst = t1 == 0 ? pair.first() : pair.second();
        return dst;
    }
    SkDCubic dst;
    double ax = dst[0].fX = interp_cubic_coords(&fPts[0].fX, t1);
    double ay = dst[0].fY = interp_cubic_coords(&fPts[0].fY, t1);
    double ex = interp_cubic_coords(&fPts[0].fX, (t1*2+t2)/3);
    double ey = interp_cubic_coords(&fPts[0].fY, (t1*2+t2)/3);
    double fx = interp_cubic_coords(&fPts[0].fX, (t1+t2*2)/3);
    double fy = interp_cubic_coords(&fPts[0].fY, (t1+t2*2)/3);
    double dx = dst[3].fX = interp_cubic_coords(&fPts[0].fX, t2);
    double dy = dst[3].fY = interp_cubic_coords(&fPts[0].fY, t2);
    double mx = ex * 27 - ax * 8 - dx;
    double my = ey * 27 - ay * 8 - dy;
    double nx = fx * 27 - ax - dx * 8;
    double ny = fy * 27 - ay - dy * 8;
    /* bx = */ dst[1].fX = (mx * 2 - nx) / 18;
    /* by = */ dst[1].fY = (my * 2 - ny) / 18;
    /* cx = */ dst[2].fX = (nx * 2 - mx) / 18;
    /* cy = */ dst[2].fY = (ny * 2 - my) / 18;
    // FIXME: call align() ?
    return dst;
}

void SkDCubic::align(int endIndex, int ctrlIndex, SkDPoint* dstPt) const {
    if (fPts[endIndex].fX == fPts[ctrlIndex].fX) {
        dstPt->fX = fPts[endIndex].fX;
    }
    if (fPts[endIndex].fY == fPts[ctrlIndex].fY) {
        dstPt->fY = fPts[endIndex].fY;
    }
}

void SkDCubic::subDivide(const SkDPoint& a, const SkDPoint& d,
                         double t1, double t2, SkDPoint dst[2]) const {
    SkASSERT(t1 != t2);
#if 0
    double ex = interp_cubic_coords(&fPts[0].fX, (t1 * 2 + t2) / 3);
    double ey = interp_cubic_coords(&fPts[0].fY, (t1 * 2 + t2) / 3);
    double fx = interp_cubic_coords(&fPts[0].fX, (t1 + t2 * 2) / 3);
    double fy = interp_cubic_coords(&fPts[0].fY, (t1 + t2 * 2) / 3);
    double mx = ex * 27 - a.fX * 8 - d.fX;
    double my = ey * 27 - a.fY * 8 - d.fY;
    double nx = fx * 27 - a.fX - d.fX * 8;
    double ny = fy * 27 - a.fY - d.fY * 8;
    /* bx = */ dst[0].fX = (mx * 2 - nx) / 18;
    /* by = */ dst[0].fY = (my * 2 - ny) / 18;
    /* cx = */ dst[1].fX = (nx * 2 - mx) / 18;
    /* cy = */ dst[1].fY = (ny * 2 - my) / 18;
#else
    // this approach assumes that the control points computed directly are accurate enough
    SkDCubic sub = subDivide(t1, t2);
    dst[0] = sub[1] + (a - sub[0]);
    dst[1] = sub[2] + (d - sub[3]);
#endif
    if (t1 == 0 || t2 == 0) {
        align(0, 1, t1 == 0 ? &dst[0] : &dst[1]);
    }
    if (t1 == 1 || t2 == 1) {
        align(3, 2, t1 == 1 ? &dst[0] : &dst[1]);
    }
    if (AlmostBequalUlps(dst[0].fX, a.fX)) {
        dst[0].fX = a.fX;
    }
    if (AlmostBequalUlps(dst[0].fY, a.fY)) {
        dst[0].fY = a.fY;
    }
    if (AlmostBequalUlps(dst[1].fX, d.fX)) {
        dst[1].fX = d.fX;
    }
    if (AlmostBequalUlps(dst[1].fY, d.fY)) {
        dst[1].fY = d.fY;
    }
}

/* classic one t subdivision */
static void interp_cubic_coords(const double* src, double* dst, double t) {
    double ab = SkDInterp(src[0], src[2], t);
    double bc = SkDInterp(src[2], src[4], t);
    double cd = SkDInterp(src[4], src[6], t);
    double abc = SkDInterp(ab, bc, t);
    double bcd = SkDInterp(bc, cd, t);
    double abcd = SkDInterp(abc, bcd, t);

    dst[0] = src[0];
    dst[2] = ab;
    dst[4] = abc;
    dst[6] = abcd;
    dst[8] = bcd;
    dst[10] = cd;
    dst[12] = src[6];
}

SkDCubicPair SkDCubic::chopAt(double t) const {
    SkDCubicPair dst;
    if (t == 0.5) {
        dst.pts[0] = fPts[0];
        dst.pts[1].fX = (fPts[0].fX + fPts[1].fX) / 2;
        dst.pts[1].fY = (fPts[0].fY + fPts[1].fY) / 2;
        dst.pts[2].fX = (fPts[0].fX + 2 * fPts[1].fX + fPts[2].fX) / 4;
        dst.pts[2].fY = (fPts[0].fY + 2 * fPts[1].fY + fPts[2].fY) / 4;
        dst.pts[3].fX = (fPts[0].fX + 3 * (fPts[1].fX + fPts[2].fX) + fPts[3].fX) / 8;
        dst.pts[3].fY = (fPts[0].fY + 3 * (fPts[1].fY + fPts[2].fY) + fPts[3].fY) / 8;
        dst.pts[4].fX = (fPts[1].fX + 2 * fPts[2].fX + fPts[3].fX) / 4;
        dst.pts[4].fY = (fPts[1].fY + 2 * fPts[2].fY + fPts[3].fY) / 4;
        dst.pts[5].fX = (fPts[2].fX + fPts[3].fX) / 2;
        dst.pts[5].fY = (fPts[2].fY + fPts[3].fY) / 2;
        dst.pts[6] = fPts[3];
        return dst;
    }
    interp_cubic_coords(&fPts[0].fX, &dst.pts[0].fX, t);
    interp_cubic_coords(&fPts[0].fY, &dst.pts[0].fY, t);
    return dst;
}