DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "SkAddIntersections.h"
#include "SkOpEdgeBuilder.h"
#include "SkPathOpsCommon.h"
#include "SkPathWriter.h"
#include "SkTSort.h"

static void alignMultiples(SkTArray<SkOpContour*, true>* contourList,
        SkTDArray<SkOpSegment::AlignedSpan>* aligned) {
    int contourCount = (*contourList).count();
    for (int cTest = 0; cTest < contourCount; ++cTest) {
        SkOpContour* contour = (*contourList)[cTest];
        if (contour->hasMultiples()) {
            contour->alignMultiples(aligned);
        }
    }
}

static void alignCoincidence(SkTArray<SkOpContour*, true>* contourList,
        const SkTDArray<SkOpSegment::AlignedSpan>& aligned) {
    int contourCount = (*contourList).count();
    for (int cTest = 0; cTest < contourCount; ++cTest) {
        SkOpContour* contour = (*contourList)[cTest];
        int count = aligned.count();
        for (int index = 0; index < count; ++index) {
            contour->alignCoincidence(aligned[index]);
        }
    }    
}

static int contourRangeCheckY(const SkTArray<SkOpContour*, true>& contourList, SkOpSegment** currentPtr,
                              int* indexPtr, int* endIndexPtr, double* bestHit, SkScalar* bestDx,
                              bool* tryAgain, double* midPtr, bool opp) {
    const int index = *indexPtr;
    const int endIndex = *endIndexPtr;
    const double mid = *midPtr;
    const SkOpSegment* current = *currentPtr;
    double tAtMid = current->tAtMid(index, endIndex, mid);
    SkPoint basePt = current->ptAtT(tAtMid);
    int contourCount = contourList.count();
    SkScalar bestY = SK_ScalarMin;
    SkOpSegment* bestSeg = NULL;
    int bestTIndex = 0;
    bool bestOpp;
    bool hitSomething = false;
    for (int cTest = 0; cTest < contourCount; ++cTest) {
        SkOpContour* contour = contourList[cTest];
        bool testOpp = contour->operand() ^ current->operand() ^ opp;
        if (basePt.fY < contour->bounds().fTop) {
            continue;
        }
        if (bestY > contour->bounds().fBottom) {
            continue;
        }
        int segmentCount = contour->segments().count();
        for (int test = 0; test < segmentCount; ++test) {
            SkOpSegment* testSeg = &contour->segments()[test];
            SkScalar testY = bestY;
            double testHit;
            int testTIndex = testSeg->crossedSpanY(basePt, &testY, &testHit, &hitSomething, tAtMid,
                    testOpp, testSeg == current);
            if (testTIndex < 0) {
                if (testTIndex == SK_MinS32) {
                    hitSomething = true;
                    bestSeg = NULL;
                    goto abortContours;  // vertical encountered, return and try different point
                }
                continue;
            }
            if (testSeg == current && current->betweenTs(index, testHit, endIndex)) {
                double baseT = current->t(index);
                double endT = current->t(endIndex);
                double newMid = (testHit - baseT) / (endT - baseT);
#if DEBUG_WINDING
                double midT = current->tAtMid(index, endIndex, mid);
                SkPoint midXY = current->xyAtT(midT);
                double newMidT = current->tAtMid(index, endIndex, newMid);
                SkPoint newXY = current->xyAtT(newMidT);
                SkDebugf("%s [%d] mid=%1.9g->%1.9g s=%1.9g (%1.9g,%1.9g) m=%1.9g (%1.9g,%1.9g)"
                        " n=%1.9g (%1.9g,%1.9g) e=%1.9g (%1.9g,%1.9g)\n", __FUNCTION__,
                        current->debugID(), mid, newMid,
                        baseT, current->xAtT(index), current->yAtT(index),
                        baseT + mid * (endT - baseT), midXY.fX, midXY.fY,
                        baseT + newMid * (endT - baseT), newXY.fX, newXY.fY,
                        endT, current->xAtT(endIndex), current->yAtT(endIndex));
#endif
                *midPtr = newMid * 2;  // calling loop with divide by 2 before continuing
                return SK_MinS32;
            }
            bestSeg = testSeg;
            *bestHit = testHit;
            bestOpp = testOpp;
            bestTIndex = testTIndex;
            bestY = testY;
        }
    }
abortContours:
    int result;
    if (!bestSeg) {
        result = hitSomething ? SK_MinS32 : 0;
    } else {
        if (bestSeg->windSum(bestTIndex) == SK_MinS32) {
            *currentPtr = bestSeg;
            *indexPtr = bestTIndex;
            *endIndexPtr = bestSeg->nextSpan(bestTIndex, 1);
            SkASSERT(*indexPtr != *endIndexPtr && *indexPtr >= 0 && *endIndexPtr >= 0);
            *tryAgain = true;
            return 0;
        }
        result = bestSeg->windingAtT(*bestHit, bestTIndex, bestOpp, bestDx);
        SkASSERT(result == SK_MinS32 || *bestDx);
    }
    double baseT = current->t(index);
    double endT = current->t(endIndex);
    *bestHit = baseT + mid * (endT - baseT);
    return result;
}

SkOpSegment* FindUndone(SkTArray<SkOpContour*, true>& contourList, int* start, int* end) {
    int contourCount = contourList.count();
    SkOpSegment* result;
    for (int cIndex = 0; cIndex < contourCount; ++cIndex) {
        SkOpContour* contour = contourList[cIndex];
        result = contour->undoneSegment(start, end);
        if (result) {
            return result;
        }
    }
    return NULL;
}

SkOpSegment* FindChase(SkTDArray<SkOpSpan*>* chase, int* tIndex, int* endIndex) {
    while (chase->count()) {
        SkOpSpan* span;
        chase->pop(&span);
        const SkOpSpan& backPtr = span->fOther->span(span->fOtherIndex);
        SkOpSegment* segment = backPtr.fOther;
        *tIndex = backPtr.fOtherIndex;
        bool sortable = true;
        bool done = true;
        *endIndex = -1;
        if (const SkOpAngle* last = segment->activeAngle(*tIndex, tIndex, endIndex, &done,
                &sortable)) {
            *tIndex = last->start();
            *endIndex = last->end();
    #if TRY_ROTATE
            *chase->insert(0) = span;
    #else
            *chase->append() = span;
    #endif
            return last->segment();
        }
        if (done) {
            continue;
        }
        if (!sortable) {
            continue;
        }
        // find first angle, initialize winding to computed fWindSum
        const SkOpAngle* angle = segment->spanToAngle(*tIndex, *endIndex);
        const SkOpAngle* firstAngle;
        SkDEBUGCODE(firstAngle = angle);
        SkDEBUGCODE(bool loop = false);
        int winding;
        do {
            angle = angle->next();
            SkASSERT(angle != firstAngle || !loop);
            SkDEBUGCODE(loop |= angle == firstAngle);
            segment = angle->segment();
            winding = segment->windSum(angle);
        } while (winding == SK_MinS32);
        int spanWinding = segment->spanSign(angle->start(), angle->end());
    #if DEBUG_WINDING
        SkDebugf("%s winding=%d spanWinding=%d\n", __FUNCTION__, winding, spanWinding);
    #endif
        // turn span winding into contour winding
        if (spanWinding * winding < 0) {
            winding += spanWinding;
        }
        // we care about first sign and whether wind sum indicates this
        // edge is inside or outside. Maybe need to pass span winding
        // or first winding or something into this function?
        // advance to first undone angle, then return it and winding
        // (to set whether edges are active or not)
        firstAngle = angle;
        winding -= firstAngle->segment()->spanSign(firstAngle);
        while ((angle = angle->next()) != firstAngle) {
            segment = angle->segment();
            int maxWinding = winding;
            winding -= segment->spanSign(angle);
    #if DEBUG_SORT
            SkDebugf("%s id=%d maxWinding=%d winding=%d sign=%d\n", __FUNCTION__,
                    segment->debugID(), maxWinding, winding, angle->sign());
    #endif
            *tIndex = angle->start();
            *endIndex = angle->end();
            int lesser = SkMin32(*tIndex, *endIndex);
            const SkOpSpan& nextSpan = segment->span(lesser);
            if (!nextSpan.fDone) {
            // FIXME: this be wrong? assign startWinding if edge is in
            // same direction. If the direction is opposite, winding to
            // assign is flipped sign or +/- 1?
                if (SkOpSegment::UseInnerWinding(maxWinding, winding)) {
                    maxWinding = winding;
                }
                (void) segment->markAndChaseWinding(angle, maxWinding, 0);
                break;
            }
        }
        *chase->insert(0) = span;
        return segment;
    }
    return NULL;
}

#if DEBUG_ACTIVE_SPANS || DEBUG_ACTIVE_SPANS_FIRST_ONLY
void DebugShowActiveSpans(SkTArray<SkOpContour*, true>& contourList) {
    int index;
    for (index = 0; index < contourList.count(); ++ index) {
        contourList[index]->debugShowActiveSpans();
    }
}
#endif

static SkOpSegment* findTopSegment(const SkTArray<SkOpContour*, true>& contourList, int* index,
        int* endIndex, SkPoint* topLeft, bool* unsortable, bool* done, bool firstPass) {
    SkOpSegment* result;
    const SkOpSegment* lastTopStart = NULL;
    int lastIndex = -1, lastEndIndex = -1;
    do {
        SkPoint bestXY = {SK_ScalarMax, SK_ScalarMax};
        int contourCount = contourList.count();
        SkOpSegment* topStart = NULL;
        *done = true;
        for (int cIndex = 0; cIndex < contourCount; ++cIndex) {
            SkOpContour* contour = contourList[cIndex];
            if (contour->done()) {
                continue;
            }
            const SkPathOpsBounds& bounds = contour->bounds();
            if (bounds.fBottom < topLeft->fY) {
                *done = false;
                continue;
            }
            if (bounds.fBottom == topLeft->fY && bounds.fRight < topLeft->fX) {
                *done = false;
                continue;
            }
            contour->topSortableSegment(*topLeft, &bestXY, &topStart);
            if (!contour->done()) {
                *done = false;
            }
        }
        if (!topStart) {
            return NULL;
        }
        *topLeft = bestXY;
        result = topStart->findTop(index, endIndex, unsortable, firstPass);
        if (!result) {
            if (lastTopStart == topStart && lastIndex == *index && lastEndIndex == *endIndex) {
                *done = true;
                return NULL;
            }
            lastTopStart = topStart;
            lastIndex = *index;
            lastEndIndex = *endIndex;
        }
    } while (!result);
    return result;
}

static int rightAngleWinding(const SkTArray<SkOpContour*, true>& contourList,
        SkOpSegment** currentPtr, int* indexPtr, int* endIndexPtr, double* tHit,
        SkScalar* hitDx, bool* tryAgain, bool* onlyVertical, bool opp) {
    double test = 0.9;
    int contourWinding;
    do {
        contourWinding = contourRangeCheckY(contourList, currentPtr, indexPtr, endIndexPtr,
                tHit, hitDx, tryAgain, &test, opp);
        if (contourWinding != SK_MinS32 || *tryAgain) {
            return contourWinding;
        }
        if (*currentPtr && (*currentPtr)->isVertical()) {
            *onlyVertical = true;
            return contourWinding;
        }
        test /= 2;
    } while (!approximately_negative(test));
    SkASSERT(0);  // FIXME: incomplete functionality
    return contourWinding;
}

static void skipVertical(const SkTArray<SkOpContour*, true>& contourList,
        SkOpSegment** current, int* index, int* endIndex) {
    if (!(*current)->isVertical(*index, *endIndex)) {
        return;
    }
    int contourCount = contourList.count();
    for (int cIndex = 0; cIndex < contourCount; ++cIndex) {
        SkOpContour* contour = contourList[cIndex];
        if (contour->done()) {
            continue;
        }
        SkOpSegment* nonVertical = contour->nonVerticalSegment(index, endIndex);
        if (nonVertical) {
            *current = nonVertical;
            return;
        }
    }
    return;
}

SkOpSegment* FindSortableTop(const SkTArray<SkOpContour*, true>& contourList,
        SkOpAngle::IncludeType angleIncludeType, bool* firstContour, int* indexPtr,
        int* endIndexPtr, SkPoint* topLeft, bool* unsortable, bool* done, bool* onlyVertical,
        bool firstPass) {
    SkOpSegment* current = findTopSegment(contourList, indexPtr, endIndexPtr, topLeft, unsortable,
            done, firstPass);
    if (!current) {
        return NULL;
    }
    const int startIndex = *indexPtr;
    const int endIndex = *endIndexPtr;
    if (*firstContour) {
        current->initWinding(startIndex, endIndex, angleIncludeType);
        *firstContour = false;
        return current;
    }
    int minIndex = SkMin32(startIndex, endIndex);
    int sumWinding = current->windSum(minIndex);
    if (sumWinding == SK_MinS32) {
        int index = endIndex;
        int oIndex = startIndex;
        do { 
            const SkOpSpan& span = current->span(index);
            if ((oIndex < index ? span.fFromAngle : span.fToAngle) == NULL) {
                current->addSimpleAngle(index);
            }
            sumWinding = current->computeSum(oIndex, index, angleIncludeType);
            SkTSwap(index, oIndex);
        } while (sumWinding == SK_MinS32 && index == startIndex);
    }
    if (sumWinding != SK_MinS32 && sumWinding != SK_NaN32) {
        return current;
    }
    int contourWinding;
    int oppContourWinding = 0;
    // the simple upward projection of the unresolved points hit unsortable angles
    // shoot rays at right angles to the segment to find its winding, ignoring angle cases
    bool tryAgain;
    double tHit;
    SkScalar hitDx = 0;
    SkScalar hitOppDx = 0;
    do {
        // if current is vertical, find another candidate which is not
        // if only remaining candidates are vertical, then they can be marked done
        SkASSERT(*indexPtr != *endIndexPtr && *indexPtr >= 0 && *endIndexPtr >= 0);
        skipVertical(contourList, &current, indexPtr, endIndexPtr);
        SkASSERT(current);  // FIXME: if null, all remaining are vertical
        SkASSERT(*indexPtr != *endIndexPtr && *indexPtr >= 0 && *endIndexPtr >= 0);
        tryAgain = false;
        contourWinding = rightAngleWinding(contourList, &current, indexPtr, endIndexPtr, &tHit,
                &hitDx, &tryAgain, onlyVertical, false);
        if (*onlyVertical) {
            return current;
        }
        if (tryAgain) {
            continue;
        }
        if (angleIncludeType < SkOpAngle::kBinarySingle) {
            break;
        }
        oppContourWinding = rightAngleWinding(contourList, &current, indexPtr, endIndexPtr, &tHit,
                &hitOppDx, &tryAgain, NULL, true);
    } while (tryAgain);
    current->initWinding(*indexPtr, *endIndexPtr, tHit, contourWinding, hitDx, oppContourWinding,
            hitOppDx);
    if (current->done()) {
        return NULL;
    }
    return current;
}

static bool calcAngles(SkTArray<SkOpContour*, true>* contourList) {
    int contourCount = (*contourList).count();
    for (int cTest = 0; cTest < contourCount; ++cTest) {
        SkOpContour* contour = (*contourList)[cTest];
        if (!contour->calcAngles()) {
            return false;
        }
    }
    return true;
}

static void checkDuplicates(SkTArray<SkOpContour*, true>* contourList) {
    int contourCount = (*contourList).count();
    for (int cTest = 0; cTest < contourCount; ++cTest) {
        SkOpContour* contour = (*contourList)[cTest];
        contour->checkDuplicates();
    }
}

static void checkEnds(SkTArray<SkOpContour*, true>* contourList) {
    // it's hard to determine if the end of a cubic or conic nearly intersects another curve.
    // instead, look to see if the connecting curve intersected at that same end.
    int contourCount = (*contourList).count();
    for (int cTest = 0; cTest < contourCount; ++cTest) {
        SkOpContour* contour = (*contourList)[cTest];
        contour->checkEnds();
    }
}

static bool checkMultiples(SkTArray<SkOpContour*, true>* contourList) {
    bool hasMultiples = false;
    int contourCount = (*contourList).count();
    for (int cTest = 0; cTest < contourCount; ++cTest) {
        SkOpContour* contour = (*contourList)[cTest];
        contour->checkMultiples();
        hasMultiples |= contour->hasMultiples();
    }
    return hasMultiples;
}

// A small interval of a pair of curves may collapse to lines for each, triggering coincidence
static void checkSmall(SkTArray<SkOpContour*, true>* contourList) {
    int contourCount = (*contourList).count();
    for (int cTest = 0; cTest < contourCount; ++cTest) {
        SkOpContour* contour = (*contourList)[cTest];
        contour->checkSmall();
    }
}

// A tiny interval may indicate an undiscovered coincidence. Find and fix.
static void checkTiny(SkTArray<SkOpContour*, true>* contourList) {
    int contourCount = (*contourList).count();
    for (int cTest = 0; cTest < contourCount; ++cTest) {
        SkOpContour* contour = (*contourList)[cTest];
        contour->checkTiny();
    }
}

static void fixOtherTIndex(SkTArray<SkOpContour*, true>* contourList) {
    int contourCount = (*contourList).count();
    for (int cTest = 0; cTest < contourCount; ++cTest) {
        SkOpContour* contour = (*contourList)[cTest];
        contour->fixOtherTIndex();
    }
}

static void joinCoincidence(SkTArray<SkOpContour*, true>* contourList) {
    int contourCount = (*contourList).count();
    for (int cTest = 0; cTest < contourCount; ++cTest) {
        SkOpContour* contour = (*contourList)[cTest];
        contour->joinCoincidence();
    }
}

static void sortAngles(SkTArray<SkOpContour*, true>* contourList) {
    int contourCount = (*contourList).count();
    for (int cTest = 0; cTest < contourCount; ++cTest) {
        SkOpContour* contour = (*contourList)[cTest];
        contour->sortAngles();
    }
}

static void sortSegments(SkTArray<SkOpContour*, true>* contourList) {
    int contourCount = (*contourList).count();
    for (int cTest = 0; cTest < contourCount; ++cTest) {
        SkOpContour* contour = (*contourList)[cTest];
        contour->sortSegments();
    }
}

void MakeContourList(SkTArray<SkOpContour>& contours, SkTArray<SkOpContour*, true>& list,
                     bool evenOdd, bool oppEvenOdd) {
    int count = contours.count();
    if (count == 0) {
        return;
    }
    for (int index = 0; index < count; ++index) {
        SkOpContour& contour = contours[index];
        contour.setOppXor(contour.operand() ? evenOdd : oppEvenOdd);
        list.push_back(&contour);
    }
    SkTQSort<SkOpContour>(list.begin(), list.end() - 1);
}

class DistanceLessThan {
public:
    DistanceLessThan(double* distances) : fDistances(distances) { }
    double* fDistances;
    bool operator()(const int one, const int two) {
        return fDistances[one] < fDistances[two];
    }
};

    /*
        check start and end of each contour
        if not the same, record them
        match them up
        connect closest
        reassemble contour pieces into new path
    */
void Assemble(const SkPathWriter& path, SkPathWriter* simple) {
#if DEBUG_PATH_CONSTRUCTION
    SkDebugf("%s\n", __FUNCTION__);
#endif
    SkTArray<SkOpContour> contours;
    SkOpEdgeBuilder builder(path, contours);
    builder.finish();
    int count = contours.count();
    int outer;
    SkTArray<int, true> runs(count);  // indices of partial contours
    for (outer = 0; outer < count; ++outer) {
        const SkOpContour& eContour = contours[outer];
        const SkPoint& eStart = eContour.start();
        const SkPoint& eEnd = eContour.end();
#if DEBUG_ASSEMBLE
        SkDebugf("%s contour", __FUNCTION__);
        if (!SkDPoint::ApproximatelyEqual(eStart, eEnd)) {
            SkDebugf("[%d]", runs.count());
        } else {
            SkDebugf("   ");
        }
        SkDebugf(" start=(%1.9g,%1.9g) end=(%1.9g,%1.9g)\n",
                eStart.fX, eStart.fY, eEnd.fX, eEnd.fY);
#endif
        if (SkDPoint::ApproximatelyEqual(eStart, eEnd)) {
            eContour.toPath(simple);
            continue;
        }
        runs.push_back(outer);
    }
    count = runs.count();
    if (count == 0) {
        return;
    }
    SkTArray<int, true> sLink, eLink;
    sLink.push_back_n(count);
    eLink.push_back_n(count);
    int rIndex, iIndex;
    for (rIndex = 0; rIndex < count; ++rIndex) {
        sLink[rIndex] = eLink[rIndex] = SK_MaxS32;
    }
    const int ends = count * 2;  // all starts and ends
    const int entries = (ends - 1) * count;  // folded triangle : n * (n - 1) / 2
    SkTArray<double, true> distances;
    distances.push_back_n(entries);
    for (rIndex = 0; rIndex < ends - 1; ++rIndex) {
        outer = runs[rIndex >> 1];
        const SkOpContour& oContour = contours[outer];
        const SkPoint& oPt = rIndex & 1 ? oContour.end() : oContour.start();
        const int row = rIndex < count - 1 ? rIndex * ends : (ends - rIndex - 2)
                * ends - rIndex - 1;
        for (iIndex = rIndex + 1; iIndex < ends; ++iIndex) {
            int inner = runs[iIndex >> 1];
            const SkOpContour& iContour = contours[inner];
            const SkPoint& iPt = iIndex & 1 ? iContour.end() : iContour.start();
            double dx = iPt.fX - oPt.fX;
            double dy = iPt.fY - oPt.fY;
            double dist = dx * dx + dy * dy;
            distances[row + iIndex] = dist;  // oStart distance from iStart
        }
    }
    SkTArray<int, true> sortedDist;
    sortedDist.push_back_n(entries);
    for (rIndex = 0; rIndex < entries; ++rIndex) {
        sortedDist[rIndex] = rIndex;
    }
    SkTQSort<int>(sortedDist.begin(), sortedDist.end() - 1, DistanceLessThan(distances.begin()));
    int remaining = count;  // number of start/end pairs
    for (rIndex = 0; rIndex < entries; ++rIndex) {
        int pair = sortedDist[rIndex];
        int row = pair / ends;
        int col = pair - row * ends;
        int thingOne = row < col ? row : ends - row - 2;
        int ndxOne = thingOne >> 1;
        bool endOne = thingOne & 1;
        int* linkOne = endOne ? eLink.begin() : sLink.begin();
        if (linkOne[ndxOne] != SK_MaxS32) {
            continue;
        }
        int thingTwo = row < col ? col : ends - row + col - 1;
        int ndxTwo = thingTwo >> 1;
        bool endTwo = thingTwo & 1;
        int* linkTwo = endTwo ? eLink.begin() : sLink.begin();
        if (linkTwo[ndxTwo] != SK_MaxS32) {
            continue;
        }
        SkASSERT(&linkOne[ndxOne] != &linkTwo[ndxTwo]);
        bool flip = endOne == endTwo;
        linkOne[ndxOne] = flip ? ~ndxTwo : ndxTwo;
        linkTwo[ndxTwo] = flip ? ~ndxOne : ndxOne;
        if (!--remaining) {
            break;
        }
    }
    SkASSERT(!remaining);
#if DEBUG_ASSEMBLE
    for (rIndex = 0; rIndex < count; ++rIndex) {
        int s = sLink[rIndex];
        int e = eLink[rIndex];
        SkDebugf("%s %c%d <- s%d - e%d -> %c%d\n", __FUNCTION__, s < 0 ? 's' : 'e',
                s < 0 ? ~s : s, rIndex, rIndex, e < 0 ? 'e' : 's', e < 0 ? ~e : e);
    }
#endif
    rIndex = 0;
    do {
        bool forward = true;
        bool first = true;
        int sIndex = sLink[rIndex];
        SkASSERT(sIndex != SK_MaxS32);
        sLink[rIndex] = SK_MaxS32;
        int eIndex;
        if (sIndex < 0) {
            eIndex = sLink[~sIndex];
            sLink[~sIndex] = SK_MaxS32;
        } else {
            eIndex = eLink[sIndex];
            eLink[sIndex] = SK_MaxS32;
        }
        SkASSERT(eIndex != SK_MaxS32);
#if DEBUG_ASSEMBLE
        SkDebugf("%s sIndex=%c%d eIndex=%c%d\n", __FUNCTION__, sIndex < 0 ? 's' : 'e',
                    sIndex < 0 ? ~sIndex : sIndex, eIndex < 0 ? 's' : 'e',
                    eIndex < 0 ? ~eIndex : eIndex);
#endif
        do {
            outer = runs[rIndex];
            const SkOpContour& contour = contours[outer];
            if (first) {
                first = false;
                const SkPoint* startPtr = &contour.start();
                simple->deferredMove(startPtr[0]);
            }
            if (forward) {
                contour.toPartialForward(simple);
            } else {
                contour.toPartialBackward(simple);
            }
#if DEBUG_ASSEMBLE
            SkDebugf("%s rIndex=%d eIndex=%s%d close=%d\n", __FUNCTION__, rIndex,
                eIndex < 0 ? "~" : "", eIndex < 0 ? ~eIndex : eIndex,
                sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex));
#endif
            if (sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex)) {
                simple->close();
                break;
            }
            if (forward) {
                eIndex = eLink[rIndex];
                SkASSERT(eIndex != SK_MaxS32);
                eLink[rIndex] = SK_MaxS32;
                if (eIndex >= 0) {
                    SkASSERT(sLink[eIndex] == rIndex);
                    sLink[eIndex] = SK_MaxS32;
                } else {
                    SkASSERT(eLink[~eIndex] == ~rIndex);
                    eLink[~eIndex] = SK_MaxS32;
                }
            } else {
                eIndex = sLink[rIndex];
                SkASSERT(eIndex != SK_MaxS32);
                sLink[rIndex] = SK_MaxS32;
                if (eIndex >= 0) {
                    SkASSERT(eLink[eIndex] == rIndex);
                    eLink[eIndex] = SK_MaxS32;
                } else {
                    SkASSERT(sLink[~eIndex] == ~rIndex);
                    sLink[~eIndex] = SK_MaxS32;
                }
            }
            rIndex = eIndex;
            if (rIndex < 0) {
                forward ^= 1;
                rIndex = ~rIndex;
            }
        } while (true);
        for (rIndex = 0; rIndex < count; ++rIndex) {
            if (sLink[rIndex] != SK_MaxS32) {
                break;
            }
        }
    } while (rIndex < count);
#if DEBUG_ASSEMBLE
    for (rIndex = 0; rIndex < count; ++rIndex) {
       SkASSERT(sLink[rIndex] == SK_MaxS32);
       SkASSERT(eLink[rIndex] == SK_MaxS32);
    }
#endif
}

bool HandleCoincidence(SkTArray<SkOpContour*, true>* contourList, int total) {
#if DEBUG_SHOW_WINDING
    SkOpContour::debugShowWindingValues(contourList);
#endif
    CoincidenceCheck(contourList, total);
#if DEBUG_SHOW_WINDING
    SkOpContour::debugShowWindingValues(contourList);
#endif
    fixOtherTIndex(contourList);
    checkEnds(contourList);  // check if connecting curve intersected at the same end
    bool hasM = checkMultiples(contourList);  // check if intersections agree on t and point values
    SkTDArray<SkOpSegment::AlignedSpan> aligned;
    if (hasM) {
        alignMultiples(contourList, &aligned);  // align pairs of identical points
        alignCoincidence(contourList, aligned);
    }
    checkDuplicates(contourList);  // check if spans have the same number on the other end
    checkTiny(contourList);  // if pair have the same end points, mark them as parallel
    checkSmall(contourList);  // a pair of curves with a small span may turn into coincident lines
    joinCoincidence(contourList);  // join curves that connect to a coincident pair
    sortSegments(contourList);
    if (!calcAngles(contourList)) {
        return false;
    }
    sortAngles(contourList);
#if DEBUG_ACTIVE_SPANS || DEBUG_ACTIVE_SPANS_FIRST_ONLY
    DebugShowActiveSpans(*contourList);
#endif
    return true;
}