DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
/*
 * Copyright 2013 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#ifndef SkOpContour_DEFINED
#define SkOpContour_DEFINED

#include "SkOpSegment.h"
#include "SkTArray.h"

#if defined(SK_DEBUG) || !FORCE_RELEASE
#include "SkThread.h"
#endif

class SkIntersections;
class SkOpContour;
class SkPathWriter;

struct SkCoincidence {
    SkOpContour* fOther;
    int fSegments[2];
    double fTs[2][2];
    SkPoint fPts[2][2];
    int fNearly[2];
};

class SkOpContour {
public:
    SkOpContour() {
        reset();
#if defined(SK_DEBUG) || !FORCE_RELEASE
        fID = sk_atomic_inc(&SkPathOpsDebug::gContourID);
#endif
    }

    bool operator<(const SkOpContour& rh) const {
        return fBounds.fTop == rh.fBounds.fTop
                ? fBounds.fLeft < rh.fBounds.fLeft
                : fBounds.fTop < rh.fBounds.fTop;
    }

    bool addCoincident(int index, SkOpContour* other, int otherIndex,
                       const SkIntersections& ts, bool swap);
    void addCoincidentPoints();

    void addCross(const SkOpContour* crosser) {
#ifdef DEBUG_CROSS
        for (int index = 0; index < fCrosses.count(); ++index) {
            SkASSERT(fCrosses[index] != crosser);
        }
#endif
        fCrosses.push_back(crosser);
    }

    void addCubic(const SkPoint pts[4]) {
        fSegments.push_back().addCubic(pts, fOperand, fXor);
        fContainsCurves = fContainsCubics = true;
    }

    int addLine(const SkPoint pts[2]) {
        fSegments.push_back().addLine(pts, fOperand, fXor);
        return fSegments.count();
    }

    void addOtherT(int segIndex, int tIndex, double otherT, int otherIndex) {
        fSegments[segIndex].addOtherT(tIndex, otherT, otherIndex);
    }

    bool addPartialCoincident(int index, SkOpContour* other, int otherIndex,
                       const SkIntersections& ts, int ptIndex, bool swap);

    int addQuad(const SkPoint pts[3]) {
        fSegments.push_back().addQuad(pts, fOperand, fXor);
        fContainsCurves = true;
        return fSegments.count();
    }

    int addT(int segIndex, SkOpContour* other, int otherIndex, const SkPoint& pt, double newT) {
        setContainsIntercepts();
        return fSegments[segIndex].addT(&other->fSegments[otherIndex], pt, newT);
    }

    int addSelfT(int segIndex, const SkPoint& pt, double newT) {
        setContainsIntercepts();
        return fSegments[segIndex].addSelfT(pt, newT);
    }

    void align(const SkOpSegment::AlignedSpan& aligned, bool swap, SkCoincidence* coincidence);
    void alignCoincidence(const SkOpSegment::AlignedSpan& aligned,
            SkTArray<SkCoincidence, true>* coincidences);

    void alignCoincidence(const SkOpSegment::AlignedSpan& aligned) {
        alignCoincidence(aligned, &fCoincidences);
        alignCoincidence(aligned, &fPartialCoincidences);
    }

    void alignMultiples(SkTDArray<SkOpSegment::AlignedSpan>* aligned) {
        int segmentCount = fSegments.count();
        for (int sIndex = 0; sIndex < segmentCount; ++sIndex) {
            SkOpSegment& segment = fSegments[sIndex];
            if (segment.hasMultiples()) {
                segment.alignMultiples(aligned);
            }
        }
    }

    void alignTPt(int segmentIndex, const SkOpContour* other, int otherIndex,
                  bool swap, int tIndex, SkIntersections* ts, SkPoint* point) const;

    const SkPathOpsBounds& bounds() const {
        return fBounds;
    }

    bool calcAngles();
    void calcCoincidentWinding();
    void calcPartialCoincidentWinding();

    void checkDuplicates() {
        int segmentCount = fSegments.count();
        for (int sIndex = 0; sIndex < segmentCount; ++sIndex) {
            SkOpSegment& segment = fSegments[sIndex];
            if (segment.count() > 2) {
                segment.checkDuplicates();
            }
        }
    }

    void checkEnds() {
        if (!fContainsCurves) {
            return;
        }
        int segmentCount = fSegments.count();
        for (int sIndex = 0; sIndex < segmentCount; ++sIndex) {
            SkOpSegment* segment = &fSegments[sIndex];
            if (segment->verb() == SkPath::kLine_Verb) {
                continue;
            }
            if (segment->done()) {
                continue;   // likely coincident, nothing to do
            }
            segment->checkEnds();
        }
    }

    void checkMultiples() {
        int segmentCount = fSegments.count();
        for (int sIndex = 0; sIndex < segmentCount; ++sIndex) {
            SkOpSegment& segment = fSegments[sIndex];
            if (segment.count() > 2) {
                segment.checkMultiples();
                fMultiples |= segment.hasMultiples();
            }
        }
    }

    void checkSmall() {
        int segmentCount = fSegments.count();
        for (int sIndex = 0; sIndex < segmentCount; ++sIndex) {
            SkOpSegment& segment = fSegments[sIndex];
            // OPTIMIZATION : skip segments that are done?
            if (segment.hasSmall()) {
                segment.checkSmall();
            }
        }
    }

    // if same point has different T values, choose a common T
    void checkTiny() {
        int segmentCount = fSegments.count();
        if (segmentCount <= 2) {
            return;
        }
        for (int sIndex = 0; sIndex < segmentCount; ++sIndex) {
            SkOpSegment& segment = fSegments[sIndex];
            if (segment.hasTiny()) {
                segment.checkTiny();
            }
        }
    }

    void complete() {
        setBounds();
        fContainsIntercepts = false;
    }

    bool containsCubics() const {
        return fContainsCubics;
    }

    bool crosses(const SkOpContour* crosser) const {
        for (int index = 0; index < fCrosses.count(); ++index) {
            if (fCrosses[index] == crosser) {
                return true;
            }
        }
        return false;
    }

    bool done() const {
        return fDone;
    }

    const SkPoint& end() const {
        const SkOpSegment& segment = fSegments.back();
        return segment.pts()[SkPathOpsVerbToPoints(segment.verb())];
    }

    void fixOtherTIndex() {
        int segmentCount = fSegments.count();
        for (int sIndex = 0; sIndex < segmentCount; ++sIndex) {
            fSegments[sIndex].fixOtherTIndex();
        }
    }

    bool hasMultiples() const {
        return fMultiples;
    }

    void joinCoincidence() {
        joinCoincidence(fCoincidences, false);
        joinCoincidence(fPartialCoincidences, true);
    }

    SkOpSegment* nonVerticalSegment(int* start, int* end);

    bool operand() const {
        return fOperand;
    }

    void reset() {
        fSegments.reset();
        fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax);
        fContainsCurves = fContainsCubics = fContainsIntercepts = fDone = fMultiples = false;
    }

    void resolveNearCoincidence();

    SkTArray<SkOpSegment>& segments() {
        return fSegments;
    }

    void setContainsIntercepts() {
        fContainsIntercepts = true;
    }

    void setOperand(bool isOp) {
        fOperand = isOp;
    }

    void setOppXor(bool isOppXor) {
        fOppXor = isOppXor;
        int segmentCount = fSegments.count();
        for (int test = 0; test < segmentCount; ++test) {
            fSegments[test].setOppXor(isOppXor);
        }
    }

    void setXor(bool isXor) {
        fXor = isXor;
    }

    void sortAngles();
    void sortSegments();

    const SkPoint& start() const {
        return fSegments.front().pts()[0];
    }

    void toPath(SkPathWriter* path) const;

    void toPartialBackward(SkPathWriter* path) const {
        int segmentCount = fSegments.count();
        for (int test = segmentCount - 1; test >= 0; --test) {
            fSegments[test].addCurveTo(1, 0, path, true);
        }
    }

    void toPartialForward(SkPathWriter* path) const {
        int segmentCount = fSegments.count();
        for (int test = 0; test < segmentCount; ++test) {
            fSegments[test].addCurveTo(0, 1, path, true);
        }
    }

    void topSortableSegment(const SkPoint& topLeft, SkPoint* bestXY, SkOpSegment** topStart);
    SkOpSegment* undoneSegment(int* start, int* end);

    int updateSegment(int index, const SkPoint* pts) {
        SkOpSegment& segment = fSegments[index];
        segment.updatePts(pts);
        return SkPathOpsVerbToPoints(segment.verb()) + 1;
    }

#if DEBUG_TEST
    SkTArray<SkOpSegment>& debugSegments() {
        return fSegments;
    }
#endif

#if DEBUG_ACTIVE_SPANS || DEBUG_ACTIVE_SPANS_FIRST_ONLY
    void debugShowActiveSpans() {
        for (int index = 0; index < fSegments.count(); ++index) {
            fSegments[index].debugShowActiveSpans();
        }
    }
#endif

#if DEBUG_SHOW_WINDING
    int debugShowWindingValues(int totalSegments, int ofInterest);
    static void debugShowWindingValues(const SkTArray<SkOpContour*, true>& contourList);
#endif

    // available to test routines only
    void dump() const;
    void dumpAngles() const;
    void dumpCoincidence(const SkCoincidence& ) const;
    void dumpCoincidences() const;
    void dumpPt(int ) const;
    void dumpPts() const;
    void dumpSpan(int ) const;
    void dumpSpans() const;

private:
    void alignPt(int index, SkPoint* point, int zeroPt) const;
    int alignT(bool swap, int tIndex, SkIntersections* ts) const;
    void calcCommonCoincidentWinding(const SkCoincidence& );
    void checkCoincidentPair(const SkCoincidence& oneCoin, int oneIdx,
                             const SkCoincidence& twoCoin, int twoIdx, bool partial);
    void joinCoincidence(const SkTArray<SkCoincidence, true>& , bool partial);
    void setBounds();

    SkTArray<SkOpSegment> fSegments;
    SkTArray<SkOpSegment*, true> fSortedSegments;
    int fFirstSorted;
    SkTArray<SkCoincidence, true> fCoincidences;
    SkTArray<SkCoincidence, true> fPartialCoincidences;
    SkTArray<const SkOpContour*, true> fCrosses;
    SkPathOpsBounds fBounds;
    bool fContainsIntercepts;  // FIXME: is this used by anybody?
    bool fContainsCubics;
    bool fContainsCurves;
    bool fDone;
    bool fMultiples;  // set if some segment has multiple identical intersections with other curves
    bool fOperand;  // true for the second argument to a binary operator
    bool fXor;
    bool fOppXor;
#if defined(SK_DEBUG) || !FORCE_RELEASE
    int debugID() const { return fID; }
    int fID;
#else
    int debugID() const { return -1; }
#endif
};

#endif