DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "SkIntersections.h"
#include "SkOpAngle.h"
#include "SkOpSegment.h"
#include "SkPathOpsCurve.h"
#include "SkTSort.h"

#if DEBUG_ANGLE
#include "SkString.h"
#endif

/* Angles are sorted counterclockwise. The smallest angle has a positive x and the smallest
   positive y. The largest angle has a positive x and a zero y. */

#if DEBUG_ANGLE
    static bool CompareResult(SkString* bugOut, int append, bool compare) {
        SkDebugf("%s %c %d\n", bugOut->c_str(), compare ? 'T' : 'F', append);
        return compare;
    }

    #define COMPARE_RESULT(append, compare) CompareResult(&bugOut, append, compare)
#else
    #define COMPARE_RESULT(append, compare) compare
#endif

/*             quarter angle values for sector

31   x > 0, y == 0              horizontal line (to the right)
0    x > 0, y == epsilon        quad/cubic horizontal tangent eventually going +y
1    x > 0, y > 0, x > y        nearer horizontal angle
2                  x + e == y   quad/cubic 45 going horiz
3    x > 0, y > 0, x == y       45 angle
4                  x == y + e   quad/cubic 45 going vert
5    x > 0, y > 0, x < y        nearer vertical angle
6    x == epsilon, y > 0        quad/cubic vertical tangent eventually going +x
7    x == 0, y > 0              vertical line (to the top)

                                      8  7  6
                                 9       |       5
                              10         |          4
                            11           |            3
                          12  \          |           / 2
                         13              |              1
                        14               |               0
                        15 --------------+------------- 31
                        16               |              30
                         17              |             29
                          18  /          |          \ 28
                            19           |           27
                              20         |         26
                                 21      |      25
                                     22 23 24
*/

// return true if lh < this < rh
bool SkOpAngle::after(const SkOpAngle* test) const {
    const SkOpAngle& lh = *test;
    const SkOpAngle& rh = *lh.fNext;
    SkASSERT(&lh != &rh);
#if DEBUG_ANGLE
    SkString bugOut;
    bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
                  " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
                  " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__,
            lh.fSegment->debugID(), lh.debugID(), lh.fSectorStart, lh.fSectorEnd,
            lh.fSegment->t(lh.fStart), lh.fSegment->t(lh.fEnd),
            fSegment->debugID(), debugID(), fSectorStart, fSectorEnd, fSegment->t(fStart),
            fSegment->t(fEnd),
            rh.fSegment->debugID(), rh.debugID(), rh.fSectorStart, rh.fSectorEnd,
            rh.fSegment->t(rh.fStart), rh.fSegment->t(rh.fEnd));
#endif
    if (lh.fComputeSector && !const_cast<SkOpAngle&>(lh).computeSector()) {
        return COMPARE_RESULT(1, true);
    }
    if (fComputeSector && !const_cast<SkOpAngle*>(this)->computeSector()) {
        return COMPARE_RESULT(2, true);
    }
    if (rh.fComputeSector && !const_cast<SkOpAngle&>(rh).computeSector()) {
        return COMPARE_RESULT(3, true);
    }
#if DEBUG_ANGLE  // reset bugOut with computed sectors
    bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
                  " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
                  " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__,
            lh.fSegment->debugID(), lh.debugID(), lh.fSectorStart, lh.fSectorEnd,
            lh.fSegment->t(lh.fStart), lh.fSegment->t(lh.fEnd),
            fSegment->debugID(), debugID(), fSectorStart, fSectorEnd, fSegment->t(fStart),
            fSegment->t(fEnd),
            rh.fSegment->debugID(), rh.debugID(), rh.fSectorStart, rh.fSectorEnd,
            rh.fSegment->t(rh.fStart), rh.fSegment->t(rh.fEnd));
#endif
    bool ltrOverlap = (lh.fSectorMask | rh.fSectorMask) & fSectorMask;
    bool lrOverlap = lh.fSectorMask & rh.fSectorMask;
    int lrOrder;  // set to -1 if either order works
    if (!lrOverlap) {  // no lh/rh sector overlap
        if (!ltrOverlap) {  // no lh/this/rh sector overlap
            return COMPARE_RESULT(4,  (lh.fSectorEnd > rh.fSectorStart)
                    ^ (fSectorStart > lh.fSectorEnd) ^ (fSectorStart > rh.fSectorStart));
        }
        int lrGap = (rh.fSectorStart - lh.fSectorStart + 32) & 0x1f;
        /* A tiny change can move the start +/- 4. The order can only be determined if
           lr gap is not 12 to 20 or -12 to -20.
               -31 ..-21      1
               -20 ..-12     -1
               -11 .. -1      0
                 0          shouldn't get here
                11 ..  1      1
                12 .. 20     -1
                21 .. 31      0
         */
        lrOrder = lrGap > 20 ? 0 : lrGap > 11 ? -1 : 1;
    } else {
        lrOrder = (int) lh.orderable(rh);
        if (!ltrOverlap) {
            return COMPARE_RESULT(5, !lrOrder);
        }
    }
    int ltOrder;
    SkASSERT((lh.fSectorMask & fSectorMask) || (rh.fSectorMask & fSectorMask));
    if (lh.fSectorMask & fSectorMask) {
        ltOrder = (int) lh.orderable(*this);
    } else {
        int ltGap = (fSectorStart - lh.fSectorStart + 32) & 0x1f;
        ltOrder = ltGap > 20 ? 0 : ltGap > 11 ? -1 : 1;
    }
    int trOrder;
    if (rh.fSectorMask & fSectorMask) {
        trOrder = (int) orderable(rh);
    } else {
        int trGap = (rh.fSectorStart - fSectorStart + 32) & 0x1f;
        trOrder = trGap > 20 ? 0 : trGap > 11 ? -1 : 1;
    }
    if (lrOrder >= 0 && ltOrder >= 0 && trOrder >= 0) {
        return COMPARE_RESULT(7, lrOrder ? (ltOrder & trOrder) : (ltOrder | trOrder));
    }
    SkASSERT(lrOrder >= 0 || ltOrder >= 0 || trOrder >= 0);
// There's not enough information to sort. Get the pairs of angles in opposite planes.
// If an order is < 0, the pair is already in an opposite plane. Check the remaining pairs.
    // FIXME : once all variants are understood, rewrite this more simply
    if (ltOrder == 0 && lrOrder == 0) {
        SkASSERT(trOrder < 0);
        // FIXME : once this is verified to work, remove one opposite angle call
        SkDEBUGCODE(bool lrOpposite = lh.oppositePlanes(rh));
        bool ltOpposite = lh.oppositePlanes(*this);
        SkASSERT(lrOpposite != ltOpposite);
        return COMPARE_RESULT(8, ltOpposite);
    } else if (ltOrder == 1 && trOrder == 0) {
        SkASSERT(lrOrder < 0);
        SkDEBUGCODE(bool ltOpposite = lh.oppositePlanes(*this));
        bool trOpposite = oppositePlanes(rh);
        SkASSERT(ltOpposite != trOpposite);
        return COMPARE_RESULT(9, trOpposite);
    } else if (lrOrder == 1 && trOrder == 1) {
        SkASSERT(ltOrder < 0);
        SkDEBUGCODE(bool trOpposite = oppositePlanes(rh));
        bool lrOpposite = lh.oppositePlanes(rh);
        SkASSERT(lrOpposite != trOpposite);
        return COMPARE_RESULT(10, lrOpposite);
    }
    if (lrOrder < 0) {
        if (ltOrder < 0) {
            return COMPARE_RESULT(11, trOrder);
        }
        return COMPARE_RESULT(12, ltOrder);
    }
    return COMPARE_RESULT(13, !lrOrder);
}

// given a line, see if the opposite curve's convex hull is all on one side
// returns -1=not on one side    0=this CW of test   1=this CCW of test
int SkOpAngle::allOnOneSide(const SkOpAngle& test) const {
    SkASSERT(!fIsCurve);
    SkASSERT(test.fIsCurve);
    const SkDPoint& origin = test.fCurvePart[0];
    SkVector line;
    if (fSegment->verb() == SkPath::kLine_Verb) {
        const SkPoint* linePts = fSegment->pts();
        int lineStart = fStart < fEnd ? 0 : 1;
        line = linePts[lineStart ^ 1] - linePts[lineStart];
    } else {
        SkPoint shortPts[2] = { fCurvePart[0].asSkPoint(), fCurvePart[1].asSkPoint() };
        line = shortPts[1] - shortPts[0];
    }
    float crosses[3];
    SkPath::Verb testVerb = test.fSegment->verb();
    int iMax = SkPathOpsVerbToPoints(testVerb);
//    SkASSERT(origin == test.fCurveHalf[0]);
    const SkDCubic& testCurve = test.fCurvePart;
//    do {
        for (int index = 1; index <= iMax; ++index) {
            float xy1 = (float) (line.fX * (testCurve[index].fY - origin.fY));
            float xy2 = (float) (line.fY * (testCurve[index].fX - origin.fX));
            crosses[index - 1] = AlmostEqualUlps(xy1, xy2) ? 0 : xy1 - xy2;
        }
        if (crosses[0] * crosses[1] < 0) {
            return -1;
        }
        if (SkPath::kCubic_Verb == testVerb) {
            if (crosses[0] * crosses[2] < 0 || crosses[1] * crosses[2] < 0) {
                return -1;
            }
        }
        if (crosses[0]) {
            return crosses[0] < 0;
        }
        if (crosses[1]) {
            return crosses[1] < 0;
        }
        if (SkPath::kCubic_Verb == testVerb && crosses[2]) {
            return crosses[2] < 0;
        }
    fUnorderable = true;
    return -1;
}

bool SkOpAngle::calcSlop(double x, double y, double rx, double ry, bool* result) const {
    double absX = fabs(x);
    double absY = fabs(y);
    double length = absX < absY ? absX / 2 + absY : absX + absY / 2;
    int exponent;
    (void) frexp(length, &exponent);
    double epsilon = ldexp(FLT_EPSILON, exponent);
    SkPath::Verb verb = fSegment->verb();
    SkASSERT(verb == SkPath::kQuad_Verb || verb == SkPath::kCubic_Verb);
    // FIXME: the quad and cubic factors are made up ; determine actual values
    double slop = verb == SkPath::kQuad_Verb ? 4 * epsilon : 512 * epsilon;
    double xSlop = slop;
    double ySlop = x * y < 0 ? -xSlop : xSlop; // OPTIMIZATION: use copysign / _copysign ?
    double x1 = x - xSlop;
    double y1 = y + ySlop;
    double x_ry1 = x1 * ry;
    double rx_y1 = rx * y1;
    *result = x_ry1 < rx_y1;
    double x2 = x + xSlop;
    double y2 = y - ySlop;
    double x_ry2 = x2 * ry;
    double rx_y2 = rx * y2;
    bool less2 = x_ry2 < rx_y2;
    return *result == less2;
}

bool SkOpAngle::checkCrossesZero() const {
    int start = SkTMin(fSectorStart, fSectorEnd);
    int end = SkTMax(fSectorStart, fSectorEnd);
    bool crossesZero = end - start > 16;
    return crossesZero;
}

bool SkOpAngle::checkParallel(const SkOpAngle& rh) const {
    SkDVector scratch[2];
    const SkDVector* sweep, * tweep;
    if (!fUnorderedSweep) {
        sweep = fSweep;
    } else {
        scratch[0] = fCurvePart[1] - fCurvePart[0];
        sweep = &scratch[0];
    }
    if (!rh.fUnorderedSweep) {
        tweep = rh.fSweep;
    } else {
        scratch[1] = rh.fCurvePart[1] - rh.fCurvePart[0];
        tweep = &scratch[1];
    }
    double s0xt0 = sweep->crossCheck(*tweep);
    if (tangentsDiverge(rh, s0xt0)) {
        return s0xt0 < 0;
    }
    SkDVector m0 = fSegment->dPtAtT(midT()) - fCurvePart[0];
    SkDVector m1 = rh.fSegment->dPtAtT(rh.midT()) - rh.fCurvePart[0];
    double m0xm1 = m0.crossCheck(m1);
    if (m0xm1 == 0) {
        fUnorderable = true;
        rh.fUnorderable = true;
        return true;
    }
    return m0xm1 < 0;
}

// the original angle is too short to get meaningful sector information
// lengthen it until it is long enough to be meaningful or leave it unset if lengthening it
// would cause it to intersect one of the adjacent angles
bool SkOpAngle::computeSector() {
    if (fComputedSector) {
        // FIXME: logically, this should return !fUnorderable, but doing so breaks testQuadratic51
        // -- but in general, this code may not work so this may be the least of problems
        // adding the bang fixes testQuads46x in release, however
        return !fUnorderable;
    }
    SkASSERT(fSegment->verb() != SkPath::kLine_Verb && small());
    fComputedSector = true;
    int step = fStart < fEnd ? 1 : -1;
    int limit = step > 0 ? fSegment->count() : -1;
    int checkEnd = fEnd;
    do {
// advance end
        const SkOpSpan& span = fSegment->span(checkEnd);
        const SkOpSegment* other = span.fOther;
        int oCount = other->count();
        for (int oIndex = 0; oIndex < oCount; ++oIndex) {
            const SkOpSpan& oSpan = other->span(oIndex);
            if (oSpan.fOther != fSegment) {
                continue;
            }
            if (oSpan.fOtherIndex == checkEnd) {
                continue;
            }
            if (!approximately_equal(oSpan.fOtherT, span.fT)) {
                continue;
            }
            goto recomputeSector;
        }
        checkEnd += step;
    } while (checkEnd != limit);
recomputeSector:
    if (checkEnd == fEnd || checkEnd - step == fEnd) {
        fUnorderable = true;
        return false;
    }
    int saveEnd = fEnd;
    fComputedEnd = fEnd = checkEnd - step;
    setSpans();
    setSector();
    fEnd = saveEnd;
    return !fUnorderable;
}

// returns -1 if overlaps   0 if no overlap cw    1 if no overlap ccw
int SkOpAngle::convexHullOverlaps(const SkOpAngle& rh) const {
    const SkDVector* sweep = fSweep;
    const SkDVector* tweep = rh.fSweep;
    double s0xs1 = sweep[0].crossCheck(sweep[1]);
    double s0xt0 = sweep[0].crossCheck(tweep[0]);
    double s1xt0 = sweep[1].crossCheck(tweep[0]);
    bool tBetweenS = s0xs1 > 0 ? s0xt0 > 0 && s1xt0 < 0 : s0xt0 < 0 && s1xt0 > 0;
    double s0xt1 = sweep[0].crossCheck(tweep[1]);
    double s1xt1 = sweep[1].crossCheck(tweep[1]);
    tBetweenS |= s0xs1 > 0 ? s0xt1 > 0 && s1xt1 < 0 : s0xt1 < 0 && s1xt1 > 0;
    double t0xt1 = tweep[0].crossCheck(tweep[1]);
    if (tBetweenS) {
        return -1;
    }
    if ((s0xt0 == 0 && s1xt1 == 0) || (s1xt0 == 0 && s0xt1 == 0)) {  // s0 to s1 equals t0 to t1
        return -1;
    }
    bool sBetweenT = t0xt1 > 0 ? s0xt0 < 0 && s0xt1 > 0 : s0xt0 > 0 && s0xt1 < 0;
    sBetweenT |= t0xt1 > 0 ? s1xt0 < 0 && s1xt1 > 0 : s1xt0 > 0 && s1xt1 < 0;
    if (sBetweenT) {
        return -1;
    }
    // if all of the sweeps are in the same half plane, then the order of any pair is enough
    if (s0xt0 >= 0 && s0xt1 >= 0 && s1xt0 >= 0 && s1xt1 >= 0) {
        return 0;
    }
    if (s0xt0 <= 0 && s0xt1 <= 0 && s1xt0 <= 0 && s1xt1 <= 0) {
        return 1;
    }
    // if the outside sweeps are greater than 180 degress:
        // first assume the inital tangents are the ordering
        // if the midpoint direction matches the inital order, that is enough
    SkDVector m0 = fSegment->dPtAtT(midT()) - fCurvePart[0];
    SkDVector m1 = rh.fSegment->dPtAtT(rh.midT()) - rh.fCurvePart[0];
    double m0xm1 = m0.crossCheck(m1);
    if (s0xt0 > 0 && m0xm1 > 0) {
        return 0;
    }
    if (s0xt0 < 0 && m0xm1 < 0) {
        return 1;
    }
    if (tangentsDiverge(rh, s0xt0)) {
        return s0xt0 < 0;
    }
    return m0xm1 < 0;
}

// OPTIMIZATION: longest can all be either lazily computed here or precomputed in setup
double SkOpAngle::distEndRatio(double dist) const {
    double longest = 0;
    const SkOpSegment& segment = *this->segment();
    int ptCount = SkPathOpsVerbToPoints(segment.verb());
    const SkPoint* pts = segment.pts();
    for (int idx1 = 0; idx1 <= ptCount - 1; ++idx1) {
        for (int idx2 = idx1 + 1; idx2 <= ptCount; ++idx2) {
            if (idx1 == idx2) {
                continue;
            }
            SkDVector v;
            v.set(pts[idx2] - pts[idx1]);
            double lenSq = v.lengthSquared();
            longest = SkTMax(longest, lenSq);
        }
    }
    return sqrt(longest) / dist;
}

bool SkOpAngle::endsIntersect(const SkOpAngle& rh) const {
    SkPath::Verb lVerb = fSegment->verb();
    SkPath::Verb rVerb = rh.fSegment->verb();
    int lPts = SkPathOpsVerbToPoints(lVerb);
    int rPts = SkPathOpsVerbToPoints(rVerb);
    SkDLine rays[] = {{{fCurvePart[0], rh.fCurvePart[rPts]}},
            {{fCurvePart[0], fCurvePart[lPts]}}};
    if (rays[0][1] == rays[1][1]) {
        return checkParallel(rh);
    }
    double smallTs[2] = {-1, -1};
    bool limited[2] = {false, false};
    for (int index = 0; index < 2; ++index) {
        const SkOpSegment& segment = index ? *rh.fSegment : *fSegment;
        SkIntersections i;
        (*CurveIntersectRay[index ? rPts : lPts])(segment.pts(), rays[index], &i);
//      SkASSERT(i.used() >= 1);
//        if (i.used() <= 1) {
//            continue;
//        }
        double tStart = segment.t(index ? rh.fStart : fStart);
        double tEnd = segment.t(index ? rh.fComputedEnd : fComputedEnd);
        bool testAscends = index ? rh.fStart < rh.fComputedEnd : fStart < fComputedEnd;
        double t = testAscends ? 0 : 1;
        for (int idx2 = 0; idx2 < i.used(); ++idx2) {
            double testT = i[0][idx2];
            if (!approximately_between_orderable(tStart, testT, tEnd)) {
                continue;
            }
            if (approximately_equal_orderable(tStart, testT)) {
                continue;
            }
            smallTs[index] = t = testAscends ? SkTMax(t, testT) : SkTMin(t, testT);
            limited[index] = approximately_equal_orderable(t, tEnd);
        }
    }
#if 0
    if (smallTs[0] < 0 && smallTs[1] < 0) {  // if neither ray intersects, do endpoint sort
        double m0xm1 = 0;
        if (lVerb == SkPath::kLine_Verb) {
            SkASSERT(rVerb != SkPath::kLine_Verb);
            SkDVector m0 = rays[1][1] - fCurvePart[0];
            SkDPoint endPt;
            endPt.set(rh.fSegment->pts()[rh.fStart < rh.fEnd ? rPts : 0]);
            SkDVector m1 = endPt - fCurvePart[0];
            m0xm1 = m0.crossCheck(m1);
        }
        if (rVerb == SkPath::kLine_Verb) {
            SkDPoint endPt;
            endPt.set(fSegment->pts()[fStart < fEnd ? lPts : 0]);
            SkDVector m0 = endPt - fCurvePart[0];
            SkDVector m1 = rays[0][1] - fCurvePart[0];
            m0xm1 = m0.crossCheck(m1);
        }
        if (m0xm1 != 0) {
            return m0xm1 < 0;
        }
    }
#endif
    bool sRayLonger = false;
    SkDVector sCept = {0, 0};
    double sCeptT = -1;
    int sIndex = -1;
    bool useIntersect = false;
    for (int index = 0; index < 2; ++index) {
        if (smallTs[index] < 0) {
            continue;
        }
        const SkOpSegment& segment = index ? *rh.fSegment : *fSegment;
        const SkDPoint& dPt = segment.dPtAtT(smallTs[index]);
        SkDVector cept = dPt - rays[index][0];
        // If this point is on the curve, it should have been detected earlier by ordinary
        // curve intersection. This may be hard to determine in general, but for lines,
        // the point could be close to or equal to its end, but shouldn't be near the start.
        if ((index ? lPts : rPts) == 1) {
            SkDVector total = rays[index][1] - rays[index][0];
            if (cept.lengthSquared() * 2 < total.lengthSquared()) {
                continue;
            }
        }
        SkDVector end = rays[index][1] - rays[index][0];
        if (cept.fX * end.fX < 0 || cept.fY * end.fY < 0) {
            continue;
        }
        double rayDist = cept.length();
        double endDist = end.length();
        bool rayLonger = rayDist > endDist;
        if (limited[0] && limited[1] && rayLonger) {
            useIntersect = true;
            sRayLonger = rayLonger;
            sCept = cept;
            sCeptT = smallTs[index];
            sIndex = index;
            break;
        }
        double delta = fabs(rayDist - endDist);
        double minX, minY, maxX, maxY;
        minX = minY = SK_ScalarInfinity;
        maxX = maxY = -SK_ScalarInfinity;
        const SkDCubic& curve = index ? rh.fCurvePart : fCurvePart;
        int ptCount = index ? rPts : lPts;
        for (int idx2 = 0; idx2 <= ptCount; ++idx2) {
            minX = SkTMin(minX, curve[idx2].fX);
            minY = SkTMin(minY, curve[idx2].fY);
            maxX = SkTMax(maxX, curve[idx2].fX);
            maxY = SkTMax(maxY, curve[idx2].fY);
        }
        double maxWidth = SkTMax(maxX - minX, maxY - minY);
        delta /= maxWidth;
        if (delta > 1e-4 && (useIntersect ^= true)) {  // FIXME: move this magic number
            sRayLonger = rayLonger;
            sCept = cept;
            sCeptT = smallTs[index];
            sIndex = index;
        }
    }
    if (useIntersect) {
        const SkDCubic& curve = sIndex ? rh.fCurvePart : fCurvePart;
        const SkOpSegment& segment = sIndex ? *rh.fSegment : *fSegment;
        double tStart = segment.t(sIndex ? rh.fStart : fStart);
        SkDVector mid = segment.dPtAtT(tStart + (sCeptT - tStart) / 2) - curve[0];
        double septDir = mid.crossCheck(sCept);
        if (!septDir) {
            return checkParallel(rh);
        }
        return sRayLonger ^ (sIndex == 0) ^ (septDir < 0);
    } else {
        return checkParallel(rh);
    }
}

// Most of the time, the first one can be found trivially by detecting the smallest sector value.
// If all angles have the same sector value, actual sorting is required.
const SkOpAngle* SkOpAngle::findFirst() const {
    const SkOpAngle* best = this;
    int bestStart = SkTMin(fSectorStart, fSectorEnd);
    const SkOpAngle* angle = this;
    while ((angle = angle->fNext) != this) {
        int angleEnd = SkTMax(angle->fSectorStart, angle->fSectorEnd);
        if (angleEnd < bestStart) {
            return angle;    // we wrapped around
        }
        int angleStart = SkTMin(angle->fSectorStart, angle->fSectorEnd);
        if (bestStart > angleStart) {
            best = angle;
            bestStart = angleStart;
        }
    }
    // back up to the first possible angle
    const SkOpAngle* firstBest = best;
    angle = best;
    int bestEnd = SkTMax(best->fSectorStart, best->fSectorEnd);
    while ((angle = angle->previous()) != firstBest) {
        if (angle->fStop) {
            break;
        }
        int angleStart = SkTMin(angle->fSectorStart, angle->fSectorEnd);
        // angles that are smaller by one aren't necessary better, since the larger may be a line
        // and the smaller may be a curve that curls to the other side of the line.
        if (bestEnd + 1 < angleStart) {
            return best;
        }
        best = angle;
        bestEnd = SkTMax(angle->fSectorStart, angle->fSectorEnd);
    }
    // in the case where all angles are nearly in the same sector, check the order to find the best
    firstBest = best;
    angle = best;
    do {
        angle = angle->fNext;
        if (angle->fStop) {
            return firstBest;
        }
        bool orderable = best->orderable(*angle);  // note: may return an unorderable angle
        if (orderable == 0) {
            return angle;
        }
        best = angle;
    } while (angle != firstBest);
    // if the angles are equally ordered, fall back on the initial tangent
    bool foundBelow = false;
    while ((angle = angle->fNext)) {
        SkDVector scratch[2];
        const SkDVector* sweep;
        if (!angle->fUnorderedSweep) {
            sweep = angle->fSweep;
        } else {
            scratch[0] = angle->fCurvePart[1] - angle->fCurvePart[0];
            sweep = &scratch[0];
        }
        bool isAbove = sweep->fY <= 0;
        if (isAbove && foundBelow) {
            return angle;
        }
        foundBelow |= !isAbove;
        if (angle == firstBest) {
            return NULL; // should not loop around
        }
    }
    SkASSERT(0);  // should never get here
    return NULL;
}

/*      y<0 y==0 y>0  x<0 x==0 x>0 xy<0 xy==0 xy>0
    0    x                      x               x
    1    x                      x          x
    2    x                      x    x
    3    x                  x        x
    4    x             x             x
    5    x             x                   x
    6    x             x                        x
    7         x        x                        x
    8             x    x                        x
    9             x    x                   x
    10            x    x             x
    11            x         x        x
    12            x             x    x
    13            x             x          x
    14            x             x               x
    15        x                 x               x
*/
int SkOpAngle::findSector(SkPath::Verb verb, double x, double y) const {
    double absX = fabs(x);
    double absY = fabs(y);
    double xy = SkPath::kLine_Verb == verb || !AlmostEqualUlps(absX, absY) ? absX - absY : 0;
    // If there are four quadrants and eight octants, and since the Latin for sixteen is sedecim,
    // one could coin the term sedecimant for a space divided into 16 sections.
   // http://english.stackexchange.com/questions/133688/word-for-something-partitioned-into-16-parts
    static const int sedecimant[3][3][3] = {
    //       y<0           y==0           y>0
    //   x<0 x==0 x>0  x<0 x==0 x>0  x<0 x==0 x>0
        {{ 4,  3,  2}, { 7, -1, 15}, {10, 11, 12}},  // abs(x) <  abs(y)
        {{ 5, -1,  1}, {-1, -1, -1}, { 9, -1, 13}},  // abs(x) == abs(y)
        {{ 6,  3,  0}, { 7, -1, 15}, { 8, 11, 14}},  // abs(x) >  abs(y)
    };
    int sector = sedecimant[(xy >= 0) + (xy > 0)][(y >= 0) + (y > 0)][(x >= 0) + (x > 0)] * 2 + 1;
    SkASSERT(SkPath::kLine_Verb == verb || sector >= 0);
    return sector;
}

// OPTIMIZE: if this loops to only one other angle, after first compare fails, insert on other side
// OPTIMIZE: return where insertion succeeded. Then, start next insertion on opposite side
void SkOpAngle::insert(SkOpAngle* angle) {
    if (angle->fNext) {
        if (loopCount() >= angle->loopCount()) {
            if (!merge(angle)) {
                return;
            }
        } else if (fNext) {
            if (!angle->merge(this)) {
                return;
            }
        } else {
            angle->insert(this);
        }
        return;
    }
    bool singleton = NULL == fNext;
    if (singleton) {
        fNext = this;
    }
    SkOpAngle* next = fNext;
    if (next->fNext == this) {
        if (angle->overlap(*this)) {
            return;
        }
        if (singleton || angle->after(this)) {
            this->fNext = angle;
            angle->fNext = next;
        } else {
            next->fNext = angle;
            angle->fNext = this;
        }
        debugValidateNext();
        return;
    }
    SkOpAngle* last = this;
    do {
        SkASSERT(last->fNext == next);
        if (angle->overlap(*last) || angle->overlap(*next)) {
            return;
        }
        if (angle->after(last)) {
            last->fNext = angle;
            angle->fNext = next;
            debugValidateNext();
            return;
        }
        last = next;
        next = next->fNext;
        if (last == this && next->fUnorderable) {
            fUnorderable = true;
            return;
        }
        SkASSERT(last != this);
    } while (true);
}

bool SkOpAngle::isHorizontal() const {
    return !fIsCurve && fSweep[0].fY == 0;
}

SkOpSpan* SkOpAngle::lastMarked() const {
    if (fLastMarked) {
        if (fLastMarked->fChased) {
            return NULL;
        }
        fLastMarked->fChased = true;
    }
    return fLastMarked;
}

bool SkOpAngle::loopContains(const SkOpAngle& test) const {
    if (!fNext) {
        return false;
    }
    const SkOpAngle* first = this;
    const SkOpAngle* loop = this;
    const SkOpSegment* tSegment = test.fSegment;
    double tStart = tSegment->span(test.fStart).fT;
    double tEnd = tSegment->span(test.fEnd).fT;
    do {
        const SkOpSegment* lSegment = loop->fSegment;
        // FIXME : use precisely_equal ? or compare points exactly ?
        if (lSegment != tSegment) {
            continue;
        }
        double lStart = lSegment->span(loop->fStart).fT;
        if (lStart != tEnd) {
            continue;
        }
        double lEnd = lSegment->span(loop->fEnd).fT;
        if (lEnd == tStart) {
            return true;
        }
    } while ((loop = loop->fNext) != first);
    return false;
}

int SkOpAngle::loopCount() const {
    int count = 0;
    const SkOpAngle* first = this;
    const SkOpAngle* next = this;
    do {
        next = next->fNext;
        ++count;
    } while (next && next != first);
    return count;
}

// OPTIMIZATION: can this be done better in after when angles are sorted?
void SkOpAngle::markStops() {
    SkOpAngle* angle = this;
    int lastEnd = SkTMax(fSectorStart, fSectorEnd);
    do {
        angle = angle->fNext;
        int angleStart = SkTMin(angle->fSectorStart, angle->fSectorEnd);
        // angles that are smaller by one aren't necessary better, since the larger may be a line
        // and the smaller may be a curve that curls to the other side of the line.
        if (lastEnd + 1 < angleStart) {
            angle->fStop = true;
        }
        lastEnd = SkTMax(angle->fSectorStart, angle->fSectorEnd);
    } while (angle != this);
}

bool SkOpAngle::merge(SkOpAngle* angle) {
    SkASSERT(fNext);
    SkASSERT(angle->fNext);
    SkOpAngle* working = angle;
    do {
        if (this == working) {
            return false;
        }
        working = working->fNext;
    } while (working != angle);
    do {
        SkOpAngle* next = working->fNext;
        working->fNext = NULL;
        insert(working);
        working = next;
    } while (working != angle);
    // it's likely that a pair of the angles are unorderable
#if DEBUG_ANGLE
    SkOpAngle* last = angle;
    working = angle->fNext;
    do {
        SkASSERT(last->fNext == working);
        last->fNext = working->fNext;
        SkASSERT(working->after(last));
        last->fNext = working;
        last = working;
        working = working->fNext;
    } while (last != angle);
#endif
    debugValidateNext();
    return true;
}

double SkOpAngle::midT() const {
    return (fSegment->t(fStart) + fSegment->t(fEnd)) / 2;
}

bool SkOpAngle::oppositePlanes(const SkOpAngle& rh) const {
    int startSpan = abs(rh.fSectorStart - fSectorStart);
    return startSpan >= 8;
}

bool SkOpAngle::orderable(const SkOpAngle& rh) const {
    int result;
    if (!fIsCurve) {
        if (!rh.fIsCurve) {
            double leftX = fTangentHalf.dx();
            double leftY = fTangentHalf.dy();
            double rightX = rh.fTangentHalf.dx();
            double rightY = rh.fTangentHalf.dy();
            double x_ry = leftX * rightY;
            double rx_y = rightX * leftY;
            if (x_ry == rx_y) {
                if (leftX * rightX < 0 || leftY * rightY < 0) {
                    return true;  // exactly 180 degrees apart
                }
                goto unorderable;
            }
            SkASSERT(x_ry != rx_y); // indicates an undetected coincidence -- worth finding earlier
            return x_ry < rx_y;
        }
        if ((result = allOnOneSide(rh)) >= 0) {
            return result;
        }
        if (fUnorderable || approximately_zero(rh.fSide)) {
            goto unorderable;
        }
    } else if (!rh.fIsCurve) {
        if ((result = rh.allOnOneSide(*this)) >= 0) {
            return !result;
        }
        if (rh.fUnorderable || approximately_zero(fSide)) {
            goto unorderable;
        }
    }
    if ((result = convexHullOverlaps(rh)) >= 0) {
        return result;
    }
    return endsIntersect(rh);
unorderable:
    fUnorderable = true;
    rh.fUnorderable = true;
    return true;
}

bool SkOpAngle::overlap(const SkOpAngle& other) const {
    int min = SkTMin(fStart, fEnd);
    const SkOpSpan& span = fSegment->span(min);
    const SkOpSegment* oSeg = other.fSegment;
    int oMin = SkTMin(other.fStart, other.fEnd);
    const SkOpSpan& oSpan = oSeg->span(oMin);
    if (!span.fSmall && !oSpan.fSmall) {
        return false;
    }
    if (fSegment->span(fStart).fPt != oSeg->span(other.fStart).fPt) {
        return false;
    }
    // see if small span is contained by opposite span
    return span.fSmall ? oSeg->containsPt(fSegment->span(fEnd).fPt, other.fEnd, other.fStart)
            : fSegment->containsPt(oSeg->span(other.fEnd).fPt, fEnd, fStart);
}

// OPTIMIZE: if this shows up in a profile, add a previous pointer
// as is, this should be rarely called
SkOpAngle* SkOpAngle::previous() const {
    SkOpAngle* last = fNext;
    do {
        SkOpAngle* next = last->fNext;
        if (next == this) {
            return last;
        }
        last = next;
    } while (true);
}

void SkOpAngle::set(const SkOpSegment* segment, int start, int end) {
    fSegment = segment;
    fStart = start;
    fComputedEnd = fEnd = end;
    fNext = NULL;
    fComputeSector = fComputedSector = false;
    fStop = false;
    setSpans();
    setSector();
}

void SkOpAngle::setCurveHullSweep() {
    fUnorderedSweep = false;
    fSweep[0] = fCurvePart[1] - fCurvePart[0];
    if (SkPath::kLine_Verb == fSegment->verb()) {
        fSweep[1] = fSweep[0];
        return;
    }
    fSweep[1] = fCurvePart[2] - fCurvePart[0];
    if (SkPath::kCubic_Verb != fSegment->verb()) {
        if (!fSweep[0].fX && !fSweep[0].fY) {
            fSweep[0] = fSweep[1];
        }
        return;
    }
    SkDVector thirdSweep = fCurvePart[3] - fCurvePart[0];
    if (fSweep[0].fX == 0 && fSweep[0].fY == 0) {
        fSweep[0] = fSweep[1];
        fSweep[1] = thirdSweep;
        if (fSweep[0].fX == 0 && fSweep[0].fY == 0) {
            fSweep[0] = fSweep[1];
            fCurvePart[1] = fCurvePart[3];
            fIsCurve = false;
        }
        return;
    }
    double s1x3 = fSweep[0].crossCheck(thirdSweep);
    double s3x2 = thirdSweep.crossCheck(fSweep[1]);
    if (s1x3 * s3x2 >= 0) {  // if third vector is on or between first two vectors
        return;
    }
    double s2x1 = fSweep[1].crossCheck(fSweep[0]);
    // FIXME: If the sweep of the cubic is greater than 180 degrees, we're in trouble
    // probably such wide sweeps should be artificially subdivided earlier so that never happens
    SkASSERT(s1x3 * s2x1 < 0 || s1x3 * s3x2 < 0);
    if (s3x2 * s2x1 < 0) {
        SkASSERT(s2x1 * s1x3 > 0);
        fSweep[0] = fSweep[1];
        fUnorderedSweep = true;
    }
    fSweep[1] = thirdSweep;
}

void SkOpAngle::setSector() {
    SkPath::Verb verb = fSegment->verb();
    if (SkPath::kLine_Verb != verb && small()) {
        fSectorStart = fSectorEnd = -1;
        fSectorMask = 0;
        fComputeSector = true;  // can't determine sector until segment length can be found
        return;
    }
    fSectorStart = findSector(verb, fSweep[0].fX, fSweep[0].fY);
    if (!fIsCurve) {  // if it's a line or line-like, note that both sectors are the same
        SkASSERT(fSectorStart >= 0);
        fSectorEnd = fSectorStart;
        fSectorMask = 1 << fSectorStart;
        return;
    }
    SkASSERT(SkPath::kLine_Verb != verb);
    fSectorEnd = findSector(verb, fSweep[1].fX, fSweep[1].fY);
    if (fSectorEnd == fSectorStart) {
        SkASSERT((fSectorStart & 3) != 3);  // if the sector has no span, it can't be an exact angle
        fSectorMask = 1 << fSectorStart;
        return;
    }
    bool crossesZero = checkCrossesZero();
    int start = SkTMin(fSectorStart, fSectorEnd);
    bool curveBendsCCW = (fSectorStart == start) ^ crossesZero;
    // bump the start and end of the sector span if they are on exact compass points
    if ((fSectorStart & 3) == 3) {
        fSectorStart = (fSectorStart + (curveBendsCCW ? 1 : 31)) & 0x1f;
    }
    if ((fSectorEnd & 3) == 3) {
        fSectorEnd = (fSectorEnd + (curveBendsCCW ? 31 : 1)) & 0x1f;
    }
    crossesZero = checkCrossesZero();
    start = SkTMin(fSectorStart, fSectorEnd);
    int end = SkTMax(fSectorStart, fSectorEnd);
    if (!crossesZero) {
        fSectorMask = (unsigned) -1 >> (31 - end + start) << start;
    } else {
        fSectorMask = (unsigned) -1 >> (31 - start) | (-1 << end);
    }
}

void SkOpAngle::setSpans() {
    fUnorderable = fSegment->isTiny(this);
    fLastMarked = NULL;
    const SkPoint* pts = fSegment->pts();
    SkDEBUGCODE(fCurvePart[2].fX = fCurvePart[2].fY = fCurvePart[3].fX = fCurvePart[3].fY
            = SK_ScalarNaN);
    fSegment->subDivide(fStart, fEnd, &fCurvePart);
    setCurveHullSweep();
    const SkPath::Verb verb = fSegment->verb();
    if (verb != SkPath::kLine_Verb
            && !(fIsCurve = fSweep[0].crossCheck(fSweep[1]) != 0)) {
        SkDLine lineHalf;
        lineHalf[0].set(fCurvePart[0].asSkPoint());
        lineHalf[1].set(fCurvePart[SkPathOpsVerbToPoints(verb)].asSkPoint());
        fTangentHalf.lineEndPoints(lineHalf);
        fSide = 0;
    }
    switch (verb) {
    case SkPath::kLine_Verb: {
        SkASSERT(fStart != fEnd);
        const SkPoint& cP1 = pts[fStart < fEnd];
        SkDLine lineHalf;
        lineHalf[0].set(fSegment->span(fStart).fPt);
        lineHalf[1].set(cP1);
        fTangentHalf.lineEndPoints(lineHalf);
        fSide = 0;
        fIsCurve = false;
        } return;
    case SkPath::kQuad_Verb: {
        SkLineParameters tangentPart;
        SkDQuad& quad2 = *SkTCast<SkDQuad*>(&fCurvePart);
        (void) tangentPart.quadEndPoints(quad2);
        fSide = -tangentPart.pointDistance(fCurvePart[2]);  // not normalized -- compare sign only
        } break;
    case SkPath::kCubic_Verb: {
        SkLineParameters tangentPart;
        (void) tangentPart.cubicPart(fCurvePart);
        fSide = -tangentPart.pointDistance(fCurvePart[3]);
        double testTs[4];
        // OPTIMIZATION: keep inflections precomputed with cubic segment?
        int testCount = SkDCubic::FindInflections(pts, testTs);
        double startT = fSegment->t(fStart);
        double endT = fSegment->t(fEnd);
        double limitT = endT;
        int index;
        for (index = 0; index < testCount; ++index) {
            if (!::between(startT, testTs[index], limitT)) {
                testTs[index] = -1;
            }
        }
        testTs[testCount++] = startT;
        testTs[testCount++] = endT;
        SkTQSort<double>(testTs, &testTs[testCount - 1]);
        double bestSide = 0;
        int testCases = (testCount << 1) - 1;
        index = 0;
        while (testTs[index] < 0) {
            ++index;
        }
        index <<= 1;
        for (; index < testCases; ++index) {
            int testIndex = index >> 1;
            double testT = testTs[testIndex];
            if (index & 1) {
                testT = (testT + testTs[testIndex + 1]) / 2;
            }
            // OPTIMIZE: could avoid call for t == startT, endT
            SkDPoint pt = dcubic_xy_at_t(pts, testT);
            SkLineParameters tangentPart;
            tangentPart.cubicEndPoints(fCurvePart);
            double testSide = tangentPart.pointDistance(pt);
            if (fabs(bestSide) < fabs(testSide)) {
                bestSide = testSide;
            }
        }
        fSide = -bestSide;  // compare sign only
        } break;
    default:
        SkASSERT(0);
    }
}

bool SkOpAngle::small() const {
    int min = SkMin32(fStart, fEnd);
    int max = SkMax32(fStart, fEnd);
    for (int index = min; index < max; ++index) {
        const SkOpSpan& mSpan = fSegment->span(index);
        if (!mSpan.fSmall) {
            return false;
        }
    }
    return true;
}

bool SkOpAngle::tangentsDiverge(const SkOpAngle& rh, double s0xt0) const {
    if (s0xt0 == 0) {
        return false;
    }
    // if the ctrl tangents are not nearly parallel, use them
    // solve for opposite direction displacement scale factor == m
    // initial dir = v1.cross(v2) == v2.x * v1.y - v2.y * v1.x
    // displacement of q1[1] : dq1 = { -m * v1.y, m * v1.x } + q1[1]
    // straight angle when : v2.x * (dq1.y - q1[0].y) == v2.y * (dq1.x - q1[0].x)
    //                       v2.x * (m * v1.x + v1.y) == v2.y * (-m * v1.y + v1.x)
    // - m * (v2.x * v1.x + v2.y * v1.y) == v2.x * v1.y - v2.y * v1.x
    // m = (v2.y * v1.x - v2.x * v1.y) / (v2.x * v1.x + v2.y * v1.y)
    // m = v1.cross(v2) / v1.dot(v2)
    const SkDVector* sweep = fSweep;
    const SkDVector* tweep = rh.fSweep;
    double s0dt0 = sweep[0].dot(tweep[0]);
    if (!s0dt0) {
        return true;
    }
    SkASSERT(s0dt0 != 0);
    double m = s0xt0 / s0dt0;
    double sDist = sweep[0].length() * m;
    double tDist = tweep[0].length() * m;
    bool useS = fabs(sDist) < fabs(tDist);
    double mFactor = fabs(useS ? distEndRatio(sDist) : rh.distEndRatio(tDist));
    return mFactor < 5000;  // empirically found limit
}

SkOpAngleSet::SkOpAngleSet() 
    : fAngles(NULL)
#if DEBUG_ANGLE
    , fCount(0)
#endif
{
}

SkOpAngleSet::~SkOpAngleSet() {
    SkDELETE(fAngles);
}

SkOpAngle& SkOpAngleSet::push_back() {
    if (!fAngles) {
        fAngles = SkNEW_ARGS(SkChunkAlloc, (2));
    }
    void* ptr = fAngles->allocThrow(sizeof(SkOpAngle));
    SkOpAngle* angle = (SkOpAngle*) ptr;
#if DEBUG_ANGLE
    angle->setID(++fCount);
#endif
    return *angle;
}

void SkOpAngleSet::reset() {
    if (fAngles) {
        fAngles->reset();
    }
}