DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "SkIntersections.h"
#include "SkPathOpsLine.h"

/* Determine the intersection point of two lines. This assumes the lines are not parallel,
   and that that the lines are infinite.
   From http://en.wikipedia.org/wiki/Line-line_intersection
 */
SkDPoint SkIntersections::Line(const SkDLine& a, const SkDLine& b) {
    double axLen = a[1].fX - a[0].fX;
    double ayLen = a[1].fY - a[0].fY;
    double bxLen = b[1].fX - b[0].fX;
    double byLen = b[1].fY - b[0].fY;
    double denom = byLen * axLen - ayLen * bxLen;
    SkASSERT(denom);
    double term1 = a[1].fX * a[0].fY - a[1].fY * a[0].fX;
    double term2 = b[1].fX * b[0].fY - b[1].fY * b[0].fX;
    SkDPoint p;
    p.fX = (term1 * bxLen - axLen * term2) / denom;
    p.fY = (term1 * byLen - ayLen * term2) / denom;
    return p;
}

void SkIntersections::cleanUpCoincidence() {
    SkASSERT(fUsed == 2);
    // both t values are good
    bool startMatch = fT[0][0] == 0 && (fT[1][0] == 0 || fT[1][0] == 1);
    bool endMatch = fT[0][1] == 1 && (fT[1][1] == 0 || fT[1][1] == 1);
    if (startMatch || endMatch) {
        removeOne(startMatch);
        return;
    }
    // either t value is good
    bool pStartMatch = fT[0][0] == 0 || fT[1][0] == 0 || fT[1][0] == 1;
    bool pEndMatch = fT[0][1] == 1 || fT[1][1] == 0 || fT[1][1] == 1;
    removeOne(pStartMatch || !pEndMatch);
}

void SkIntersections::cleanUpParallelLines(bool parallel) {
    while (fUsed > 2) {
        removeOne(1);
    }
    if (fUsed == 2 && !parallel) {
        bool startMatch = fT[0][0] == 0 || fT[1][0] == 0 || fT[1][0] == 1;
        bool endMatch = fT[0][1] == 1 || fT[1][1] == 0 || fT[1][1] == 1;
        if ((!startMatch && !endMatch) || approximately_equal(fT[0][0], fT[0][1])) {
            SkASSERT(startMatch || endMatch);
            removeOne(endMatch);
        }
    }
}

void SkIntersections::computePoints(const SkDLine& line, int used) {
    fPt[0] = line.ptAtT(fT[0][0]);
    if ((fUsed = used) == 2) {
        fPt[1] = line.ptAtT(fT[0][1]);
    }
}

int SkIntersections::intersectRay(const SkDLine& a, const SkDLine& b) {
    fMax = 2;
    SkDVector aLen = a[1] - a[0];
    SkDVector bLen = b[1] - b[0];
    /* Slopes match when denom goes to zero:
                      axLen / ayLen ==                   bxLen / byLen
    (ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen
             byLen  * axLen         ==  ayLen          * bxLen
             byLen  * axLen         -   ayLen          * bxLen == 0 ( == denom )
     */
    double denom = bLen.fY * aLen.fX - aLen.fY * bLen.fX;
    SkDVector ab0 = a[0] - b[0];
    double numerA = ab0.fY * bLen.fX - bLen.fY * ab0.fX;
    double numerB = ab0.fY * aLen.fX - aLen.fY * ab0.fX;
#if 0
    if (!between(0, numerA, denom) || !between(0, numerB, denom)) {
        fUsed = 0;
        return 0;
    }
#endif
    numerA /= denom;
    numerB /= denom;
    int used;
    if (!approximately_zero(denom)) {
        fT[0][0] = numerA;
        fT[1][0] = numerB;
        used = 1;
    } else {
       /* See if the axis intercepts match:
                  ay - ax * ayLen / axLen  ==          by - bx * ayLen / axLen
         axLen * (ay - ax * ayLen / axLen) == axLen * (by - bx * ayLen / axLen)
         axLen *  ay - ax * ayLen          == axLen *  by - bx * ayLen
        */
        if (!AlmostEqualUlps(aLen.fX * a[0].fY - aLen.fY * a[0].fX,
                aLen.fX * b[0].fY - aLen.fY * b[0].fX)) {
            return fUsed = 0;
        }
        // there's no great answer for intersection points for coincident rays, but return something
        fT[0][0] = fT[1][0] = 0;
        fT[1][0] = fT[1][1] = 1;
        used = 2;
    }
    computePoints(a, used);
    return fUsed;
}

// note that this only works if both lines are neither horizontal nor vertical
int SkIntersections::intersect(const SkDLine& a, const SkDLine& b) {
    fMax = 3;  // note that we clean up so that there is no more than two in the end
    // see if end points intersect the opposite line
    double t;
    for (int iA = 0; iA < 2; ++iA) {
        if ((t = b.exactPoint(a[iA])) >= 0) {
            insert(iA, t, a[iA]);
        }
    }
    for (int iB = 0; iB < 2; ++iB) {
        if ((t = a.exactPoint(b[iB])) >= 0) {
            insert(t, iB, b[iB]);
        }
    }
    /* Determine the intersection point of two line segments
       Return FALSE if the lines don't intersect
       from: http://paulbourke.net/geometry/lineline2d/ */
    double axLen = a[1].fX - a[0].fX;
    double ayLen = a[1].fY - a[0].fY;
    double bxLen = b[1].fX - b[0].fX;
    double byLen = b[1].fY - b[0].fY;
    /* Slopes match when denom goes to zero:
                      axLen / ayLen ==                   bxLen / byLen
    (ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen
             byLen  * axLen         ==  ayLen          * bxLen
             byLen  * axLen         -   ayLen          * bxLen == 0 ( == denom )
     */
    double axByLen = axLen * byLen;
    double ayBxLen = ayLen * bxLen;
    // detect parallel lines the same way here and in SkOpAngle operator <
    // so that non-parallel means they are also sortable
    bool unparallel = fAllowNear ? NotAlmostEqualUlps(axByLen, ayBxLen)
            : NotAlmostDequalUlps(axByLen, ayBxLen);
    if (unparallel && fUsed == 0) {
        double ab0y = a[0].fY - b[0].fY;
        double ab0x = a[0].fX - b[0].fX;
        double numerA = ab0y * bxLen - byLen * ab0x;
        double numerB = ab0y * axLen - ayLen * ab0x;
        double denom = axByLen - ayBxLen;
        if (between(0, numerA, denom) && between(0, numerB, denom)) {
            fT[0][0] = numerA / denom;
            fT[1][0] = numerB / denom;
            computePoints(a, 1);
        }
    }
/* Allow tracking that both sets of end points are near each other -- the lines are entirely 
   coincident -- even when the end points are not exactly the same.
   Mark this as a 'wild card' for the end points, so that either point is considered totally
   coincident. Then, avoid folding the lines over each other, but allow either end to mate 
   to the next set of lines.
 */
    if (fAllowNear || !unparallel) {
        double aNearB[2];
        double bNearA[2];
        bool aNotB[2] = {false, false};
        bool bNotA[2] = {false, false};
        int nearCount = 0;
        for (int index = 0; index < 2; ++index) {
            aNearB[index] = t = b.nearPoint(a[index], &aNotB[index]);
            nearCount += t >= 0;
            bNearA[index] = t = a.nearPoint(b[index], &bNotA[index]);
            nearCount += t >= 0;
        }
        if (nearCount > 0) {
            // Skip if each segment contributes to one end point.
            if (nearCount != 2 || aNotB[0] == aNotB[1]) {
                for (int iA = 0; iA < 2; ++iA) {
                    if (!aNotB[iA]) {
                        continue;
                    }
                    int nearer = aNearB[iA] > 0.5;
                    if (!bNotA[nearer]) {
                        continue;
                    }
                    SkASSERT(a[iA] != b[nearer]);
                    SkASSERT(iA == (bNearA[nearer] > 0.5));
                    fNearlySame[iA] = true;
                    insertNear(iA, nearer, a[iA], b[nearer]);
                    aNearB[iA] = -1;
                    bNearA[nearer] = -1;
                    nearCount -= 2;
                }
            }
            if (nearCount > 0) {
                for (int iA = 0; iA < 2; ++iA) {
                    if (aNearB[iA] >= 0) {
                        insert(iA, aNearB[iA], a[iA]);
                    }
                }
                for (int iB = 0; iB < 2; ++iB) {
                    if (bNearA[iB] >= 0) {
                        insert(bNearA[iB], iB, b[iB]);
                    }
                }
            }
        }
    }
    cleanUpParallelLines(!unparallel);
    SkASSERT(fUsed <= 2);
    return fUsed;
}

static int horizontal_coincident(const SkDLine& line, double y) {
    double min = line[0].fY;
    double max = line[1].fY;
    if (min > max) {
        SkTSwap(min, max);
    }
    if (min > y || max < y) {
        return 0;
    }
    if (AlmostEqualUlps(min, max) && max - min < fabs(line[0].fX - line[1].fX)) {
        return 2;
    }
    return 1;
}

static double horizontal_intercept(const SkDLine& line, double y) {
     return SkPinT((y - line[0].fY) / (line[1].fY - line[0].fY));
}

int SkIntersections::horizontal(const SkDLine& line, double y) {
    fMax = 2;
    int horizontalType = horizontal_coincident(line, y);
    if (horizontalType == 1) {
        fT[0][0] = horizontal_intercept(line, y);
    } else if (horizontalType == 2) {
        fT[0][0] = 0;
        fT[0][1] = 1;
    }
    return fUsed = horizontalType;
}

int SkIntersections::horizontal(const SkDLine& line, double left, double right,
                                double y, bool flipped) {
    fMax = 3;  // clean up parallel at the end will limit the result to 2 at the most
    // see if end points intersect the opposite line
    double t;
    const SkDPoint leftPt = { left, y };
    if ((t = line.exactPoint(leftPt)) >= 0) {
        insert(t, (double) flipped, leftPt);
    }
    if (left != right) {
        const SkDPoint rightPt = { right, y };
        if ((t = line.exactPoint(rightPt)) >= 0) {
            insert(t, (double) !flipped, rightPt);
        }
        for (int index = 0; index < 2; ++index) {
            if ((t = SkDLine::ExactPointH(line[index], left, right, y)) >= 0) {
                insert((double) index, flipped ? 1 - t : t, line[index]);
            }
        }
    }
    int result = horizontal_coincident(line, y);
    if (result == 1 && fUsed == 0) {
        fT[0][0] = horizontal_intercept(line, y);
        double xIntercept = line[0].fX + fT[0][0] * (line[1].fX - line[0].fX);
        if (between(left, xIntercept, right)) {
            fT[1][0] = (xIntercept - left) / (right - left);
            if (flipped) {
                // OPTIMIZATION: ? instead of swapping, pass original line, use [1].fX - [0].fX
                for (int index = 0; index < result; ++index) {
                    fT[1][index] = 1 - fT[1][index];
                }
            }
            fPt[0].fX = xIntercept;
            fPt[0].fY = y;
            fUsed = 1;
        }
    }
    if (fAllowNear || result == 2) {
        if ((t = line.nearPoint(leftPt, NULL)) >= 0) {
            insert(t, (double) flipped, leftPt);
        }
        if (left != right) {
            const SkDPoint rightPt = { right, y };
            if ((t = line.nearPoint(rightPt, NULL)) >= 0) {
                insert(t, (double) !flipped, rightPt);
            }
            for (int index = 0; index < 2; ++index) {
                if ((t = SkDLine::NearPointH(line[index], left, right, y)) >= 0) {
                    insert((double) index, flipped ? 1 - t : t, line[index]);
                }
            }
        }
    }
    cleanUpParallelLines(result == 2);
    return fUsed;
}

static int vertical_coincident(const SkDLine& line, double x) {
    double min = line[0].fX;
    double max = line[1].fX;
    if (min > max) {
        SkTSwap(min, max);
    }
    if (!precisely_between(min, x, max)) {
        return 0;
    }
    if (AlmostEqualUlps(min, max)) {
        return 2;
    }
    return 1;
}

static double vertical_intercept(const SkDLine& line, double x) {
    return SkPinT((x - line[0].fX) / (line[1].fX - line[0].fX));
}

int SkIntersections::vertical(const SkDLine& line, double x) {
    fMax = 2;
    int verticalType = vertical_coincident(line, x);
    if (verticalType == 1) {
        fT[0][0] = vertical_intercept(line, x);
    } else if (verticalType == 2) {
        fT[0][0] = 0;
        fT[0][1] = 1;
    }
    return fUsed = verticalType;
}

int SkIntersections::vertical(const SkDLine& line, double top, double bottom,
                              double x, bool flipped) {
    fMax = 3;  // cleanup parallel lines will bring this back line
    // see if end points intersect the opposite line
    double t;
    SkDPoint topPt = { x, top };
    if ((t = line.exactPoint(topPt)) >= 0) {
        insert(t, (double) flipped, topPt);
    }
    if (top != bottom) {
        SkDPoint bottomPt = { x, bottom };
        if ((t = line.exactPoint(bottomPt)) >= 0) {
            insert(t, (double) !flipped, bottomPt);
        }
        for (int index = 0; index < 2; ++index) {
            if ((t = SkDLine::ExactPointV(line[index], top, bottom, x)) >= 0) {
                insert((double) index, flipped ? 1 - t : t, line[index]);
            }
        }
    }
    int result = vertical_coincident(line, x);
    if (result == 1 && fUsed == 0) {
        fT[0][0] = vertical_intercept(line, x);
        double yIntercept = line[0].fY + fT[0][0] * (line[1].fY - line[0].fY);
        if (between(top, yIntercept, bottom)) {
            fT[1][0] = (yIntercept - top) / (bottom - top);
            if (flipped) {
                // OPTIMIZATION: instead of swapping, pass original line, use [1].fY - [0].fY
                for (int index = 0; index < result; ++index) {
                    fT[1][index] = 1 - fT[1][index];
                }
            }
            fPt[0].fX = x;
            fPt[0].fY = yIntercept;
            fUsed = 1;
        }
    }
    if (fAllowNear || result == 2) {
        if ((t = line.nearPoint(topPt, NULL)) >= 0) {
            insert(t, (double) flipped, topPt);
        }
        if (top != bottom) {
            SkDPoint bottomPt = { x, bottom };
            if ((t = line.nearPoint(bottomPt, NULL)) >= 0) {
                insert(t, (double) !flipped, bottomPt);
            }
            for (int index = 0; index < 2; ++index) {
                if ((t = SkDLine::NearPointV(line[index], top, bottom, x)) >= 0) {
                    insert((double) index, flipped ? 1 - t : t, line[index]);
                }
            }
        }
    }
    cleanUpParallelLines(result == 2);
    SkASSERT(fUsed <= 2);
    return fUsed;
}

// from http://www.bryceboe.com/wordpress/wp-content/uploads/2006/10/intersect.py
// 4 subs, 2 muls, 1 cmp
static bool ccw(const SkDPoint& A, const SkDPoint& B, const SkDPoint& C) {
    return (C.fY - A.fY) * (B.fX - A.fX) > (B.fY - A.fY) * (C.fX - A.fX);
}

// 16 subs, 8 muls, 6 cmps
bool SkIntersections::Test(const SkDLine& a, const SkDLine& b) {
    return ccw(a[0], b[0], b[1]) != ccw(a[1], b[0], b[1])
            && ccw(a[0], a[1], b[0]) != ccw(a[0], a[1], b[1]);
}