DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
/*
 * Copyright 2007 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */


#include "SkImageDecoder.h"
#include "SkImageEncoder.h"
#include "SkJpegUtility.h"
#include "SkColorPriv.h"
#include "SkDither.h"
#include "SkScaledBitmapSampler.h"
#include "SkStream.h"
#include "SkTemplates.h"
#include "SkTime.h"
#include "SkUtils.h"
#include "SkRTConf.h"
#include "SkRect.h"
#include "SkCanvas.h"


#include <stdio.h>
extern "C" {
    #include "jpeglib.h"
    #include "jerror.h"
}

// These enable timing code that report milliseconds for an encoding/decoding
//#define TIME_ENCODE
//#define TIME_DECODE

// this enables our rgb->yuv code, which is faster than libjpeg on ARM
#define WE_CONVERT_TO_YUV

// If ANDROID_RGB is defined by in the jpeg headers it indicates that jpeg offers
// support for two additional formats (1) JCS_RGBA_8888 and (2) JCS_RGB_565.

#if defined(SK_DEBUG)
#define DEFAULT_FOR_SUPPRESS_JPEG_IMAGE_DECODER_WARNINGS false
#define DEFAULT_FOR_SUPPRESS_JPEG_IMAGE_DECODER_ERRORS false
#else  // !defined(SK_DEBUG)
#define DEFAULT_FOR_SUPPRESS_JPEG_IMAGE_DECODER_WARNINGS true
#define DEFAULT_FOR_SUPPRESS_JPEG_IMAGE_DECODER_ERRORS true
#endif  // defined(SK_DEBUG)
SK_CONF_DECLARE(bool, c_suppressJPEGImageDecoderWarnings,
                "images.jpeg.suppressDecoderWarnings",
                DEFAULT_FOR_SUPPRESS_JPEG_IMAGE_DECODER_WARNINGS,
                "Suppress most JPG warnings when calling decode functions.");
SK_CONF_DECLARE(bool, c_suppressJPEGImageDecoderErrors,
                "images.jpeg.suppressDecoderErrors",
                DEFAULT_FOR_SUPPRESS_JPEG_IMAGE_DECODER_ERRORS,
                "Suppress most JPG error messages when decode "
                "function fails.");

//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////

static void overwrite_mem_buffer_size(jpeg_decompress_struct* cinfo) {
#ifdef SK_BUILD_FOR_ANDROID
    /* Check if the device indicates that it has a large amount of system memory
     * if so, increase the memory allocation to 30MB instead of the default 5MB.
     */
#ifdef ANDROID_LARGE_MEMORY_DEVICE
    cinfo->mem->max_memory_to_use = 30 * 1024 * 1024;
#else
    cinfo->mem->max_memory_to_use = 5 * 1024 * 1024;
#endif
#endif // SK_BUILD_FOR_ANDROID
}

//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////

static void do_nothing_emit_message(jpeg_common_struct*, int) {
    /* do nothing */
}
static void do_nothing_output_message(j_common_ptr) {
    /* do nothing */
}

static void initialize_info(jpeg_decompress_struct* cinfo, skjpeg_source_mgr* src_mgr) {
    SkASSERT(cinfo != NULL);
    SkASSERT(src_mgr != NULL);
    jpeg_create_decompress(cinfo);
    overwrite_mem_buffer_size(cinfo);
    cinfo->src = src_mgr;
    /* To suppress warnings with a SK_DEBUG binary, set the
     * environment variable "skia_images_jpeg_suppressDecoderWarnings"
     * to "true".  Inside a program that links to skia:
     * SK_CONF_SET("images.jpeg.suppressDecoderWarnings", true); */
    if (c_suppressJPEGImageDecoderWarnings) {
        cinfo->err->emit_message = &do_nothing_emit_message;
    }
    /* To suppress error messages with a SK_DEBUG binary, set the
     * environment variable "skia_images_jpeg_suppressDecoderErrors"
     * to "true".  Inside a program that links to skia:
     * SK_CONF_SET("images.jpeg.suppressDecoderErrors", true); */
    if (c_suppressJPEGImageDecoderErrors) {
        cinfo->err->output_message = &do_nothing_output_message;
    }
}

#ifdef SK_BUILD_FOR_ANDROID
class SkJPEGImageIndex {
public:
    SkJPEGImageIndex(SkStreamRewindable* stream, SkImageDecoder* decoder)
        : fSrcMgr(stream, decoder)
        , fInfoInitialized(false)
        , fHuffmanCreated(false)
        , fDecompressStarted(false)
        {
            SkDEBUGCODE(fReadHeaderSucceeded = false;)
        }

    ~SkJPEGImageIndex() {
        if (fHuffmanCreated) {
            // Set to false before calling the libjpeg function, in case
            // the libjpeg function calls longjmp. Our setjmp handler may
            // attempt to delete this SkJPEGImageIndex, thus entering this
            // destructor again. Setting fHuffmanCreated to false first
            // prevents an infinite loop.
            fHuffmanCreated = false;
            jpeg_destroy_huffman_index(&fHuffmanIndex);
        }
        if (fDecompressStarted) {
            // Like fHuffmanCreated, set to false before calling libjpeg
            // function to prevent potential infinite loop.
            fDecompressStarted = false;
            jpeg_finish_decompress(&fCInfo);
        }
        if (fInfoInitialized) {
            this->destroyInfo();
        }
    }

    /**
     *  Destroy the cinfo struct.
     *  After this call, if a huffman index was already built, it
     *  can be used after calling initializeInfoAndReadHeader
     *  again. Must not be called after startTileDecompress except
     *  in the destructor.
     */
    void destroyInfo() {
        SkASSERT(fInfoInitialized);
        SkASSERT(!fDecompressStarted);
        // Like fHuffmanCreated, set to false before calling libjpeg
        // function to prevent potential infinite loop.
        fInfoInitialized = false;
        jpeg_destroy_decompress(&fCInfo);
        SkDEBUGCODE(fReadHeaderSucceeded = false;)
    }

    /**
     *  Initialize the cinfo struct.
     *  Calls jpeg_create_decompress, makes customizations, and
     *  finally calls jpeg_read_header. Returns true if jpeg_read_header
     *  returns JPEG_HEADER_OK.
     *  If cinfo was already initialized, destroyInfo must be called to
     *  destroy the old one. Must not be called after startTileDecompress.
     */
    bool initializeInfoAndReadHeader() {
        SkASSERT(!fInfoInitialized && !fDecompressStarted);
        initialize_info(&fCInfo, &fSrcMgr);
        fInfoInitialized = true;
        const bool success = (JPEG_HEADER_OK == jpeg_read_header(&fCInfo, true));
        SkDEBUGCODE(fReadHeaderSucceeded = success;)
        return success;
    }

    jpeg_decompress_struct* cinfo() { return &fCInfo; }

    huffman_index* huffmanIndex() { return &fHuffmanIndex; }

    /**
     *  Build the index to be used for tile based decoding.
     *  Must only be called after a successful call to
     *  initializeInfoAndReadHeader and must not be called more
     *  than once.
     */
    bool buildHuffmanIndex() {
        SkASSERT(fReadHeaderSucceeded);
        SkASSERT(!fHuffmanCreated);
        jpeg_create_huffman_index(&fCInfo, &fHuffmanIndex);
        SkASSERT(1 == fCInfo.scale_num && 1 == fCInfo.scale_denom);
        fHuffmanCreated = jpeg_build_huffman_index(&fCInfo, &fHuffmanIndex);
        return fHuffmanCreated;
    }

    /**
     *  Start tile based decoding. Must only be called after a
     *  successful call to buildHuffmanIndex, and must only be
     *  called once.
     */
    bool startTileDecompress() {
        SkASSERT(fHuffmanCreated);
        SkASSERT(fReadHeaderSucceeded);
        SkASSERT(!fDecompressStarted);
        if (jpeg_start_tile_decompress(&fCInfo)) {
            fDecompressStarted = true;
            return true;
        }
        return false;
    }

private:
    skjpeg_source_mgr  fSrcMgr;
    jpeg_decompress_struct fCInfo;
    huffman_index fHuffmanIndex;
    bool fInfoInitialized;
    bool fHuffmanCreated;
    bool fDecompressStarted;
    SkDEBUGCODE(bool fReadHeaderSucceeded;)
};
#endif

class SkJPEGImageDecoder : public SkImageDecoder {
public:
#ifdef SK_BUILD_FOR_ANDROID
    SkJPEGImageDecoder() {
        fImageIndex = NULL;
        fImageWidth = 0;
        fImageHeight = 0;
    }

    virtual ~SkJPEGImageDecoder() {
        SkDELETE(fImageIndex);
    }
#endif

    virtual Format getFormat() const {
        return kJPEG_Format;
    }

protected:
#ifdef SK_BUILD_FOR_ANDROID
    virtual bool onBuildTileIndex(SkStreamRewindable *stream, int *width, int *height) SK_OVERRIDE;
    virtual bool onDecodeSubset(SkBitmap* bitmap, const SkIRect& rect) SK_OVERRIDE;
#endif
    virtual bool onDecode(SkStream* stream, SkBitmap* bm, Mode) SK_OVERRIDE;

private:
#ifdef SK_BUILD_FOR_ANDROID
    SkJPEGImageIndex* fImageIndex;
    int fImageWidth;
    int fImageHeight;
#endif

    /**
     *  Determine the appropriate bitmap colortype and out_color_space based on
     *  both the preference of the caller and the jpeg_color_space on the
     *  jpeg_decompress_struct passed in.
     *  Must be called after jpeg_read_header.
     */
    SkColorType getBitmapColorType(jpeg_decompress_struct*);

    typedef SkImageDecoder INHERITED;
};

//////////////////////////////////////////////////////////////////////////

/* Automatically clean up after throwing an exception */
class JPEGAutoClean {
public:
    JPEGAutoClean(): cinfo_ptr(NULL) {}
    ~JPEGAutoClean() {
        if (cinfo_ptr) {
            jpeg_destroy_decompress(cinfo_ptr);
        }
    }
    void set(jpeg_decompress_struct* info) {
        cinfo_ptr = info;
    }
private:
    jpeg_decompress_struct* cinfo_ptr;
};

///////////////////////////////////////////////////////////////////////////////

/*  If we need to better match the request, we might examine the image and
     output dimensions, and determine if the downsampling jpeg provided is
     not sufficient. If so, we can recompute a modified sampleSize value to
     make up the difference.

     To skip this additional scaling, just set sampleSize = 1; below.
 */
static int recompute_sampleSize(int sampleSize,
                                const jpeg_decompress_struct& cinfo) {
    return sampleSize * cinfo.output_width / cinfo.image_width;
}

static bool valid_output_dimensions(const jpeg_decompress_struct& cinfo) {
    /* These are initialized to 0, so if they have non-zero values, we assume
       they are "valid" (i.e. have been computed by libjpeg)
     */
    return 0 != cinfo.output_width && 0 != cinfo.output_height;
}

static bool skip_src_rows(jpeg_decompress_struct* cinfo, void* buffer, int count) {
    for (int i = 0; i < count; i++) {
        JSAMPLE* rowptr = (JSAMPLE*)buffer;
        int row_count = jpeg_read_scanlines(cinfo, &rowptr, 1);
        if (1 != row_count) {
            return false;
        }
    }
    return true;
}

#ifdef SK_BUILD_FOR_ANDROID
static bool skip_src_rows_tile(jpeg_decompress_struct* cinfo,
                               huffman_index *index, void* buffer, int count) {
    for (int i = 0; i < count; i++) {
        JSAMPLE* rowptr = (JSAMPLE*)buffer;
        int row_count = jpeg_read_tile_scanline(cinfo, index, &rowptr);
        if (1 != row_count) {
            return false;
        }
    }
    return true;
}
#endif

// This guy exists just to aid in debugging, as it allows debuggers to just
// set a break-point in one place to see all error exists.
static bool return_false(const jpeg_decompress_struct& cinfo,
                         const SkBitmap& bm, const char caller[]) {
    if (!(c_suppressJPEGImageDecoderErrors)) {
        char buffer[JMSG_LENGTH_MAX];
        cinfo.err->format_message((const j_common_ptr)&cinfo, buffer);
        SkDebugf("libjpeg error %d <%s> from %s [%d %d]\n",
                 cinfo.err->msg_code, buffer, caller, bm.width(), bm.height());
    }
    return false;   // must always return false
}

// Convert a scanline of CMYK samples to RGBX in place. Note that this
// method moves the "scanline" pointer in its processing
static void convert_CMYK_to_RGB(uint8_t* scanline, unsigned int width) {
    // At this point we've received CMYK pixels from libjpeg. We
    // perform a crude conversion to RGB (based on the formulae
    // from easyrgb.com):
    //  CMYK -> CMY
    //    C = ( C * (1 - K) + K )      // for each CMY component
    //  CMY -> RGB
    //    R = ( 1 - C ) * 255          // for each RGB component
    // Unfortunately we are seeing inverted CMYK so all the original terms
    // are 1-. This yields:
    //  CMYK -> CMY
    //    C = ( (1-C) * (1 - (1-K) + (1-K) ) -> C = 1 - C*K
    // The conversion from CMY->RGB remains the same
    for (unsigned int x = 0; x < width; ++x, scanline += 4) {
        scanline[0] = SkMulDiv255Round(scanline[0], scanline[3]);
        scanline[1] = SkMulDiv255Round(scanline[1], scanline[3]);
        scanline[2] = SkMulDiv255Round(scanline[2], scanline[3]);
        scanline[3] = 255;
    }
}

/**
 *  Common code for setting the error manager.
 */
static void set_error_mgr(jpeg_decompress_struct* cinfo, skjpeg_error_mgr* errorManager) {
    SkASSERT(cinfo != NULL);
    SkASSERT(errorManager != NULL);
    cinfo->err = jpeg_std_error(errorManager);
    errorManager->error_exit = skjpeg_error_exit;
}

/**
 *  Common code for turning off upsampling and smoothing. Turning these
 *  off helps performance without showing noticable differences in the
 *  resulting bitmap.
 */
static void turn_off_visual_optimizations(jpeg_decompress_struct* cinfo) {
    SkASSERT(cinfo != NULL);
    /* this gives about 30% performance improvement. In theory it may
       reduce the visual quality, in practice I'm not seeing a difference
     */
    cinfo->do_fancy_upsampling = 0;

    /* this gives another few percents */
    cinfo->do_block_smoothing = 0;
}

/**
 * Common code for setting the dct method.
 */
static void set_dct_method(const SkImageDecoder& decoder, jpeg_decompress_struct* cinfo) {
    SkASSERT(cinfo != NULL);
#ifdef DCT_IFAST_SUPPORTED
    if (decoder.getPreferQualityOverSpeed()) {
        cinfo->dct_method = JDCT_ISLOW;
    } else {
        cinfo->dct_method = JDCT_IFAST;
    }
#else
    cinfo->dct_method = JDCT_ISLOW;
#endif
}

SkColorType SkJPEGImageDecoder::getBitmapColorType(jpeg_decompress_struct* cinfo) {
    SkASSERT(cinfo != NULL);

    SrcDepth srcDepth = k32Bit_SrcDepth;
    if (JCS_GRAYSCALE == cinfo->jpeg_color_space) {
        srcDepth = k8BitGray_SrcDepth;
    }

    SkColorType colorType = this->getPrefColorType(srcDepth, /*hasAlpha*/ false);
    switch (colorType) {
        case kAlpha_8_SkColorType:
            // Only respect A8 colortype if the original is grayscale,
            // in which case we will treat the grayscale as alpha
            // values.
            if (cinfo->jpeg_color_space != JCS_GRAYSCALE) {
                colorType = kN32_SkColorType;
            }
            break;
        case kN32_SkColorType:
            // Fall through.
        case kARGB_4444_SkColorType:
            // Fall through.
        case kRGB_565_SkColorType:
            // These are acceptable destination colortypes.
            break;
        default:
            // Force all other colortypes to 8888.
            colorType = kN32_SkColorType;
            break;
    }

    switch (cinfo->jpeg_color_space) {
        case JCS_CMYK:
            // Fall through.
        case JCS_YCCK:
            // libjpeg cannot convert from CMYK or YCCK to RGB - here we set up
            // so libjpeg will give us CMYK samples back and we will later
            // manually convert them to RGB
            cinfo->out_color_space = JCS_CMYK;
            break;
        case JCS_GRAYSCALE:
            if (kAlpha_8_SkColorType == colorType) {
                cinfo->out_color_space = JCS_GRAYSCALE;
                break;
            }
            // The data is JCS_GRAYSCALE, but the caller wants some sort of RGB
            // colortype. Fall through to set to the default.
        default:
            cinfo->out_color_space = JCS_RGB;
            break;
    }
    return colorType;
}

/**
 *  Based on the colortype and dither mode, adjust out_color_space and
 *  dither_mode of cinfo. Only does work in ANDROID_RGB
 */
static void adjust_out_color_space_and_dither(jpeg_decompress_struct* cinfo,
                                              SkColorType colorType,
                                              const SkImageDecoder& decoder) {
    SkASSERT(cinfo != NULL);
#ifdef ANDROID_RGB
    cinfo->dither_mode = JDITHER_NONE;
    if (JCS_CMYK == cinfo->out_color_space) {
        return;
    }
    switch (colorType) {
        case kN32_SkColorType:
            cinfo->out_color_space = JCS_RGBA_8888;
            break;
        case kRGB_565_SkColorType:
            cinfo->out_color_space = JCS_RGB_565;
            if (decoder.getDitherImage()) {
                cinfo->dither_mode = JDITHER_ORDERED;
            }
            break;
        default:
            break;
    }
#endif
}


/**
   Sets all pixels in given bitmap to SK_ColorWHITE for all rows >= y.
   Used when decoding fails partway through reading scanlines to fill
   remaining lines. */
static void fill_below_level(int y, SkBitmap* bitmap) {
    SkIRect rect = SkIRect::MakeLTRB(0, y, bitmap->width(), bitmap->height());
    SkCanvas canvas(*bitmap);
    canvas.clipRect(SkRect::Make(rect));
    canvas.drawColor(SK_ColorWHITE);
}

/**
 *  Get the config and bytes per pixel of the source data. Return
 *  whether the data is supported.
 */
static bool get_src_config(const jpeg_decompress_struct& cinfo,
                           SkScaledBitmapSampler::SrcConfig* sc,
                           int* srcBytesPerPixel) {
    SkASSERT(sc != NULL && srcBytesPerPixel != NULL);
    if (JCS_CMYK == cinfo.out_color_space) {
        // In this case we will manually convert the CMYK values to RGB
        *sc = SkScaledBitmapSampler::kRGBX;
        // The CMYK work-around relies on 4 components per pixel here
        *srcBytesPerPixel = 4;
    } else if (3 == cinfo.out_color_components && JCS_RGB == cinfo.out_color_space) {
        *sc = SkScaledBitmapSampler::kRGB;
        *srcBytesPerPixel = 3;
#ifdef ANDROID_RGB
    } else if (JCS_RGBA_8888 == cinfo.out_color_space) {
        *sc = SkScaledBitmapSampler::kRGBX;
        *srcBytesPerPixel = 4;
    } else if (JCS_RGB_565 == cinfo.out_color_space) {
        *sc = SkScaledBitmapSampler::kRGB_565;
        *srcBytesPerPixel = 2;
#endif
    } else if (1 == cinfo.out_color_components &&
               JCS_GRAYSCALE == cinfo.out_color_space) {
        *sc = SkScaledBitmapSampler::kGray;
        *srcBytesPerPixel = 1;
    } else {
        return false;
    }
    return true;
}

bool SkJPEGImageDecoder::onDecode(SkStream* stream, SkBitmap* bm, Mode mode) {
#ifdef TIME_DECODE
    SkAutoTime atm("JPEG Decode");
#endif

    JPEGAutoClean autoClean;

    jpeg_decompress_struct  cinfo;
    skjpeg_source_mgr       srcManager(stream, this);

    skjpeg_error_mgr errorManager;
    set_error_mgr(&cinfo, &errorManager);

    // All objects need to be instantiated before this setjmp call so that
    // they will be cleaned up properly if an error occurs.
    if (setjmp(errorManager.fJmpBuf)) {
        return return_false(cinfo, *bm, "setjmp");
    }

    initialize_info(&cinfo, &srcManager);
    autoClean.set(&cinfo);

    int status = jpeg_read_header(&cinfo, true);
    if (status != JPEG_HEADER_OK) {
        return return_false(cinfo, *bm, "read_header");
    }

    /*  Try to fulfill the requested sampleSize. Since jpeg can do it (when it
        can) much faster that we, just use their num/denom api to approximate
        the size.
    */
    int sampleSize = this->getSampleSize();

    set_dct_method(*this, &cinfo);

    SkASSERT(1 == cinfo.scale_num);
    cinfo.scale_denom = sampleSize;

    turn_off_visual_optimizations(&cinfo);

    const SkColorType colorType = this->getBitmapColorType(&cinfo);
    const SkAlphaType alphaType = kAlpha_8_SkColorType == colorType ?
                                      kPremul_SkAlphaType : kOpaque_SkAlphaType;

    adjust_out_color_space_and_dither(&cinfo, colorType, *this);

    if (1 == sampleSize && SkImageDecoder::kDecodeBounds_Mode == mode) {
        // Assume an A8 bitmap is not opaque to avoid the check of each
        // individual pixel. It is very unlikely to be opaque, since
        // an opaque A8 bitmap would not be very interesting.
        // Otherwise, a jpeg image is opaque.
        return bm->setInfo(SkImageInfo::Make(cinfo.image_width, cinfo.image_height,
                                             colorType, alphaType));
    }

    /*  image_width and image_height are the original dimensions, available
        after jpeg_read_header(). To see the scaled dimensions, we have to call
        jpeg_start_decompress(), and then read output_width and output_height.
    */
    if (!jpeg_start_decompress(&cinfo)) {
        /*  If we failed here, we may still have enough information to return
            to the caller if they just wanted (subsampled bounds). If sampleSize
            was 1, then we would have already returned. Thus we just check if
            we're in kDecodeBounds_Mode, and that we have valid output sizes.

            One reason to fail here is that we have insufficient stream data
            to complete the setup. However, output dimensions seem to get
            computed very early, which is why this special check can pay off.
         */
        if (SkImageDecoder::kDecodeBounds_Mode == mode && valid_output_dimensions(cinfo)) {
            SkScaledBitmapSampler smpl(cinfo.output_width, cinfo.output_height,
                                       recompute_sampleSize(sampleSize, cinfo));
            // Assume an A8 bitmap is not opaque to avoid the check of each
            // individual pixel. It is very unlikely to be opaque, since
            // an opaque A8 bitmap would not be very interesting.
            // Otherwise, a jpeg image is opaque.
            return bm->setInfo(SkImageInfo::Make(smpl.scaledWidth(), smpl.scaledHeight(),
                                                 colorType, alphaType));
        } else {
            return return_false(cinfo, *bm, "start_decompress");
        }
    }
    sampleSize = recompute_sampleSize(sampleSize, cinfo);

#ifdef SK_SUPPORT_LEGACY_IMAGEDECODER_CHOOSER
    // should we allow the Chooser (if present) to pick a colortype for us???
    if (!this->chooseFromOneChoice(colorType, cinfo.output_width, cinfo.output_height)) {
        return return_false(cinfo, *bm, "chooseFromOneChoice");
    }
#endif

    SkScaledBitmapSampler sampler(cinfo.output_width, cinfo.output_height, sampleSize);
    // Assume an A8 bitmap is not opaque to avoid the check of each
    // individual pixel. It is very unlikely to be opaque, since
    // an opaque A8 bitmap would not be very interesting.
    // Otherwise, a jpeg image is opaque.
    bm->setInfo(SkImageInfo::Make(sampler.scaledWidth(), sampler.scaledHeight(),
                                  colorType, alphaType));
    if (SkImageDecoder::kDecodeBounds_Mode == mode) {
        return true;
    }
    if (!this->allocPixelRef(bm, NULL)) {
        return return_false(cinfo, *bm, "allocPixelRef");
    }

    SkAutoLockPixels alp(*bm);

#ifdef ANDROID_RGB
    /* short-circuit the SkScaledBitmapSampler when possible, as this gives
       a significant performance boost.
    */
    if (sampleSize == 1 &&
        ((kN32_SkColorType == colorType && cinfo.out_color_space == JCS_RGBA_8888) ||
         (kRGB_565_SkColorType == colorType && cinfo.out_color_space == JCS_RGB_565)))
    {
        JSAMPLE* rowptr = (JSAMPLE*)bm->getPixels();
        INT32 const bpr =  bm->rowBytes();

        while (cinfo.output_scanline < cinfo.output_height) {
            int row_count = jpeg_read_scanlines(&cinfo, &rowptr, 1);
            if (0 == row_count) {
                // if row_count == 0, then we didn't get a scanline,
                // so return early.  We will return a partial image.
                fill_below_level(cinfo.output_scanline, bm);
                cinfo.output_scanline = cinfo.output_height;
                break;  // Skip to jpeg_finish_decompress()
            }
            if (this->shouldCancelDecode()) {
                return return_false(cinfo, *bm, "shouldCancelDecode");
            }
            rowptr += bpr;
        }
        jpeg_finish_decompress(&cinfo);
        return true;
    }
#endif

    // check for supported formats
    SkScaledBitmapSampler::SrcConfig sc;
    int srcBytesPerPixel;

    if (!get_src_config(cinfo, &sc, &srcBytesPerPixel)) {
        return return_false(cinfo, *bm, "jpeg colorspace");
    }

    if (!sampler.begin(bm, sc, *this)) {
        return return_false(cinfo, *bm, "sampler.begin");
    }

    SkAutoMalloc srcStorage(cinfo.output_width * srcBytesPerPixel);
    uint8_t* srcRow = (uint8_t*)srcStorage.get();

    //  Possibly skip initial rows [sampler.srcY0]
    if (!skip_src_rows(&cinfo, srcRow, sampler.srcY0())) {
        return return_false(cinfo, *bm, "skip rows");
    }

    // now loop through scanlines until y == bm->height() - 1
    for (int y = 0;; y++) {
        JSAMPLE* rowptr = (JSAMPLE*)srcRow;
        int row_count = jpeg_read_scanlines(&cinfo, &rowptr, 1);
        if (0 == row_count) {
            // if row_count == 0, then we didn't get a scanline,
            // so return early.  We will return a partial image.
            fill_below_level(y, bm);
            cinfo.output_scanline = cinfo.output_height;
            break;  // Skip to jpeg_finish_decompress()
        }
        if (this->shouldCancelDecode()) {
            return return_false(cinfo, *bm, "shouldCancelDecode");
        }

        if (JCS_CMYK == cinfo.out_color_space) {
            convert_CMYK_to_RGB(srcRow, cinfo.output_width);
        }

        sampler.next(srcRow);
        if (bm->height() - 1 == y) {
            // we're done
            break;
        }

        if (!skip_src_rows(&cinfo, srcRow, sampler.srcDY() - 1)) {
            return return_false(cinfo, *bm, "skip rows");
        }
    }

    // we formally skip the rest, so we don't get a complaint from libjpeg
    if (!skip_src_rows(&cinfo, srcRow,
                       cinfo.output_height - cinfo.output_scanline)) {
        return return_false(cinfo, *bm, "skip rows");
    }
    jpeg_finish_decompress(&cinfo);

    return true;
}

#ifdef SK_BUILD_FOR_ANDROID
bool SkJPEGImageDecoder::onBuildTileIndex(SkStreamRewindable* stream, int *width, int *height) {

    SkAutoTDelete<SkJPEGImageIndex> imageIndex(SkNEW_ARGS(SkJPEGImageIndex, (stream, this)));
    jpeg_decompress_struct* cinfo = imageIndex->cinfo();

    skjpeg_error_mgr sk_err;
    set_error_mgr(cinfo, &sk_err);

    // All objects need to be instantiated before this setjmp call so that
    // they will be cleaned up properly if an error occurs.
    if (setjmp(sk_err.fJmpBuf)) {
        return false;
    }

    // create the cinfo used to create/build the huffmanIndex
    if (!imageIndex->initializeInfoAndReadHeader()) {
        return false;
    }

    if (!imageIndex->buildHuffmanIndex()) {
        return false;
    }

    // destroy the cinfo used to create/build the huffman index
    imageIndex->destroyInfo();

    // Init decoder to image decode mode
    if (!imageIndex->initializeInfoAndReadHeader()) {
        return false;
    }

    // FIXME: This sets cinfo->out_color_space, which we may change later
    // based on the config in onDecodeSubset. This should be fine, since
    // jpeg_init_read_tile_scanline will check out_color_space again after
    // that change (when it calls jinit_color_deconverter).
    (void) this->getBitmapColorType(cinfo);

    turn_off_visual_optimizations(cinfo);

    // instead of jpeg_start_decompress() we start a tiled decompress
    if (!imageIndex->startTileDecompress()) {
        return false;
    }

    SkASSERT(1 == cinfo->scale_num);
    fImageWidth = cinfo->output_width;
    fImageHeight = cinfo->output_height;

    if (width) {
        *width = fImageWidth;
    }
    if (height) {
        *height = fImageHeight;
    }

    SkDELETE(fImageIndex);
    fImageIndex = imageIndex.detach();

    return true;
}

bool SkJPEGImageDecoder::onDecodeSubset(SkBitmap* bm, const SkIRect& region) {
    if (NULL == fImageIndex) {
        return false;
    }
    jpeg_decompress_struct* cinfo = fImageIndex->cinfo();

    SkIRect rect = SkIRect::MakeWH(fImageWidth, fImageHeight);
    if (!rect.intersect(region)) {
        // If the requested region is entirely outside the image return false
        return false;
    }


    skjpeg_error_mgr errorManager;
    set_error_mgr(cinfo, &errorManager);

    if (setjmp(errorManager.fJmpBuf)) {
        return false;
    }

    int requestedSampleSize = this->getSampleSize();
    cinfo->scale_denom = requestedSampleSize;

    set_dct_method(*this, cinfo);

    const SkColorType colorType = this->getBitmapColorType(cinfo);
    adjust_out_color_space_and_dither(cinfo, colorType, *this);

    int startX = rect.fLeft;
    int startY = rect.fTop;
    int width = rect.width();
    int height = rect.height();

    jpeg_init_read_tile_scanline(cinfo, fImageIndex->huffmanIndex(),
                                 &startX, &startY, &width, &height);
    int skiaSampleSize = recompute_sampleSize(requestedSampleSize, *cinfo);
    int actualSampleSize = skiaSampleSize * (DCTSIZE / cinfo->min_DCT_scaled_size);

    SkScaledBitmapSampler sampler(width, height, skiaSampleSize);

    SkBitmap bitmap;
    // Assume an A8 bitmap is not opaque to avoid the check of each
    // individual pixel. It is very unlikely to be opaque, since
    // an opaque A8 bitmap would not be very interesting.
    // Otherwise, a jpeg image is opaque.
    bitmap.setInfo(SkImageInfo::Make(sampler.scaledWidth(), sampler.scaledHeight(), colorType,
                                     kAlpha_8_SkColorType == colorType ?
                                         kPremul_SkAlphaType : kOpaque_SkAlphaType));

    // Check ahead of time if the swap(dest, src) is possible or not.
    // If yes, then we will stick to AllocPixelRef since it's cheaper with the
    // swap happening. If no, then we will use alloc to allocate pixels to
    // prevent garbage collection.
    int w = rect.width() / actualSampleSize;
    int h = rect.height() / actualSampleSize;
    bool swapOnly = (rect == region) && bm->isNull() &&
                    (w == bitmap.width()) && (h == bitmap.height()) &&
                    ((startX - rect.x()) / actualSampleSize == 0) &&
                    ((startY - rect.y()) / actualSampleSize == 0);
    if (swapOnly) {
        if (!this->allocPixelRef(&bitmap, NULL)) {
            return return_false(*cinfo, bitmap, "allocPixelRef");
        }
    } else {
        if (!bitmap.allocPixels()) {
            return return_false(*cinfo, bitmap, "allocPixels");
        }
    }

    SkAutoLockPixels alp(bitmap);

#ifdef ANDROID_RGB
    /* short-circuit the SkScaledBitmapSampler when possible, as this gives
       a significant performance boost.
    */
    if (skiaSampleSize == 1 &&
        ((kN32_SkColorType == colorType && cinfo->out_color_space == JCS_RGBA_8888) ||
         (kRGB_565_SkColorType == colorType && cinfo->out_color_space == JCS_RGB_565)))
    {
        JSAMPLE* rowptr = (JSAMPLE*)bitmap.getPixels();
        INT32 const bpr = bitmap.rowBytes();
        int rowTotalCount = 0;

        while (rowTotalCount < height) {
            int rowCount = jpeg_read_tile_scanline(cinfo,
                                                   fImageIndex->huffmanIndex(),
                                                   &rowptr);
            // if rowCount == 0, then we didn't get a scanline, so abort.
            // onDecodeSubset() relies on onBuildTileIndex(), which
            // needs a complete image to succeed.
            if (0 == rowCount) {
                return return_false(*cinfo, bitmap, "read_scanlines");
            }
            if (this->shouldCancelDecode()) {
                return return_false(*cinfo, bitmap, "shouldCancelDecode");
            }
            rowTotalCount += rowCount;
            rowptr += bpr;
        }

        if (swapOnly) {
            bm->swap(bitmap);
        } else {
            cropBitmap(bm, &bitmap, actualSampleSize, region.x(), region.y(),
                       region.width(), region.height(), startX, startY);
        }
        return true;
    }
#endif

    // check for supported formats
    SkScaledBitmapSampler::SrcConfig sc;
    int srcBytesPerPixel;

    if (!get_src_config(*cinfo, &sc, &srcBytesPerPixel)) {
        return return_false(*cinfo, *bm, "jpeg colorspace");
    }

    if (!sampler.begin(&bitmap, sc, *this)) {
        return return_false(*cinfo, bitmap, "sampler.begin");
    }

    SkAutoMalloc  srcStorage(width * srcBytesPerPixel);
    uint8_t* srcRow = (uint8_t*)srcStorage.get();

    //  Possibly skip initial rows [sampler.srcY0]
    if (!skip_src_rows_tile(cinfo, fImageIndex->huffmanIndex(), srcRow, sampler.srcY0())) {
        return return_false(*cinfo, bitmap, "skip rows");
    }

    // now loop through scanlines until y == bitmap->height() - 1
    for (int y = 0;; y++) {
        JSAMPLE* rowptr = (JSAMPLE*)srcRow;
        int row_count = jpeg_read_tile_scanline(cinfo, fImageIndex->huffmanIndex(), &rowptr);
        // if row_count == 0, then we didn't get a scanline, so abort.
        // onDecodeSubset() relies on onBuildTileIndex(), which
        // needs a complete image to succeed.
        if (0 == row_count) {
            return return_false(*cinfo, bitmap, "read_scanlines");
        }
        if (this->shouldCancelDecode()) {
            return return_false(*cinfo, bitmap, "shouldCancelDecode");
        }

        if (JCS_CMYK == cinfo->out_color_space) {
            convert_CMYK_to_RGB(srcRow, width);
        }

        sampler.next(srcRow);
        if (bitmap.height() - 1 == y) {
            // we're done
            break;
        }

        if (!skip_src_rows_tile(cinfo, fImageIndex->huffmanIndex(), srcRow,
                                sampler.srcDY() - 1)) {
            return return_false(*cinfo, bitmap, "skip rows");
        }
    }
    if (swapOnly) {
        bm->swap(bitmap);
    } else {
        cropBitmap(bm, &bitmap, actualSampleSize, region.x(), region.y(),
                   region.width(), region.height(), startX, startY);
    }
    return true;
}
#endif

///////////////////////////////////////////////////////////////////////////////

#include "SkColorPriv.h"

// taken from jcolor.c in libjpeg
#if 0   // 16bit - precise but slow
    #define CYR     19595   // 0.299
    #define CYG     38470   // 0.587
    #define CYB      7471   // 0.114

    #define CUR    -11059   // -0.16874
    #define CUG    -21709   // -0.33126
    #define CUB     32768   // 0.5

    #define CVR     32768   // 0.5
    #define CVG    -27439   // -0.41869
    #define CVB     -5329   // -0.08131

    #define CSHIFT  16
#else      // 8bit - fast, slightly less precise
    #define CYR     77    // 0.299
    #define CYG     150    // 0.587
    #define CYB      29    // 0.114

    #define CUR     -43    // -0.16874
    #define CUG    -85    // -0.33126
    #define CUB     128    // 0.5

    #define CVR      128   // 0.5
    #define CVG     -107   // -0.41869
    #define CVB      -21   // -0.08131

    #define CSHIFT  8
#endif

static void rgb2yuv_32(uint8_t dst[], SkPMColor c) {
    int r = SkGetPackedR32(c);
    int g = SkGetPackedG32(c);
    int b = SkGetPackedB32(c);

    int  y = ( CYR*r + CYG*g + CYB*b ) >> CSHIFT;
    int  u = ( CUR*r + CUG*g + CUB*b ) >> CSHIFT;
    int  v = ( CVR*r + CVG*g + CVB*b ) >> CSHIFT;

    dst[0] = SkToU8(y);
    dst[1] = SkToU8(u + 128);
    dst[2] = SkToU8(v + 128);
}

static void rgb2yuv_4444(uint8_t dst[], U16CPU c) {
    int r = SkGetPackedR4444(c);
    int g = SkGetPackedG4444(c);
    int b = SkGetPackedB4444(c);

    int  y = ( CYR*r + CYG*g + CYB*b ) >> (CSHIFT - 4);
    int  u = ( CUR*r + CUG*g + CUB*b ) >> (CSHIFT - 4);
    int  v = ( CVR*r + CVG*g + CVB*b ) >> (CSHIFT - 4);

    dst[0] = SkToU8(y);
    dst[1] = SkToU8(u + 128);
    dst[2] = SkToU8(v + 128);
}

static void rgb2yuv_16(uint8_t dst[], U16CPU c) {
    int r = SkGetPackedR16(c);
    int g = SkGetPackedG16(c);
    int b = SkGetPackedB16(c);

    int  y = ( 2*CYR*r + CYG*g + 2*CYB*b ) >> (CSHIFT - 2);
    int  u = ( 2*CUR*r + CUG*g + 2*CUB*b ) >> (CSHIFT - 2);
    int  v = ( 2*CVR*r + CVG*g + 2*CVB*b ) >> (CSHIFT - 2);

    dst[0] = SkToU8(y);
    dst[1] = SkToU8(u + 128);
    dst[2] = SkToU8(v + 128);
}

///////////////////////////////////////////////////////////////////////////////

typedef void (*WriteScanline)(uint8_t* SK_RESTRICT dst,
                              const void* SK_RESTRICT src, int width,
                              const SkPMColor* SK_RESTRICT ctable);

static void Write_32_YUV(uint8_t* SK_RESTRICT dst,
                         const void* SK_RESTRICT srcRow, int width,
                         const SkPMColor*) {
    const uint32_t* SK_RESTRICT src = (const uint32_t*)srcRow;
    while (--width >= 0) {
#ifdef WE_CONVERT_TO_YUV
        rgb2yuv_32(dst, *src++);
#else
        uint32_t c = *src++;
        dst[0] = SkGetPackedR32(c);
        dst[1] = SkGetPackedG32(c);
        dst[2] = SkGetPackedB32(c);
#endif
        dst += 3;
    }
}

static void Write_4444_YUV(uint8_t* SK_RESTRICT dst,
                           const void* SK_RESTRICT srcRow, int width,
                           const SkPMColor*) {
    const SkPMColor16* SK_RESTRICT src = (const SkPMColor16*)srcRow;
    while (--width >= 0) {
#ifdef WE_CONVERT_TO_YUV
        rgb2yuv_4444(dst, *src++);
#else
        SkPMColor16 c = *src++;
        dst[0] = SkPacked4444ToR32(c);
        dst[1] = SkPacked4444ToG32(c);
        dst[2] = SkPacked4444ToB32(c);
#endif
        dst += 3;
    }
}

static void Write_16_YUV(uint8_t* SK_RESTRICT dst,
                         const void* SK_RESTRICT srcRow, int width,
                         const SkPMColor*) {
    const uint16_t* SK_RESTRICT src = (const uint16_t*)srcRow;
    while (--width >= 0) {
#ifdef WE_CONVERT_TO_YUV
        rgb2yuv_16(dst, *src++);
#else
        uint16_t c = *src++;
        dst[0] = SkPacked16ToR32(c);
        dst[1] = SkPacked16ToG32(c);
        dst[2] = SkPacked16ToB32(c);
#endif
        dst += 3;
    }
}

static void Write_Index_YUV(uint8_t* SK_RESTRICT dst,
                            const void* SK_RESTRICT srcRow, int width,
                            const SkPMColor* SK_RESTRICT ctable) {
    const uint8_t* SK_RESTRICT src = (const uint8_t*)srcRow;
    while (--width >= 0) {
#ifdef WE_CONVERT_TO_YUV
        rgb2yuv_32(dst, ctable[*src++]);
#else
        uint32_t c = ctable[*src++];
        dst[0] = SkGetPackedR32(c);
        dst[1] = SkGetPackedG32(c);
        dst[2] = SkGetPackedB32(c);
#endif
        dst += 3;
    }
}

static WriteScanline ChooseWriter(const SkBitmap& bm) {
    switch (bm.colorType()) {
        case kN32_SkColorType:
            return Write_32_YUV;
        case kRGB_565_SkColorType:
            return Write_16_YUV;
        case kARGB_4444_SkColorType:
            return Write_4444_YUV;
        case kIndex_8_SkColorType:
            return Write_Index_YUV;
        default:
            return NULL;
    }
}

class SkJPEGImageEncoder : public SkImageEncoder {
protected:
    virtual bool onEncode(SkWStream* stream, const SkBitmap& bm, int quality) {
#ifdef TIME_ENCODE
        SkAutoTime atm("JPEG Encode");
#endif

        SkAutoLockPixels alp(bm);
        if (NULL == bm.getPixels()) {
            return false;
        }

        jpeg_compress_struct    cinfo;
        skjpeg_error_mgr        sk_err;
        skjpeg_destination_mgr  sk_wstream(stream);

        // allocate these before set call setjmp
        SkAutoMalloc    oneRow;
        SkAutoLockColors ctLocker;

        cinfo.err = jpeg_std_error(&sk_err);
        sk_err.error_exit = skjpeg_error_exit;
        if (setjmp(sk_err.fJmpBuf)) {
            return false;
        }

        // Keep after setjmp or mark volatile.
        const WriteScanline writer = ChooseWriter(bm);
        if (NULL == writer) {
            return false;
        }

        jpeg_create_compress(&cinfo);
        cinfo.dest = &sk_wstream;
        cinfo.image_width = bm.width();
        cinfo.image_height = bm.height();
        cinfo.input_components = 3;
#ifdef WE_CONVERT_TO_YUV
        cinfo.in_color_space = JCS_YCbCr;
#else
        cinfo.in_color_space = JCS_RGB;
#endif
        cinfo.input_gamma = 1;

        jpeg_set_defaults(&cinfo);
        jpeg_set_quality(&cinfo, quality, TRUE /* limit to baseline-JPEG values */);
#ifdef DCT_IFAST_SUPPORTED
        cinfo.dct_method = JDCT_IFAST;
#endif

        jpeg_start_compress(&cinfo, TRUE);

        const int       width = bm.width();
        uint8_t*        oneRowP = (uint8_t*)oneRow.reset(width * 3);

        const SkPMColor* colors = ctLocker.lockColors(bm);
        const void*      srcRow = bm.getPixels();

        while (cinfo.next_scanline < cinfo.image_height) {
            JSAMPROW row_pointer[1];    /* pointer to JSAMPLE row[s] */

            writer(oneRowP, srcRow, width, colors);
            row_pointer[0] = oneRowP;
            (void) jpeg_write_scanlines(&cinfo, row_pointer, 1);
            srcRow = (const void*)((const char*)srcRow + bm.rowBytes());
        }

        jpeg_finish_compress(&cinfo);
        jpeg_destroy_compress(&cinfo);

        return true;
    }
};

///////////////////////////////////////////////////////////////////////////////
DEFINE_DECODER_CREATOR(JPEGImageDecoder);
DEFINE_ENCODER_CREATOR(JPEGImageEncoder);
///////////////////////////////////////////////////////////////////////////////

static bool is_jpeg(SkStreamRewindable* stream) {
    static const unsigned char gHeader[] = { 0xFF, 0xD8, 0xFF };
    static const size_t HEADER_SIZE = sizeof(gHeader);

    char buffer[HEADER_SIZE];
    size_t len = stream->read(buffer, HEADER_SIZE);

    if (len != HEADER_SIZE) {
        return false;   // can't read enough
    }
    if (memcmp(buffer, gHeader, HEADER_SIZE)) {
        return false;
    }
    return true;
}


static SkImageDecoder* sk_libjpeg_dfactory(SkStreamRewindable* stream) {
    if (is_jpeg(stream)) {
        return SkNEW(SkJPEGImageDecoder);
    }
    return NULL;
}

static SkImageDecoder::Format get_format_jpeg(SkStreamRewindable* stream) {
    if (is_jpeg(stream)) {
        return SkImageDecoder::kJPEG_Format;
    }
    return SkImageDecoder::kUnknown_Format;
}

static SkImageEncoder* sk_libjpeg_efactory(SkImageEncoder::Type t) {
    return (SkImageEncoder::kJPEG_Type == t) ? SkNEW(SkJPEGImageEncoder) : NULL;
}

static SkImageDecoder_DecodeReg gDReg(sk_libjpeg_dfactory);
static SkImageDecoder_FormatReg gFormatReg(get_format_jpeg);
static SkImageEncoder_EncodeReg gEReg(sk_libjpeg_efactory);