DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
/*
 * Copyright 2011 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkGpuDevice.h"

#include "effects/GrBicubicEffect.h"
#include "effects/GrDashingEffect.h"
#include "effects/GrTextureDomain.h"
#include "effects/GrSimpleTextureEffect.h"

#include "GrContext.h"
#include "GrBitmapTextContext.h"
#include "GrDistanceFieldTextContext.h"
#include "GrLayerCache.h"
#include "GrPictureUtils.h"
#include "GrStrokeInfo.h"
#include "GrTracing.h"

#include "SkGrTexturePixelRef.h"

#include "SkDeviceImageFilterProxy.h"
#include "SkDrawProcs.h"
#include "SkGlyphCache.h"
#include "SkImageFilter.h"
#include "SkMaskFilter.h"
#include "SkPathEffect.h"
#include "SkPicture.h"
#include "SkPictureData.h"
#include "SkPictureRangePlayback.h"
#include "SkPictureReplacementPlayback.h"
#include "SkRRect.h"
#include "SkStroke.h"
#include "SkSurface.h"
#include "SkTLazy.h"
#include "SkUtils.h"
#include "SkVertState.h"
#include "SkErrorInternals.h"

#define CACHE_COMPATIBLE_DEVICE_TEXTURES 1

#if 0
    extern bool (*gShouldDrawProc)();
    #define CHECK_SHOULD_DRAW(draw, forceI)                     \
        do {                                                    \
            if (gShouldDrawProc && !gShouldDrawProc()) return;  \
            this->prepareDraw(draw, forceI);                    \
        } while (0)
#else
    #define CHECK_SHOULD_DRAW(draw, forceI) this->prepareDraw(draw, forceI)
#endif

// This constant represents the screen alignment criterion in texels for
// requiring texture domain clamping to prevent color bleeding when drawing
// a sub region of a larger source image.
#define COLOR_BLEED_TOLERANCE 0.001f

#define DO_DEFERRED_CLEAR()             \
    do {                                \
        if (fNeedClear) {               \
            this->clear(SK_ColorTRANSPARENT); \
        }                               \
    } while (false)                     \

///////////////////////////////////////////////////////////////////////////////

#define CHECK_FOR_ANNOTATION(paint) \
    do { if (paint.getAnnotation()) { return; } } while (0)

///////////////////////////////////////////////////////////////////////////////


class SkGpuDevice::SkAutoCachedTexture : public ::SkNoncopyable {
public:
    SkAutoCachedTexture()
        : fDevice(NULL)
        , fTexture(NULL) {
    }

    SkAutoCachedTexture(SkGpuDevice* device,
                        const SkBitmap& bitmap,
                        const GrTextureParams* params,
                        GrTexture** texture)
        : fDevice(NULL)
        , fTexture(NULL) {
        SkASSERT(NULL != texture);
        *texture = this->set(device, bitmap, params);
    }

    ~SkAutoCachedTexture() {
        if (NULL != fTexture) {
            GrUnlockAndUnrefCachedBitmapTexture(fTexture);
        }
    }

    GrTexture* set(SkGpuDevice* device,
                   const SkBitmap& bitmap,
                   const GrTextureParams* params) {
        if (NULL != fTexture) {
            GrUnlockAndUnrefCachedBitmapTexture(fTexture);
            fTexture = NULL;
        }
        fDevice = device;
        GrTexture* result = (GrTexture*)bitmap.getTexture();
        if (NULL == result) {
            // Cannot return the native texture so look it up in our cache
            fTexture = GrLockAndRefCachedBitmapTexture(device->context(), bitmap, params);
            result = fTexture;
        }
        return result;
    }

private:
    SkGpuDevice* fDevice;
    GrTexture*   fTexture;
};

///////////////////////////////////////////////////////////////////////////////

struct GrSkDrawProcs : public SkDrawProcs {
public:
    GrContext* fContext;
    GrTextContext* fTextContext;
    GrFontScaler* fFontScaler;  // cached in the skia glyphcache
};

///////////////////////////////////////////////////////////////////////////////

SkGpuDevice* SkGpuDevice::Create(GrSurface* surface, unsigned flags) {
    SkASSERT(NULL != surface);
    if (NULL == surface->asRenderTarget() || NULL == surface->getContext()) {
        return NULL;
    }
    if (surface->asTexture()) {
        return SkNEW_ARGS(SkGpuDevice, (surface->getContext(), surface->asTexture(), flags));
    } else {
        return SkNEW_ARGS(SkGpuDevice, (surface->getContext(), surface->asRenderTarget(), flags));
    }
}

SkGpuDevice::SkGpuDevice(GrContext* context, GrTexture* texture, unsigned flags) {
    this->initFromRenderTarget(context, texture->asRenderTarget(), flags);
}

SkGpuDevice::SkGpuDevice(GrContext* context, GrRenderTarget* renderTarget, unsigned flags) {
    this->initFromRenderTarget(context, renderTarget, flags);
}

void SkGpuDevice::initFromRenderTarget(GrContext* context,
                                       GrRenderTarget* renderTarget,
                                       unsigned flags) {
    fDrawProcs = NULL;

    fContext = context;
    fContext->ref();

    fRenderTarget = NULL;
    fNeedClear = flags & kNeedClear_Flag;

    SkASSERT(NULL != renderTarget);
    fRenderTarget = renderTarget;
    fRenderTarget->ref();

    // Hold onto to the texture in the pixel ref (if there is one) because the texture holds a ref
    // on the RT but not vice-versa.
    // TODO: Remove this trickery once we figure out how to make SkGrPixelRef do this without
    // busting chrome (for a currently unknown reason).
    GrSurface* surface = fRenderTarget->asTexture();
    if (NULL == surface) {
        surface = fRenderTarget;
    }

    SkPixelRef* pr = SkNEW_ARGS(SkGrPixelRef,
                                (surface->info(), surface, SkToBool(flags & kCached_Flag)));
    fLegacyBitmap.setInfo(surface->info());
    fLegacyBitmap.setPixelRef(pr)->unref();

    bool useDFFonts = !!(flags & kDFFonts_Flag);
    fMainTextContext = fContext->createTextContext(fRenderTarget, fLeakyProperties, useDFFonts);
    fFallbackTextContext = SkNEW_ARGS(GrBitmapTextContext, (fContext, fLeakyProperties));
}

SkGpuDevice* SkGpuDevice::Create(GrContext* context, const SkImageInfo& origInfo,
                                 int sampleCount) {
    if (kUnknown_SkColorType == origInfo.colorType() ||
        origInfo.width() < 0 || origInfo.height() < 0) {
        return NULL;
    }

    SkImageInfo info = origInfo;
    // TODO: perhas we can loosen this check now that colortype is more detailed
    // e.g. can we support both RGBA and BGRA here?
    if (kRGB_565_SkColorType == info.colorType()) {
        info.fAlphaType = kOpaque_SkAlphaType;  // force this setting
    } else {
        info.fColorType = kN32_SkColorType;
        if (kOpaque_SkAlphaType != info.alphaType()) {
            info.fAlphaType = kPremul_SkAlphaType;  // force this setting
        }
    }

    GrTextureDesc desc;
    desc.fFlags = kRenderTarget_GrTextureFlagBit;
    desc.fWidth = info.width();
    desc.fHeight = info.height();
    desc.fConfig = SkImageInfo2GrPixelConfig(info);
    desc.fSampleCnt = sampleCount;

    SkAutoTUnref<GrTexture> texture(context->createUncachedTexture(desc, NULL, 0));
    if (!texture.get()) {
        return NULL;
    }

    return SkNEW_ARGS(SkGpuDevice, (context, texture.get()));
}

SkGpuDevice::~SkGpuDevice() {
    if (fDrawProcs) {
        delete fDrawProcs;
    }

    delete fMainTextContext;
    delete fFallbackTextContext;

    // The GrContext takes a ref on the target. We don't want to cause the render
    // target to be unnecessarily kept alive.
    if (fContext->getRenderTarget() == fRenderTarget) {
        fContext->setRenderTarget(NULL);
    }

    if (fContext->getClip() == &fClipData) {
        fContext->setClip(NULL);
    }

    SkSafeUnref(fRenderTarget);
    fContext->unref();
}

///////////////////////////////////////////////////////////////////////////////

void SkGpuDevice::makeRenderTargetCurrent() {
    DO_DEFERRED_CLEAR();
    fContext->setRenderTarget(fRenderTarget);
}

///////////////////////////////////////////////////////////////////////////////

bool SkGpuDevice::onReadPixels(const SkImageInfo& dstInfo, void* dstPixels, size_t dstRowBytes,
                               int x, int y) {
    DO_DEFERRED_CLEAR();

    // TODO: teach fRenderTarget to take ImageInfo directly to specify the src pixels
    GrPixelConfig config = SkImageInfo2GrPixelConfig(dstInfo);
    if (kUnknown_GrPixelConfig == config) {
        return false;
    }

    uint32_t flags = 0;
    if (kUnpremul_SkAlphaType == dstInfo.alphaType()) {
        flags = GrContext::kUnpremul_PixelOpsFlag;
    }
    return fContext->readRenderTargetPixels(fRenderTarget, x, y, dstInfo.width(), dstInfo.height(),
                                            config, dstPixels, dstRowBytes, flags);
}

bool SkGpuDevice::onWritePixels(const SkImageInfo& info, const void* pixels, size_t rowBytes,
                                int x, int y) {
    // TODO: teach fRenderTarget to take ImageInfo directly to specify the src pixels
    GrPixelConfig config = SkImageInfo2GrPixelConfig(info);
    if (kUnknown_GrPixelConfig == config) {
        return false;
    }
    uint32_t flags = 0;
    if (kUnpremul_SkAlphaType == info.alphaType()) {
        flags = GrContext::kUnpremul_PixelOpsFlag;
    }
    fRenderTarget->writePixels(x, y, info.width(), info.height(), config, pixels, rowBytes, flags);

    // need to bump our genID for compatibility with clients that "know" we have a bitmap
    fLegacyBitmap.notifyPixelsChanged();

    return true;
}

const SkBitmap& SkGpuDevice::onAccessBitmap() {
    DO_DEFERRED_CLEAR();
    return fLegacyBitmap;
}

void SkGpuDevice::onAttachToCanvas(SkCanvas* canvas) {
    INHERITED::onAttachToCanvas(canvas);

    // Canvas promises that this ptr is valid until onDetachFromCanvas is called
    fClipData.fClipStack = canvas->getClipStack();
}

void SkGpuDevice::onDetachFromCanvas() {
    INHERITED::onDetachFromCanvas();
    fClipData.fClipStack = NULL;
}

// call this every draw call, to ensure that the context reflects our state,
// and not the state from some other canvas/device
void SkGpuDevice::prepareDraw(const SkDraw& draw, bool forceIdentity) {
    SkASSERT(NULL != fClipData.fClipStack);

    fContext->setRenderTarget(fRenderTarget);

    SkASSERT(draw.fClipStack && draw.fClipStack == fClipData.fClipStack);

    if (forceIdentity) {
        fContext->setIdentityMatrix();
    } else {
        fContext->setMatrix(*draw.fMatrix);
    }
    fClipData.fOrigin = this->getOrigin();

    fContext->setClip(&fClipData);

    DO_DEFERRED_CLEAR();
}

GrRenderTarget* SkGpuDevice::accessRenderTarget() {
    DO_DEFERRED_CLEAR();
    return fRenderTarget;
}

///////////////////////////////////////////////////////////////////////////////

SK_COMPILE_ASSERT(SkShader::kNone_BitmapType == 0, shader_type_mismatch);
SK_COMPILE_ASSERT(SkShader::kDefault_BitmapType == 1, shader_type_mismatch);
SK_COMPILE_ASSERT(SkShader::kRadial_BitmapType == 2, shader_type_mismatch);
SK_COMPILE_ASSERT(SkShader::kSweep_BitmapType == 3, shader_type_mismatch);
SK_COMPILE_ASSERT(SkShader::kTwoPointRadial_BitmapType == 4,
                  shader_type_mismatch);
SK_COMPILE_ASSERT(SkShader::kTwoPointConical_BitmapType == 5,
                  shader_type_mismatch);
SK_COMPILE_ASSERT(SkShader::kLinear_BitmapType == 6, shader_type_mismatch);
SK_COMPILE_ASSERT(SkShader::kLast_BitmapType == 6, shader_type_mismatch);

///////////////////////////////////////////////////////////////////////////////

void SkGpuDevice::clear(SkColor color) {
    GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::clear", fContext);
    SkIRect rect = SkIRect::MakeWH(this->width(), this->height());
    fContext->clear(&rect, SkColor2GrColor(color), true, fRenderTarget);
    fNeedClear = false;
}

void SkGpuDevice::drawPaint(const SkDraw& draw, const SkPaint& paint) {
    CHECK_SHOULD_DRAW(draw, false);
    GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawPaint", fContext);

    GrPaint grPaint;
    SkPaint2GrPaintShader(this->context(), paint, true, &grPaint);

    fContext->drawPaint(grPaint);
}

// must be in SkCanvas::PointMode order
static const GrPrimitiveType gPointMode2PrimtiveType[] = {
    kPoints_GrPrimitiveType,
    kLines_GrPrimitiveType,
    kLineStrip_GrPrimitiveType
};

void SkGpuDevice::drawPoints(const SkDraw& draw, SkCanvas::PointMode mode,
                             size_t count, const SkPoint pts[], const SkPaint& paint) {
    CHECK_FOR_ANNOTATION(paint);
    CHECK_SHOULD_DRAW(draw, false);

    SkScalar width = paint.getStrokeWidth();
    if (width < 0) {
        return;
    }

    if (paint.getPathEffect() && 2 == count && SkCanvas::kLines_PointMode == mode) {
        GrStrokeInfo strokeInfo(paint, SkPaint::kStroke_Style);
        GrPaint grPaint;
        SkPaint2GrPaintShader(this->context(), paint, true, &grPaint);
        SkPath path;
        path.moveTo(pts[0]);
        path.lineTo(pts[1]);
        fContext->drawPath(grPaint, path, strokeInfo);
        return;
    }

    // we only handle hairlines and paints without path effects or mask filters,
    // else we let the SkDraw call our drawPath()
    if (width > 0 || paint.getPathEffect() || paint.getMaskFilter()) {
        draw.drawPoints(mode, count, pts, paint, true);
        return;
    }

    GrPaint grPaint;
    SkPaint2GrPaintShader(this->context(), paint, true, &grPaint);

    fContext->drawVertices(grPaint,
                           gPointMode2PrimtiveType[mode],
                           SkToS32(count),
                           (SkPoint*)pts,
                           NULL,
                           NULL,
                           NULL,
                           0);
}

///////////////////////////////////////////////////////////////////////////////

void SkGpuDevice::drawRect(const SkDraw& draw, const SkRect& rect,
                           const SkPaint& paint) {
    GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawRect", fContext);

    CHECK_FOR_ANNOTATION(paint);
    CHECK_SHOULD_DRAW(draw, false);

    bool doStroke = paint.getStyle() != SkPaint::kFill_Style;
    SkScalar width = paint.getStrokeWidth();

    /*
        We have special code for hairline strokes, miter-strokes, bevel-stroke
        and fills. Anything else we just call our path code.
     */
    bool usePath = doStroke && width > 0 &&
                   (paint.getStrokeJoin() == SkPaint::kRound_Join ||
                    (paint.getStrokeJoin() == SkPaint::kBevel_Join && rect.isEmpty()));
    // another two reasons we might need to call drawPath...

    if (paint.getMaskFilter()) {
        usePath = true;
    }

    if (!usePath && paint.isAntiAlias() && !fContext->getMatrix().rectStaysRect()) {
#if defined(SHADER_AA_FILL_RECT) || !defined(IGNORE_ROT_AA_RECT_OPT)
        if (doStroke) {
#endif
            usePath = true;
#if defined(SHADER_AA_FILL_RECT) || !defined(IGNORE_ROT_AA_RECT_OPT)
        } else {
            usePath = !fContext->getMatrix().preservesRightAngles();
        }
#endif
    }
    // until we can both stroke and fill rectangles
    if (paint.getStyle() == SkPaint::kStrokeAndFill_Style) {
        usePath = true;
    }

    GrStrokeInfo strokeInfo(paint);

    const SkPathEffect* pe = paint.getPathEffect();
    if (!usePath && NULL != pe && !strokeInfo.isDashed()) {
        usePath = true;
    }

    if (usePath) {
        SkPath path;
        path.addRect(rect);
        this->drawPath(draw, path, paint, NULL, true);
        return;
    }

    GrPaint grPaint;
    SkPaint2GrPaintShader(this->context(), paint, true, &grPaint);

    fContext->drawRect(grPaint, rect, &strokeInfo);
}

///////////////////////////////////////////////////////////////////////////////

void SkGpuDevice::drawRRect(const SkDraw& draw, const SkRRect& rect,
                           const SkPaint& paint) {
    GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawRRect", fContext);
    CHECK_FOR_ANNOTATION(paint);
    CHECK_SHOULD_DRAW(draw, false);

    GrPaint grPaint;
    SkPaint2GrPaintShader(this->context(), paint, true, &grPaint);

    GrStrokeInfo strokeInfo(paint);
    if (paint.getMaskFilter()) {
        // try to hit the fast path for drawing filtered round rects

        SkRRect devRRect;
        if (rect.transform(fContext->getMatrix(), &devRRect)) {
            if (devRRect.allCornersCircular()) {
                SkRect maskRect;
                if (paint.getMaskFilter()->canFilterMaskGPU(devRRect.rect(),
                                            draw.fClip->getBounds(),
                                            fContext->getMatrix(),
                                            &maskRect)) {
                    SkIRect finalIRect;
                    maskRect.roundOut(&finalIRect);
                    if (draw.fClip->quickReject(finalIRect)) {
                        // clipped out
                        return;
                    }
                    if (paint.getMaskFilter()->directFilterRRectMaskGPU(fContext, &grPaint,
                                                                        strokeInfo.getStrokeRec(),
                                                                        devRRect)) {
                        return;
                    }
                }

            }
        }

    }

    bool usePath = false;

    if (paint.getMaskFilter()) {
        usePath = true;
    } else {
        const SkPathEffect* pe = paint.getPathEffect();
        if (NULL != pe && !strokeInfo.isDashed()) {
            usePath = true;
        }
    }


    if (usePath) {
        SkPath path;
        path.addRRect(rect);
        this->drawPath(draw, path, paint, NULL, true);
        return;
    }

    fContext->drawRRect(grPaint, rect, strokeInfo);
}

void SkGpuDevice::drawDRRect(const SkDraw& draw, const SkRRect& outer,
                              const SkRRect& inner, const SkPaint& paint) {
    SkStrokeRec stroke(paint);
    if (stroke.isFillStyle()) {

        CHECK_FOR_ANNOTATION(paint);
        CHECK_SHOULD_DRAW(draw, false);

        GrPaint grPaint;
        SkPaint2GrPaintShader(this->context(), paint, true, &grPaint);

        if (NULL == paint.getMaskFilter() && NULL == paint.getPathEffect()) {
            fContext->drawDRRect(grPaint, outer, inner);
            return;
        }
    }

    SkPath path;
    path.addRRect(outer);
    path.addRRect(inner);
    path.setFillType(SkPath::kEvenOdd_FillType);

    this->drawPath(draw, path, paint, NULL, true);
}


/////////////////////////////////////////////////////////////////////////////

void SkGpuDevice::drawOval(const SkDraw& draw, const SkRect& oval,
                           const SkPaint& paint) {
    GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawOval", fContext);
    CHECK_FOR_ANNOTATION(paint);
    CHECK_SHOULD_DRAW(draw, false);

    GrStrokeInfo strokeInfo(paint);

    bool usePath = false;
    // some basic reasons we might need to call drawPath...
    if (paint.getMaskFilter()) {
        usePath = true;
    } else {
        const SkPathEffect* pe = paint.getPathEffect();
        if (NULL != pe && !strokeInfo.isDashed()) {
            usePath = true;
        }
    }

    if (usePath) {
        SkPath path;
        path.addOval(oval);
        this->drawPath(draw, path, paint, NULL, true);
        return;
    }

    GrPaint grPaint;
    SkPaint2GrPaintShader(this->context(), paint, true, &grPaint);

    fContext->drawOval(grPaint, oval, strokeInfo);
}

#include "SkMaskFilter.h"

///////////////////////////////////////////////////////////////////////////////

// helpers for applying mask filters
namespace {

// Draw a mask using the supplied paint. Since the coverage/geometry
// is already burnt into the mask this boils down to a rect draw.
// Return true if the mask was successfully drawn.
bool draw_mask(GrContext* context, const SkRect& maskRect,
               GrPaint* grp, GrTexture* mask) {
    GrContext::AutoMatrix am;
    if (!am.setIdentity(context, grp)) {
        return false;
    }

    SkMatrix matrix;
    matrix.setTranslate(-maskRect.fLeft, -maskRect.fTop);
    matrix.postIDiv(mask->width(), mask->height());

    grp->addCoverageEffect(GrSimpleTextureEffect::Create(mask, matrix))->unref();
    context->drawRect(*grp, maskRect);
    return true;
}

bool draw_with_mask_filter(GrContext* context, const SkPath& devPath,
                           SkMaskFilter* filter, const SkRegion& clip,
                           GrPaint* grp, SkPaint::Style style) {
    SkMask  srcM, dstM;

    if (!SkDraw::DrawToMask(devPath, &clip.getBounds(), filter, &context->getMatrix(), &srcM,
                            SkMask::kComputeBoundsAndRenderImage_CreateMode, style)) {
        return false;
    }
    SkAutoMaskFreeImage autoSrc(srcM.fImage);

    if (!filter->filterMask(&dstM, srcM, context->getMatrix(), NULL)) {
        return false;
    }
    // this will free-up dstM when we're done (allocated in filterMask())
    SkAutoMaskFreeImage autoDst(dstM.fImage);

    if (clip.quickReject(dstM.fBounds)) {
        return false;
    }

    // we now have a device-aligned 8bit mask in dstM, ready to be drawn using
    // the current clip (and identity matrix) and GrPaint settings
    GrTextureDesc desc;
    desc.fWidth = dstM.fBounds.width();
    desc.fHeight = dstM.fBounds.height();
    desc.fConfig = kAlpha_8_GrPixelConfig;

    GrAutoScratchTexture ast(context, desc);
    GrTexture* texture = ast.texture();

    if (NULL == texture) {
        return false;
    }
    texture->writePixels(0, 0, desc.fWidth, desc.fHeight, desc.fConfig,
                               dstM.fImage, dstM.fRowBytes);

    SkRect maskRect = SkRect::Make(dstM.fBounds);

    return draw_mask(context, maskRect, grp, texture);
}

// Create a mask of 'devPath' and place the result in 'mask'. Return true on
// success; false otherwise.
bool create_mask_GPU(GrContext* context,
                     const SkRect& maskRect,
                     const SkPath& devPath,
                     const GrStrokeInfo& strokeInfo,
                     bool doAA,
                     GrAutoScratchTexture* mask) {
    GrTextureDesc desc;
    desc.fFlags = kRenderTarget_GrTextureFlagBit;
    desc.fWidth = SkScalarCeilToInt(maskRect.width());
    desc.fHeight = SkScalarCeilToInt(maskRect.height());
    // We actually only need A8, but it often isn't supported as a
    // render target so default to RGBA_8888
    desc.fConfig = kRGBA_8888_GrPixelConfig;
    if (context->isConfigRenderable(kAlpha_8_GrPixelConfig, false)) {
        desc.fConfig = kAlpha_8_GrPixelConfig;
    }

    mask->set(context, desc);
    if (NULL == mask->texture()) {
        return false;
    }

    GrTexture* maskTexture = mask->texture();
    SkRect clipRect = SkRect::MakeWH(maskRect.width(), maskRect.height());

    GrContext::AutoRenderTarget art(context, maskTexture->asRenderTarget());
    GrContext::AutoClip ac(context, clipRect);

    context->clear(NULL, 0x0, true);

    GrPaint tempPaint;
    if (doAA) {
        tempPaint.setAntiAlias(true);
        // AA uses the "coverage" stages on GrDrawTarget. Coverage with a dst
        // blend coeff of zero requires dual source blending support in order
        // to properly blend partially covered pixels. This means the AA
        // code path may not be taken. So we use a dst blend coeff of ISA. We
        // could special case AA draws to a dst surface with known alpha=0 to
        // use a zero dst coeff when dual source blending isn't available.
        tempPaint.setBlendFunc(kOne_GrBlendCoeff, kISC_GrBlendCoeff);
    }

    GrContext::AutoMatrix am;

    // Draw the mask into maskTexture with the path's top-left at the origin using tempPaint.
    SkMatrix translate;
    translate.setTranslate(-maskRect.fLeft, -maskRect.fTop);
    am.set(context, translate);
    context->drawPath(tempPaint, devPath, strokeInfo);
    return true;
}

SkBitmap wrap_texture(GrTexture* texture) {
    SkBitmap result;
    result.setInfo(texture->info());
    result.setPixelRef(SkNEW_ARGS(SkGrPixelRef, (result.info(), texture)))->unref();
    return result;
}

};

void SkGpuDevice::drawPath(const SkDraw& draw, const SkPath& origSrcPath,
                           const SkPaint& paint, const SkMatrix* prePathMatrix,
                           bool pathIsMutable) {
    CHECK_FOR_ANNOTATION(paint);
    CHECK_SHOULD_DRAW(draw, false);
    GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawPath", fContext);

    GrPaint grPaint;
    SkPaint2GrPaintShader(this->context(), paint, true, &grPaint);

    // If we have a prematrix, apply it to the path, optimizing for the case
    // where the original path can in fact be modified in place (even though
    // its parameter type is const).
    SkPath* pathPtr = const_cast<SkPath*>(&origSrcPath);
    SkTLazy<SkPath> tmpPath;
    SkTLazy<SkPath> effectPath;

    if (prePathMatrix) {
        SkPath* result = pathPtr;

        if (!pathIsMutable) {
            result = tmpPath.init();
            pathIsMutable = true;
        }
        // should I push prePathMatrix on our MV stack temporarily, instead
        // of applying it here? See SkDraw.cpp
        pathPtr->transform(*prePathMatrix, result);
        pathPtr = result;
    }
    // at this point we're done with prePathMatrix
    SkDEBUGCODE(prePathMatrix = (const SkMatrix*)0x50FF8001;)

    GrStrokeInfo strokeInfo(paint);
    SkPathEffect* pathEffect = paint.getPathEffect();
    const SkRect* cullRect = NULL;  // TODO: what is our bounds?
    SkStrokeRec* strokePtr = strokeInfo.getStrokeRecPtr();
    if (pathEffect && pathEffect->filterPath(effectPath.init(), *pathPtr, strokePtr,
                                             cullRect)) {
        pathPtr = effectPath.get();
        pathIsMutable = true;
        strokeInfo.removeDash();
    }

    const SkStrokeRec& stroke = strokeInfo.getStrokeRec();
    if (paint.getMaskFilter()) {
        if (!stroke.isHairlineStyle()) {
            SkPath* strokedPath = pathIsMutable ? pathPtr : tmpPath.init();
            if (stroke.applyToPath(strokedPath, *pathPtr)) {
                pathPtr = strokedPath;
                pathIsMutable = true;
                strokeInfo.setFillStyle();
            }
        }

        // avoid possibly allocating a new path in transform if we can
        SkPath* devPathPtr = pathIsMutable ? pathPtr : tmpPath.init();

        // transform the path into device space
        pathPtr->transform(fContext->getMatrix(), devPathPtr);

        SkRect maskRect;
        if (paint.getMaskFilter()->canFilterMaskGPU(devPathPtr->getBounds(),
                                                    draw.fClip->getBounds(),
                                                    fContext->getMatrix(),
                                                    &maskRect)) {
            // The context's matrix may change while creating the mask, so save the CTM here to
            // pass to filterMaskGPU.
            const SkMatrix ctm = fContext->getMatrix();

            SkIRect finalIRect;
            maskRect.roundOut(&finalIRect);
            if (draw.fClip->quickReject(finalIRect)) {
                // clipped out
                return;
            }

            if (paint.getMaskFilter()->directFilterMaskGPU(fContext, &grPaint,
                                                           stroke, *devPathPtr)) {
                // the mask filter was able to draw itself directly, so there's nothing
                // left to do.
                return;
            }

            GrAutoScratchTexture mask;

            if (create_mask_GPU(fContext, maskRect, *devPathPtr, strokeInfo,
                                grPaint.isAntiAlias(), &mask)) {
                GrTexture* filtered;

                if (paint.getMaskFilter()->filterMaskGPU(mask.texture(),
                                                         ctm, maskRect, &filtered, true)) {
                    // filterMaskGPU gives us ownership of a ref to the result
                    SkAutoTUnref<GrTexture> atu(filtered);

                    // If the scratch texture that we used as the filter src also holds the filter
                    // result then we must detach so that this texture isn't recycled for a later
                    // draw.
                    if (filtered == mask.texture()) {
                        mask.detach();
                        filtered->unref(); // detach transfers GrAutoScratchTexture's ref to us.
                    }

                    if (draw_mask(fContext, maskRect, &grPaint, filtered)) {
                        // This path is completely drawn
                        return;
                    }
                }
            }
        }

        // draw the mask on the CPU - this is a fallthrough path in case the
        // GPU path fails
        SkPaint::Style style = stroke.isHairlineStyle() ? SkPaint::kStroke_Style :
                                                          SkPaint::kFill_Style;
        draw_with_mask_filter(fContext, *devPathPtr, paint.getMaskFilter(),
                              *draw.fClip, &grPaint, style);
        return;
    }

    fContext->drawPath(grPaint, *pathPtr, strokeInfo);
}

static const int kBmpSmallTileSize = 1 << 10;

static inline int get_tile_count(const SkIRect& srcRect, int tileSize)  {
    int tilesX = (srcRect.fRight / tileSize) - (srcRect.fLeft / tileSize) + 1;
    int tilesY = (srcRect.fBottom / tileSize) - (srcRect.fTop / tileSize) + 1;
    return tilesX * tilesY;
}

static int determine_tile_size(const SkBitmap& bitmap, const SkIRect& src, int maxTileSize) {
    if (maxTileSize <= kBmpSmallTileSize) {
        return maxTileSize;
    }

    size_t maxTileTotalTileSize = get_tile_count(src, maxTileSize);
    size_t smallTotalTileSize = get_tile_count(src, kBmpSmallTileSize);

    maxTileTotalTileSize *= maxTileSize * maxTileSize;
    smallTotalTileSize *= kBmpSmallTileSize * kBmpSmallTileSize;

    if (maxTileTotalTileSize > 2 * smallTotalTileSize) {
        return kBmpSmallTileSize;
    } else {
        return maxTileSize;
    }
}

// Given a bitmap, an optional src rect, and a context with a clip and matrix determine what
// pixels from the bitmap are necessary.
static void determine_clipped_src_rect(const GrContext* context,
                                       const SkBitmap& bitmap,
                                       const SkRect* srcRectPtr,
                                       SkIRect* clippedSrcIRect) {
    const GrClipData* clip = context->getClip();
    clip->getConservativeBounds(context->getRenderTarget(), clippedSrcIRect, NULL);
    SkMatrix inv;
    if (!context->getMatrix().invert(&inv)) {
        clippedSrcIRect->setEmpty();
        return;
    }
    SkRect clippedSrcRect = SkRect::Make(*clippedSrcIRect);
    inv.mapRect(&clippedSrcRect);
    if (NULL != srcRectPtr) {
        // we've setup src space 0,0 to map to the top left of the src rect.
        clippedSrcRect.offset(srcRectPtr->fLeft, srcRectPtr->fTop);
        if (!clippedSrcRect.intersect(*srcRectPtr)) {
            clippedSrcIRect->setEmpty();
            return;
        }
    }
    clippedSrcRect.roundOut(clippedSrcIRect);
    SkIRect bmpBounds = SkIRect::MakeWH(bitmap.width(), bitmap.height());
    if (!clippedSrcIRect->intersect(bmpBounds)) {
        clippedSrcIRect->setEmpty();
    }
}

bool SkGpuDevice::shouldTileBitmap(const SkBitmap& bitmap,
                                   const GrTextureParams& params,
                                   const SkRect* srcRectPtr,
                                   int maxTileSize,
                                   int* tileSize,
                                   SkIRect* clippedSrcRect) const {
    // if bitmap is explictly texture backed then just use the texture
    if (NULL != bitmap.getTexture()) {
        return false;
    }

    // if it's larger than the max tile size, then we have no choice but tiling.
    if (bitmap.width() > maxTileSize || bitmap.height() > maxTileSize) {
        determine_clipped_src_rect(fContext, bitmap, srcRectPtr, clippedSrcRect);
        *tileSize = determine_tile_size(bitmap, *clippedSrcRect, maxTileSize);
        return true;
    }

    if (bitmap.width() * bitmap.height() < 4 * kBmpSmallTileSize * kBmpSmallTileSize) {
        return false;
    }

    // if the entire texture is already in our cache then no reason to tile it
    if (GrIsBitmapInCache(fContext, bitmap, &params)) {
        return false;
    }

    // At this point we know we could do the draw by uploading the entire bitmap
    // as a texture. However, if the texture would be large compared to the
    // cache size and we don't require most of it for this draw then tile to
    // reduce the amount of upload and cache spill.

    // assumption here is that sw bitmap size is a good proxy for its size as
    // a texture
    size_t bmpSize = bitmap.getSize();
    size_t cacheSize;
    fContext->getResourceCacheLimits(NULL, &cacheSize);
    if (bmpSize < cacheSize / 2) {
        return false;
    }

    // Figure out how much of the src we will need based on the src rect and clipping.
    determine_clipped_src_rect(fContext, bitmap, srcRectPtr, clippedSrcRect);
    *tileSize = kBmpSmallTileSize; // already know whole bitmap fits in one max sized tile.
    size_t usedTileBytes = get_tile_count(*clippedSrcRect, kBmpSmallTileSize) *
                           kBmpSmallTileSize * kBmpSmallTileSize;

    return usedTileBytes < 2 * bmpSize;
}

void SkGpuDevice::drawBitmap(const SkDraw& origDraw,
                             const SkBitmap& bitmap,
                             const SkMatrix& m,
                             const SkPaint& paint) {
    SkMatrix concat;
    SkTCopyOnFirstWrite<SkDraw> draw(origDraw);
    if (!m.isIdentity()) {
        concat.setConcat(*draw->fMatrix, m);
        draw.writable()->fMatrix = &concat;
    }
    this->drawBitmapCommon(*draw, bitmap, NULL, NULL, paint, SkCanvas::kNone_DrawBitmapRectFlag);
}

// This method outsets 'iRect' by 'outset' all around and then clamps its extents to
// 'clamp'. 'offset' is adjusted to remain positioned over the top-left corner
// of 'iRect' for all possible outsets/clamps.
static inline void clamped_outset_with_offset(SkIRect* iRect,
                                              int outset,
                                              SkPoint* offset,
                                              const SkIRect& clamp) {
    iRect->outset(outset, outset);

    int leftClampDelta = clamp.fLeft - iRect->fLeft;
    if (leftClampDelta > 0) {
        offset->fX -= outset - leftClampDelta;
        iRect->fLeft = clamp.fLeft;
    } else {
        offset->fX -= outset;
    }

    int topClampDelta = clamp.fTop - iRect->fTop;
    if (topClampDelta > 0) {
        offset->fY -= outset - topClampDelta;
        iRect->fTop = clamp.fTop;
    } else {
        offset->fY -= outset;
    }

    if (iRect->fRight > clamp.fRight) {
        iRect->fRight = clamp.fRight;
    }
    if (iRect->fBottom > clamp.fBottom) {
        iRect->fBottom = clamp.fBottom;
    }
}

static bool has_aligned_samples(const SkRect& srcRect,
                                const SkRect& transformedRect) {
    // detect pixel disalignment
    if (SkScalarAbs(SkScalarRoundToScalar(transformedRect.left()) -
            transformedRect.left()) < COLOR_BLEED_TOLERANCE &&
        SkScalarAbs(SkScalarRoundToScalar(transformedRect.top()) -
            transformedRect.top()) < COLOR_BLEED_TOLERANCE &&
        SkScalarAbs(transformedRect.width() - srcRect.width()) <
            COLOR_BLEED_TOLERANCE &&
        SkScalarAbs(transformedRect.height() - srcRect.height()) <
            COLOR_BLEED_TOLERANCE) {
        return true;
    }
    return false;
}

static bool may_color_bleed(const SkRect& srcRect,
                            const SkRect& transformedRect,
                            const SkMatrix& m) {
    // Only gets called if has_aligned_samples returned false.
    // So we can assume that sampling is axis aligned but not texel aligned.
    SkASSERT(!has_aligned_samples(srcRect, transformedRect));
    SkRect innerSrcRect(srcRect), innerTransformedRect,
        outerTransformedRect(transformedRect);
    innerSrcRect.inset(SK_ScalarHalf, SK_ScalarHalf);
    m.mapRect(&innerTransformedRect, innerSrcRect);

    // The gap between outerTransformedRect and innerTransformedRect
    // represents the projection of the source border area, which is
    // problematic for color bleeding.  We must check whether any
    // destination pixels sample the border area.
    outerTransformedRect.inset(COLOR_BLEED_TOLERANCE, COLOR_BLEED_TOLERANCE);
    innerTransformedRect.outset(COLOR_BLEED_TOLERANCE, COLOR_BLEED_TOLERANCE);
    SkIRect outer, inner;
    outerTransformedRect.round(&outer);
    innerTransformedRect.round(&inner);
    // If the inner and outer rects round to the same result, it means the
    // border does not overlap any pixel centers. Yay!
    return inner != outer;
}

static bool needs_texture_domain(const SkBitmap& bitmap,
                                 const SkRect& srcRect,
                                 GrTextureParams &params,
                                 const SkMatrix& contextMatrix,
                                 bool bicubic) {
    bool needsTextureDomain = false;

    if (bicubic || params.filterMode() != GrTextureParams::kNone_FilterMode) {
        // Need texture domain if drawing a sub rect
        needsTextureDomain = srcRect.width() < bitmap.width() ||
                             srcRect.height() < bitmap.height();
        if (!bicubic && needsTextureDomain && contextMatrix.rectStaysRect()) {
            // sampling is axis-aligned
            SkRect transformedRect;
            contextMatrix.mapRect(&transformedRect, srcRect);

            if (has_aligned_samples(srcRect, transformedRect)) {
                params.setFilterMode(GrTextureParams::kNone_FilterMode);
                needsTextureDomain = false;
            } else {
                needsTextureDomain = may_color_bleed(srcRect, transformedRect, contextMatrix);
            }
        }
    }
    return needsTextureDomain;
}

void SkGpuDevice::drawBitmapCommon(const SkDraw& draw,
                                   const SkBitmap& bitmap,
                                   const SkRect* srcRectPtr,
                                   const SkSize* dstSizePtr,
                                   const SkPaint& paint,
                                   SkCanvas::DrawBitmapRectFlags flags) {
    CHECK_SHOULD_DRAW(draw, false);

    SkRect srcRect;
    SkSize dstSize;
    // If there is no src rect, or the src rect contains the entire bitmap then we're effectively
    // in the (easier) bleed case, so update flags.
    if (NULL == srcRectPtr) {
        SkScalar w = SkIntToScalar(bitmap.width());
        SkScalar h = SkIntToScalar(bitmap.height());
        dstSize.fWidth = w;
        dstSize.fHeight = h;
        srcRect.set(0, 0, w, h);
        flags = (SkCanvas::DrawBitmapRectFlags) (flags | SkCanvas::kBleed_DrawBitmapRectFlag);
    } else {
        SkASSERT(NULL != dstSizePtr);
        srcRect = *srcRectPtr;
        dstSize = *dstSizePtr;
        if (srcRect.fLeft <= 0 && srcRect.fTop <= 0 &&
            srcRect.fRight >= bitmap.width() && srcRect.fBottom >= bitmap.height()) {
            flags = (SkCanvas::DrawBitmapRectFlags) (flags | SkCanvas::kBleed_DrawBitmapRectFlag);
        }
    }

    if (paint.getMaskFilter()){
        // Convert the bitmap to a shader so that the rect can be drawn
        // through drawRect, which supports mask filters.
        SkBitmap        tmp;    // subset of bitmap, if necessary
        const SkBitmap* bitmapPtr = &bitmap;
        SkMatrix localM;
        if (NULL != srcRectPtr) {
            localM.setTranslate(-srcRectPtr->fLeft, -srcRectPtr->fTop);
            localM.postScale(dstSize.fWidth / srcRectPtr->width(),
                             dstSize.fHeight / srcRectPtr->height());
            // In bleed mode we position and trim the bitmap based on the src rect which is
            // already accounted for in 'm' and 'srcRect'. In clamp mode we need to chop out
            // the desired portion of the bitmap and then update 'm' and 'srcRect' to
            // compensate.
            if (!(SkCanvas::kBleed_DrawBitmapRectFlag & flags)) {
                SkIRect iSrc;
                srcRect.roundOut(&iSrc);

                SkPoint offset = SkPoint::Make(SkIntToScalar(iSrc.fLeft),
                                               SkIntToScalar(iSrc.fTop));

                if (!bitmap.extractSubset(&tmp, iSrc)) {
                    return;     // extraction failed
                }
                bitmapPtr = &tmp;
                srcRect.offset(-offset.fX, -offset.fY);

                // The source rect has changed so update the matrix
                localM.preTranslate(offset.fX, offset.fY);
            }
        } else {
            localM.reset();
        }

        SkPaint paintWithShader(paint);
        paintWithShader.setShader(SkShader::CreateBitmapShader(*bitmapPtr,
            SkShader::kClamp_TileMode, SkShader::kClamp_TileMode, &localM))->unref();
        SkRect dstRect = {0, 0, dstSize.fWidth, dstSize.fHeight};
        this->drawRect(draw, dstRect, paintWithShader);

        return;
    }

    // If there is no mask filter than it is OK to handle the src rect -> dst rect scaling using
    // the view matrix rather than a local matrix.
    SkMatrix m;
    m.setScale(dstSize.fWidth / srcRect.width(),
               dstSize.fHeight / srcRect.height());
    fContext->concatMatrix(m);

    GrTextureParams params;
    SkPaint::FilterLevel paintFilterLevel = paint.getFilterLevel();
    GrTextureParams::FilterMode textureFilterMode;

    bool doBicubic = false;

    switch(paintFilterLevel) {
        case SkPaint::kNone_FilterLevel:
            textureFilterMode = GrTextureParams::kNone_FilterMode;
            break;
        case SkPaint::kLow_FilterLevel:
            textureFilterMode = GrTextureParams::kBilerp_FilterMode;
            break;
        case SkPaint::kMedium_FilterLevel:
            if (fContext->getMatrix().getMinScale() < SK_Scalar1) {
                textureFilterMode = GrTextureParams::kMipMap_FilterMode;
            } else {
                // Don't trigger MIP level generation unnecessarily.
                textureFilterMode = GrTextureParams::kBilerp_FilterMode;
            }
            break;
        case SkPaint::kHigh_FilterLevel:
            // Minification can look bad with the bicubic effect.
            doBicubic =
                GrBicubicEffect::ShouldUseBicubic(fContext->getMatrix(), &textureFilterMode);
            break;
        default:
            SkErrorInternals::SetError( kInvalidPaint_SkError,
                                        "Sorry, I don't understand the filtering "
                                        "mode you asked for.  Falling back to "
                                        "MIPMaps.");
            textureFilterMode = GrTextureParams::kMipMap_FilterMode;
            break;
    }

    int tileFilterPad;
    if (doBicubic) {
        tileFilterPad = GrBicubicEffect::kFilterTexelPad;
    } else if (GrTextureParams::kNone_FilterMode == textureFilterMode) {
        tileFilterPad = 0;
    } else {
        tileFilterPad = 1;
    }
    params.setFilterMode(textureFilterMode);

    int maxTileSize = fContext->getMaxTextureSize() - 2 * tileFilterPad;
    int tileSize;

    SkIRect clippedSrcRect;
    if (this->shouldTileBitmap(bitmap, params, srcRectPtr, maxTileSize, &tileSize,
                               &clippedSrcRect)) {
        this->drawTiledBitmap(bitmap, srcRect, clippedSrcRect, params, paint, flags, tileSize,
                              doBicubic);
    } else {
        // take the simple case
        bool needsTextureDomain = needs_texture_domain(bitmap,
                                                       srcRect,
                                                       params,
                                                       fContext->getMatrix(),
                                                       doBicubic);
        this->internalDrawBitmap(bitmap,
                                 srcRect,
                                 params,
                                 paint,
                                 flags,
                                 doBicubic,
                                 needsTextureDomain);
    }
}

// Break 'bitmap' into several tiles to draw it since it has already
// been determined to be too large to fit in VRAM
void SkGpuDevice::drawTiledBitmap(const SkBitmap& bitmap,
                                  const SkRect& srcRect,
                                  const SkIRect& clippedSrcIRect,
                                  const GrTextureParams& params,
                                  const SkPaint& paint,
                                  SkCanvas::DrawBitmapRectFlags flags,
                                  int tileSize,
                                  bool bicubic) {
    // The following pixel lock is technically redundant, but it is desirable
    // to lock outside of the tile loop to prevent redecoding the whole image
    // at each tile in cases where 'bitmap' holds an SkDiscardablePixelRef that
    // is larger than the limit of the discardable memory pool.
    SkAutoLockPixels alp(bitmap);
    SkRect clippedSrcRect = SkRect::Make(clippedSrcIRect);

    int nx = bitmap.width() / tileSize;
    int ny = bitmap.height() / tileSize;
    for (int x = 0; x <= nx; x++) {
        for (int y = 0; y <= ny; y++) {
            SkRect tileR;
            tileR.set(SkIntToScalar(x * tileSize),
                      SkIntToScalar(y * tileSize),
                      SkIntToScalar((x + 1) * tileSize),
                      SkIntToScalar((y + 1) * tileSize));

            if (!SkRect::Intersects(tileR, clippedSrcRect)) {
                continue;
            }

            if (!tileR.intersect(srcRect)) {
                continue;
            }

            SkBitmap tmpB;
            SkIRect iTileR;
            tileR.roundOut(&iTileR);
            SkPoint offset = SkPoint::Make(SkIntToScalar(iTileR.fLeft),
                                           SkIntToScalar(iTileR.fTop));

            // Adjust the context matrix to draw at the right x,y in device space
            SkMatrix tmpM;
            GrContext::AutoMatrix am;
            tmpM.setTranslate(offset.fX - srcRect.fLeft, offset.fY - srcRect.fTop);
            am.setPreConcat(fContext, tmpM);

            if (SkPaint::kNone_FilterLevel != paint.getFilterLevel() || bicubic) {
                SkIRect iClampRect;

                if (SkCanvas::kBleed_DrawBitmapRectFlag & flags) {
                    // In bleed mode we want to always expand the tile on all edges
                    // but stay within the bitmap bounds
                    iClampRect = SkIRect::MakeWH(bitmap.width(), bitmap.height());
                } else {
                    // In texture-domain/clamp mode we only want to expand the
                    // tile on edges interior to "srcRect" (i.e., we want to
                    // not bleed across the original clamped edges)
                    srcRect.roundOut(&iClampRect);
                }
                int outset = bicubic ? GrBicubicEffect::kFilterTexelPad : 1;
                clamped_outset_with_offset(&iTileR, outset, &offset, iClampRect);
            }

            if (bitmap.extractSubset(&tmpB, iTileR)) {
                // now offset it to make it "local" to our tmp bitmap
                tileR.offset(-offset.fX, -offset.fY);
                GrTextureParams paramsTemp = params;
                bool needsTextureDomain = needs_texture_domain(bitmap,
                                                               srcRect,
                                                               paramsTemp,
                                                               fContext->getMatrix(),
                                                               bicubic);
                this->internalDrawBitmap(tmpB,
                                         tileR,
                                         paramsTemp,
                                         paint,
                                         flags,
                                         bicubic,
                                         needsTextureDomain);
            }
        }
    }
}


/*
 *  This is called by drawBitmap(), which has to handle images that may be too
 *  large to be represented by a single texture.
 *
 *  internalDrawBitmap assumes that the specified bitmap will fit in a texture
 *  and that non-texture portion of the GrPaint has already been setup.
 */
void SkGpuDevice::internalDrawBitmap(const SkBitmap& bitmap,
                                     const SkRect& srcRect,
                                     const GrTextureParams& params,
                                     const SkPaint& paint,
                                     SkCanvas::DrawBitmapRectFlags flags,
                                     bool bicubic,
                                     bool needsTextureDomain) {
    SkASSERT(bitmap.width() <= fContext->getMaxTextureSize() &&
             bitmap.height() <= fContext->getMaxTextureSize());

    GrTexture* texture;
    SkAutoCachedTexture act(this, bitmap, &params, &texture);
    if (NULL == texture) {
        return;
    }

    SkRect dstRect = {0, 0, srcRect.width(), srcRect.height() };
    SkRect paintRect;
    SkScalar wInv = SkScalarInvert(SkIntToScalar(texture->width()));
    SkScalar hInv = SkScalarInvert(SkIntToScalar(texture->height()));
    paintRect.setLTRB(SkScalarMul(srcRect.fLeft,   wInv),
                      SkScalarMul(srcRect.fTop,    hInv),
                      SkScalarMul(srcRect.fRight,  wInv),
                      SkScalarMul(srcRect.fBottom, hInv));

    SkRect textureDomain = SkRect::MakeEmpty();
    SkAutoTUnref<GrEffect> effect;
    if (needsTextureDomain && !(flags & SkCanvas::kBleed_DrawBitmapRectFlag)) {
        // Use a constrained texture domain to avoid color bleeding
        SkScalar left, top, right, bottom;
        if (srcRect.width() > SK_Scalar1) {
            SkScalar border = SK_ScalarHalf / texture->width();
            left = paintRect.left() + border;
            right = paintRect.right() - border;
        } else {
            left = right = SkScalarHalf(paintRect.left() + paintRect.right());
        }
        if (srcRect.height() > SK_Scalar1) {
            SkScalar border = SK_ScalarHalf / texture->height();
            top = paintRect.top() + border;
            bottom = paintRect.bottom() - border;
        } else {
            top = bottom = SkScalarHalf(paintRect.top() + paintRect.bottom());
        }
        textureDomain.setLTRB(left, top, right, bottom);
        if (bicubic) {
            effect.reset(GrBicubicEffect::Create(texture, SkMatrix::I(), textureDomain));
        } else {
            effect.reset(GrTextureDomainEffect::Create(texture,
                                                       SkMatrix::I(),
                                                       textureDomain,
                                                       GrTextureDomain::kClamp_Mode,
                                                       params.filterMode()));
        }
    } else if (bicubic) {
        SkASSERT(GrTextureParams::kNone_FilterMode == params.filterMode());
        SkShader::TileMode tileModes[2] = { params.getTileModeX(), params.getTileModeY() };
        effect.reset(GrBicubicEffect::Create(texture, SkMatrix::I(), tileModes));
    } else {
        effect.reset(GrSimpleTextureEffect::Create(texture, SkMatrix::I(), params));
    }

    // Construct a GrPaint by setting the bitmap texture as the first effect and then configuring
    // the rest from the SkPaint.
    GrPaint grPaint;
    grPaint.addColorEffect(effect);
    bool alphaOnly = !(kAlpha_8_SkColorType == bitmap.colorType());
    GrColor paintColor = (alphaOnly) ? SkColor2GrColorJustAlpha(paint.getColor()) :
                                       SkColor2GrColor(paint.getColor());
    SkPaint2GrPaintNoShader(this->context(), paint, paintColor, false, &grPaint);

    fContext->drawRectToRect(grPaint, dstRect, paintRect, NULL);
}

static bool filter_texture(SkBaseDevice* device, GrContext* context,
                           GrTexture* texture, const SkImageFilter* filter,
                           int w, int h, const SkImageFilter::Context& ctx,
                           SkBitmap* result, SkIPoint* offset) {
    SkASSERT(filter);
    SkDeviceImageFilterProxy proxy(device);

    if (filter->canFilterImageGPU()) {
        // Save the render target and set it to NULL, so we don't accidentally draw to it in the
        // filter.  Also set the clip wide open and the matrix to identity.
        GrContext::AutoWideOpenIdentityDraw awo(context, NULL);
        return filter->filterImageGPU(&proxy, wrap_texture(texture), ctx, result, offset);
    } else {
        return false;
    }
}

void SkGpuDevice::drawSprite(const SkDraw& draw, const SkBitmap& bitmap,
                             int left, int top, const SkPaint& paint) {
    // drawSprite is defined to be in device coords.
    CHECK_SHOULD_DRAW(draw, true);

    SkAutoLockPixels alp(bitmap, !bitmap.getTexture());
    if (!bitmap.getTexture() && !bitmap.readyToDraw()) {
        return;
    }

    int w = bitmap.width();
    int h = bitmap.height();

    GrTexture* texture;
    // draw sprite uses the default texture params
    SkAutoCachedTexture act(this, bitmap, NULL, &texture);

    SkImageFilter* filter = paint.getImageFilter();
    // This bitmap will own the filtered result as a texture.
    SkBitmap filteredBitmap;

    if (NULL != filter) {
        SkIPoint offset = SkIPoint::Make(0, 0);
        SkMatrix matrix(*draw.fMatrix);
        matrix.postTranslate(SkIntToScalar(-left), SkIntToScalar(-top));
        SkIRect clipBounds = SkIRect::MakeWH(bitmap.width(), bitmap.height());
        SkImageFilter::Cache* cache = SkImageFilter::Cache::Create();
        SkAutoUnref aur(cache);
        SkImageFilter::Context ctx(matrix, clipBounds, cache);
        if (filter_texture(this, fContext, texture, filter, w, h, ctx, &filteredBitmap,
                           &offset)) {
            texture = (GrTexture*) filteredBitmap.getTexture();
            w = filteredBitmap.width();
            h = filteredBitmap.height();
            left += offset.x();
            top += offset.y();
        } else {
            return;
        }
    }

    GrPaint grPaint;
    grPaint.addColorTextureEffect(texture, SkMatrix::I());

    SkPaint2GrPaintNoShader(this->context(), paint, SkColor2GrColorJustAlpha(paint.getColor()),
                            false, &grPaint);

    fContext->drawRectToRect(grPaint,
                             SkRect::MakeXYWH(SkIntToScalar(left),
                                              SkIntToScalar(top),
                                              SkIntToScalar(w),
                                              SkIntToScalar(h)),
                             SkRect::MakeXYWH(0,
                                              0,
                                              SK_Scalar1 * w / texture->width(),
                                              SK_Scalar1 * h / texture->height()));
}

void SkGpuDevice::drawBitmapRect(const SkDraw& origDraw, const SkBitmap& bitmap,
                                 const SkRect* src, const SkRect& dst,
                                 const SkPaint& paint,
                                 SkCanvas::DrawBitmapRectFlags flags) {
    SkMatrix    matrix;
    SkRect      bitmapBounds, tmpSrc;

    bitmapBounds.set(0, 0,
                     SkIntToScalar(bitmap.width()),
                     SkIntToScalar(bitmap.height()));

    // Compute matrix from the two rectangles
    if (NULL != src) {
        tmpSrc = *src;
    } else {
        tmpSrc = bitmapBounds;
    }

    matrix.setRectToRect(tmpSrc, dst, SkMatrix::kFill_ScaleToFit);

    // clip the tmpSrc to the bounds of the bitmap. No check needed if src==null.
    if (NULL != src) {
        if (!bitmapBounds.contains(tmpSrc)) {
            if (!tmpSrc.intersect(bitmapBounds)) {
                return; // nothing to draw
            }
        }
    }

    SkRect tmpDst;
    matrix.mapRect(&tmpDst, tmpSrc);

    SkTCopyOnFirstWrite<SkDraw> draw(origDraw);
    if (0 != tmpDst.fLeft || 0 != tmpDst.fTop) {
        // Translate so that tempDst's top left is at the origin.
        matrix = *origDraw.fMatrix;
        matrix.preTranslate(tmpDst.fLeft, tmpDst.fTop);
        draw.writable()->fMatrix = &matrix;
    }
    SkSize dstSize;
    dstSize.fWidth = tmpDst.width();
    dstSize.fHeight = tmpDst.height();

    this->drawBitmapCommon(*draw, bitmap, &tmpSrc, &dstSize, paint, flags);
}

void SkGpuDevice::drawDevice(const SkDraw& draw, SkBaseDevice* device,
                             int x, int y, const SkPaint& paint) {
    // clear of the source device must occur before CHECK_SHOULD_DRAW
    GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawDevice", fContext);
    SkGpuDevice* dev = static_cast<SkGpuDevice*>(device);
    if (dev->fNeedClear) {
        // TODO: could check here whether we really need to draw at all
        dev->clear(0x0);
    }

    // drawDevice is defined to be in device coords.
    CHECK_SHOULD_DRAW(draw, true);

    GrRenderTarget* devRT = dev->accessRenderTarget();
    GrTexture* devTex;
    if (NULL == (devTex = devRT->asTexture())) {
        return;
    }

    const SkBitmap& bm = dev->accessBitmap(false);
    int w = bm.width();
    int h = bm.height();

    SkImageFilter* filter = paint.getImageFilter();
    // This bitmap will own the filtered result as a texture.
    SkBitmap filteredBitmap;

    if (NULL != filter) {
        SkIPoint offset = SkIPoint::Make(0, 0);
        SkMatrix matrix(*draw.fMatrix);
        matrix.postTranslate(SkIntToScalar(-x), SkIntToScalar(-y));
        SkIRect clipBounds = SkIRect::MakeWH(devTex->width(), devTex->height());
        SkImageFilter::Cache* cache = SkImageFilter::Cache::Create();
        SkAutoUnref aur(cache);
        SkImageFilter::Context ctx(matrix, clipBounds, cache);
        if (filter_texture(this, fContext, devTex, filter, w, h, ctx, &filteredBitmap,
                           &offset)) {
            devTex = filteredBitmap.getTexture();
            w = filteredBitmap.width();
            h = filteredBitmap.height();
            x += offset.fX;
            y += offset.fY;
        } else {
            return;
        }
    }

    GrPaint grPaint;
    grPaint.addColorTextureEffect(devTex, SkMatrix::I());

    SkPaint2GrPaintNoShader(this->context(), paint, SkColor2GrColorJustAlpha(paint.getColor()),
                            false, &grPaint);

    SkRect dstRect = SkRect::MakeXYWH(SkIntToScalar(x),
                                      SkIntToScalar(y),
                                      SkIntToScalar(w),
                                      SkIntToScalar(h));

    // The device being drawn may not fill up its texture (e.g. saveLayer uses approximate
    // scratch texture).
    SkRect srcRect = SkRect::MakeWH(SK_Scalar1 * w / devTex->width(),
                                    SK_Scalar1 * h / devTex->height());

    fContext->drawRectToRect(grPaint, dstRect, srcRect);
}

bool SkGpuDevice::canHandleImageFilter(const SkImageFilter* filter) {
    return filter->canFilterImageGPU();
}

bool SkGpuDevice::filterImage(const SkImageFilter* filter, const SkBitmap& src,
                              const SkImageFilter::Context& ctx,
                              SkBitmap* result, SkIPoint* offset) {
    // want explicitly our impl, so guard against a subclass of us overriding it
    if (!this->SkGpuDevice::canHandleImageFilter(filter)) {
        return false;
    }

    SkAutoLockPixels alp(src, !src.getTexture());
    if (!src.getTexture() && !src.readyToDraw()) {
        return false;
    }

    GrTexture* texture;
    // We assume here that the filter will not attempt to tile the src. Otherwise, this cache lookup
    // must be pushed upstack.
    SkAutoCachedTexture act(this, src, NULL, &texture);

    return filter_texture(this, fContext, texture, filter, src.width(), src.height(), ctx,
                          result, offset);
}

///////////////////////////////////////////////////////////////////////////////

// must be in SkCanvas::VertexMode order
static const GrPrimitiveType gVertexMode2PrimitiveType[] = {
    kTriangles_GrPrimitiveType,
    kTriangleStrip_GrPrimitiveType,
    kTriangleFan_GrPrimitiveType,
};

void SkGpuDevice::drawVertices(const SkDraw& draw, SkCanvas::VertexMode vmode,
                              int vertexCount, const SkPoint vertices[],
                              const SkPoint texs[], const SkColor colors[],
                              SkXfermode* xmode,
                              const uint16_t indices[], int indexCount,
                              const SkPaint& paint) {
    CHECK_SHOULD_DRAW(draw, false);

    GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawVertices", fContext);
    
    const uint16_t* outIndices;
    SkAutoTDeleteArray<uint16_t> outAlloc(NULL);
    GrPrimitiveType primType;
    GrPaint grPaint;
    
    // If both textures and vertex-colors are NULL, strokes hairlines with the paint's color.
    if ((NULL == texs || NULL == paint.getShader()) && NULL == colors) {
        
        texs = NULL;
        
        SkPaint copy(paint);
        copy.setStyle(SkPaint::kStroke_Style);
        copy.setStrokeWidth(0);
        
        // we ignore the shader if texs is null.
        SkPaint2GrPaintNoShader(this->context(), copy, SkColor2GrColor(copy.getColor()),
                                NULL == colors, &grPaint);

        primType = kLines_GrPrimitiveType;
        int triangleCount = 0;
        switch (vmode) {
            case SkCanvas::kTriangles_VertexMode:
                triangleCount = indexCount / 3;
                break;
            case SkCanvas::kTriangleStrip_VertexMode:
            case SkCanvas::kTriangleFan_VertexMode:
                triangleCount = indexCount - 2;
                break;
        }
        
        VertState       state(vertexCount, indices, indexCount);
        VertState::Proc vertProc = state.chooseProc(vmode);
        
        //number of indices for lines per triangle with kLines
        indexCount = triangleCount * 6;
        
        outAlloc.reset(SkNEW_ARRAY(uint16_t, indexCount));
        outIndices = outAlloc.get();
        uint16_t* auxIndices = outAlloc.get();
        int i = 0;
        while (vertProc(&state)) {
            auxIndices[i]     = state.f0;
            auxIndices[i + 1] = state.f1;
            auxIndices[i + 2] = state.f1;
            auxIndices[i + 3] = state.f2;
            auxIndices[i + 4] = state.f2;
            auxIndices[i + 5] = state.f0;
            i += 6;
        }
    } else {
        outIndices = indices;
        primType = gVertexMode2PrimitiveType[vmode];
        
        if (NULL == texs || NULL == paint.getShader()) {
            SkPaint2GrPaintNoShader(this->context(), paint, SkColor2GrColor(paint.getColor()),
                                    NULL == colors, &grPaint);
        } else {
            SkPaint2GrPaintShader(this->context(), paint, NULL == colors, &grPaint);
        }
    }

#if 0
    if (NULL != xmode && NULL != texs && NULL != colors) {
        if (!SkXfermode::IsMode(xmode, SkXfermode::kModulate_Mode)) {
            SkDebugf("Unsupported vertex-color/texture xfer mode.\n");
            return;
        }
    }
#endif

    SkAutoSTMalloc<128, GrColor> convertedColors(0);
    if (NULL != colors) {
        // need to convert byte order and from non-PM to PM
        convertedColors.reset(vertexCount);
        SkColor color;
        for (int i = 0; i < vertexCount; ++i) {
            color = colors[i];
            if (paint.getAlpha() != 255) {
                color = SkColorSetA(color, SkMulDiv255Round(SkColorGetA(color), paint.getAlpha()));
            }
            convertedColors[i] = SkColor2GrColor(color);
        }
        colors = convertedColors.get();
    }
    fContext->drawVertices(grPaint,
                           primType,
                           vertexCount,
                           vertices,
                           texs,
                           colors,
                           outIndices,
                           indexCount);
}

///////////////////////////////////////////////////////////////////////////////

void SkGpuDevice::drawText(const SkDraw& draw, const void* text,
                          size_t byteLength, SkScalar x, SkScalar y,
                          const SkPaint& paint) {
    CHECK_SHOULD_DRAW(draw, false);
    GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawText", fContext);

    if (fMainTextContext->canDraw(paint)) {
        GrPaint grPaint;
        SkPaint2GrPaintShader(this->context(), paint, true, &grPaint);

        SkDEBUGCODE(this->validate();)

        fMainTextContext->drawText(grPaint, paint, (const char *)text, byteLength, x, y);
    } else if (fFallbackTextContext && fFallbackTextContext->canDraw(paint)) {
        GrPaint grPaint;
        SkPaint2GrPaintShader(this->context(), paint, true, &grPaint);

        SkDEBUGCODE(this->validate();)

        fFallbackTextContext->drawText(grPaint, paint, (const char *)text, byteLength, x, y);
    } else {
        // this guy will just call our drawPath()
        draw.drawText_asPaths((const char*)text, byteLength, x, y, paint);
    }
}

void SkGpuDevice::drawPosText(const SkDraw& draw, const void* text,
                             size_t byteLength, const SkScalar pos[],
                             SkScalar constY, int scalarsPerPos,
                             const SkPaint& paint) {
    GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawPosText", fContext);
    CHECK_SHOULD_DRAW(draw, false);

    if (fMainTextContext->canDraw(paint)) {
        GrPaint grPaint;
        SkPaint2GrPaintShader(this->context(), paint, true, &grPaint);

        SkDEBUGCODE(this->validate();)

        fMainTextContext->drawPosText(grPaint, paint, (const char *)text, byteLength, pos,
                                      constY, scalarsPerPos);
    } else if (fFallbackTextContext && fFallbackTextContext->canDraw(paint)) {
        GrPaint grPaint;
        SkPaint2GrPaintShader(this->context(), paint, true, &grPaint);

        SkDEBUGCODE(this->validate();)

        fFallbackTextContext->drawPosText(grPaint, paint, (const char *)text, byteLength, pos,
                                          constY, scalarsPerPos);
    } else {
        draw.drawPosText_asPaths((const char*)text, byteLength, pos, constY,
                                 scalarsPerPos, paint);
    }
}

void SkGpuDevice::drawTextOnPath(const SkDraw& draw, const void* text,
                                size_t len, const SkPath& path,
                                const SkMatrix* m, const SkPaint& paint) {
    CHECK_SHOULD_DRAW(draw, false);

    SkASSERT(draw.fDevice == this);
    draw.drawTextOnPath((const char*)text, len, path, m, paint);
}

///////////////////////////////////////////////////////////////////////////////

bool SkGpuDevice::filterTextFlags(const SkPaint& paint, TextFlags* flags) {
    if (!paint.isLCDRenderText()) {
        // we're cool with the paint as is
        return false;
    }

    if (paint.getShader() ||
        paint.getXfermode() || // unless its srcover
        paint.getMaskFilter() ||
        paint.getRasterizer() ||
        paint.getColorFilter() ||
        paint.getPathEffect() ||
        paint.isFakeBoldText() ||
        paint.getStyle() != SkPaint::kFill_Style) {
        // turn off lcd
        flags->fFlags = paint.getFlags() & ~SkPaint::kLCDRenderText_Flag;
        flags->fHinting = paint.getHinting();
        return true;
    }
    // we're cool with the paint as is
    return false;
}

void SkGpuDevice::flush() {
    DO_DEFERRED_CLEAR();
    fContext->resolveRenderTarget(fRenderTarget);
}

///////////////////////////////////////////////////////////////////////////////

SkBaseDevice* SkGpuDevice::onCreateDevice(const SkImageInfo& info, Usage usage) {
    GrTextureDesc desc;
    desc.fConfig = fRenderTarget->config();
    desc.fFlags = kRenderTarget_GrTextureFlagBit;
    desc.fWidth = info.width();
    desc.fHeight = info.height();
    desc.fSampleCnt = fRenderTarget->numSamples();

    SkAutoTUnref<GrTexture> texture;
    // Skia's convention is to only clear a device if it is non-opaque.
    unsigned flags = info.isOpaque() ? 0 : kNeedClear_Flag;

#if CACHE_COMPATIBLE_DEVICE_TEXTURES
    // layers are never draw in repeat modes, so we can request an approx
    // match and ignore any padding.
    flags |= kCached_Flag;
    const GrContext::ScratchTexMatch match = (kSaveLayer_Usage == usage) ?
                                                GrContext::kApprox_ScratchTexMatch :
                                                GrContext::kExact_ScratchTexMatch;
    texture.reset(fContext->lockAndRefScratchTexture(desc, match));
#else
    texture.reset(fContext->createUncachedTexture(desc, NULL, 0));
#endif
    if (NULL != texture.get()) {
        return SkGpuDevice::Create(texture, flags);
    } else {
        GrPrintf("---- failed to create compatible device texture [%d %d]\n",
                 info.width(), info.height());
        return NULL;
    }
}

SkSurface* SkGpuDevice::newSurface(const SkImageInfo& info) {
    return SkSurface::NewRenderTarget(fContext, info, fRenderTarget->numSamples());
}

void SkGpuDevice::EXPERIMENTAL_optimize(const SkPicture* picture) {
    fContext->getLayerCache()->processDeletedPictures();

    SkPicture::AccelData::Key key = GPUAccelData::ComputeAccelDataKey();

    const SkPicture::AccelData* existing = picture->EXPERIMENTAL_getAccelData(key);
    if (NULL != existing) {
        return;
    }

    SkAutoTUnref<GPUAccelData> data(SkNEW_ARGS(GPUAccelData, (key)));

    picture->EXPERIMENTAL_addAccelData(data);

    GatherGPUInfo(picture, data);

    fContext->getLayerCache()->trackPicture(picture);
}

static void wrap_texture(GrTexture* texture, int width, int height, SkBitmap* result) {
    SkImageInfo info = SkImageInfo::MakeN32Premul(width, height);
    result->setInfo(info);
    result->setPixelRef(SkNEW_ARGS(SkGrPixelRef, (info, texture)))->unref();
}

bool SkGpuDevice::EXPERIMENTAL_drawPicture(SkCanvas* canvas, const SkPicture* picture) {
    fContext->getLayerCache()->processDeletedPictures();

    SkPicture::AccelData::Key key = GPUAccelData::ComputeAccelDataKey();

    const SkPicture::AccelData* data = picture->EXPERIMENTAL_getAccelData(key);
    if (NULL == data) {
        return false;
    }

    const GPUAccelData *gpuData = static_cast<const GPUAccelData*>(data);

    if (0 == gpuData->numSaveLayers()) {
        return false;
    }

    SkAutoTArray<bool> pullForward(gpuData->numSaveLayers());
    for (int i = 0; i < gpuData->numSaveLayers(); ++i) {
        pullForward[i] = false;
    }

    SkRect clipBounds;
    if (!canvas->getClipBounds(&clipBounds)) {
        return true;
    }
    SkIRect query;
    clipBounds.roundOut(&query);

    SkAutoTDelete<const SkPicture::OperationList> ops(picture->EXPERIMENTAL_getActiveOps(query));

    // This code pre-renders the entire layer since it will be cached and potentially
    // reused with different clips (e.g., in different tiles). Because of this the
    // clip will not be limiting the size of the pre-rendered layer. kSaveLayerMaxSize
    // is used to limit which clips are pre-rendered.
    static const int kSaveLayerMaxSize = 256;

    if (NULL != ops.get()) {
        // In this case the picture has been generated with a BBH so we use
        // the BBH to limit the pre-rendering to just the layers needed to cover
        // the region being drawn
        for (int i = 0; i < ops->numOps(); ++i) {
            uint32_t offset = ops->offset(i);

            // For now we're saving all the layers in the GPUAccelData so they
            // can be nested. Additionally, the nested layers appear before
            // their parent in the list.
            for (int j = 0 ; j < gpuData->numSaveLayers(); ++j) {
                const GPUAccelData::SaveLayerInfo& info = gpuData->saveLayerInfo(j);

                if (pullForward[j]) {
                    continue;            // already pulling forward
                }

                if (offset < info.fSaveLayerOpID || offset > info.fRestoreOpID) {
                    continue;            // the op isn't in this range
                }

                // TODO: once this code is more stable unsuitable layers can
                // just be omitted during the optimization stage
                if (!info.fValid ||
                    kSaveLayerMaxSize < info.fSize.fWidth ||
                    kSaveLayerMaxSize < info.fSize.fHeight ||
                    info.fIsNested) {
                    continue;            // this layer is unsuitable
                }

                pullForward[j] = true;
            }
        }
    } else {
        // In this case there is no BBH associated with the picture. Pre-render
        // all the layers that intersect the drawn region
        for (int j = 0; j < gpuData->numSaveLayers(); ++j) {
            const GPUAccelData::SaveLayerInfo& info = gpuData->saveLayerInfo(j);

            SkIRect layerRect = SkIRect::MakeXYWH(info.fOffset.fX,
                                                  info.fOffset.fY,
                                                  info.fSize.fWidth,
                                                  info.fSize.fHeight);

            if (!SkIRect::Intersects(query, layerRect)) {
                continue;
            }

            // TODO: once this code is more stable unsuitable layers can
            // just be omitted during the optimization stage
            if (!info.fValid ||
                kSaveLayerMaxSize < info.fSize.fWidth ||
                kSaveLayerMaxSize < info.fSize.fHeight ||
                info.fIsNested) {
                continue;
            }

            pullForward[j] = true;
        }
    }

    SkPictureReplacementPlayback::PlaybackReplacements replacements;

    // Generate the layer and/or ensure it is locked
    for (int i = 0; i < gpuData->numSaveLayers(); ++i) {
        if (pullForward[i]) {
            GrCachedLayer* layer = fContext->getLayerCache()->findLayerOrCreate(picture, i);

            const GPUAccelData::SaveLayerInfo& info = gpuData->saveLayerInfo(i);

            SkPictureReplacementPlayback::PlaybackReplacements::ReplacementInfo* layerInfo =
                                                                        replacements.push();
            layerInfo->fStart = info.fSaveLayerOpID;
            layerInfo->fStop = info.fRestoreOpID;
            layerInfo->fPos = info.fOffset;

            GrTextureDesc desc;
            desc.fFlags = kRenderTarget_GrTextureFlagBit;
            desc.fWidth = info.fSize.fWidth;
            desc.fHeight = info.fSize.fHeight;
            desc.fConfig = kSkia8888_GrPixelConfig;
            // TODO: need to deal with sample count

            bool needsRendering = !fContext->getLayerCache()->lock(layer, desc);
            if (NULL == layer->texture()) {
                continue;
            }

            layerInfo->fBM = SkNEW(SkBitmap);  // fBM is allocated so ReplacementInfo can be POD
            wrap_texture(layer->texture(), 
                         !layer->isAtlased() ? desc.fWidth : layer->texture()->width(),
                         !layer->isAtlased() ? desc.fHeight : layer->texture()->height(),
                         layerInfo->fBM);

            SkASSERT(info.fPaint);
            layerInfo->fPaint = info.fPaint;

            layerInfo->fSrcRect = SkIRect::MakeXYWH(layer->rect().fLeft,
                                                    layer->rect().fTop,
                                                    layer->rect().width(),
                                                    layer->rect().height());


            if (needsRendering) {
                SkAutoTUnref<SkSurface> surface(SkSurface::NewRenderTargetDirect(
                                                    layer->texture()->asRenderTarget(),
                                                    SkSurface::kStandard_TextRenderMode,
                                                    SkSurface::kDontClear_RenderTargetFlag));

                SkCanvas* canvas = surface->getCanvas();

                // Add a rect clip to make sure the rendering doesn't
                // extend beyond the boundaries of the atlased sub-rect
                SkRect bound = SkRect::Make(layerInfo->fSrcRect);
                canvas->clipRect(bound);

                if (layer->isAtlased()) {
                    // Since 'clear' doesn't respect the clip we need to draw a rect
                    // TODO: ensure none of the atlased layers contain a clear call!
                    SkPaint paint;
                    paint.setColor(SK_ColorTRANSPARENT);
                    canvas->drawRect(bound, paint);
                } else {
                    canvas->clear(SK_ColorTRANSPARENT);
                }

                // info.fCTM maps the layer's top/left to the origin.
                // If this layer is atlased the top/left corner needs
                // to be offset to some arbitrary location in the backing 
                // texture.
                canvas->translate(bound.fLeft, bound.fTop);
                canvas->concat(info.fCTM);

                SkPictureRangePlayback rangePlayback(picture,
                                                     info.fSaveLayerOpID, 
                                                     info.fRestoreOpID);
                rangePlayback.draw(canvas, NULL);

                canvas->flush();
            }
        }
    }

    // Playback using new layers
    SkPictureReplacementPlayback playback(picture, &replacements, ops.get());

    playback.draw(canvas, NULL);

    // unlock the layers
    for (int i = 0; i < gpuData->numSaveLayers(); ++i) {
        GrCachedLayer* layer = fContext->getLayerCache()->findLayer(picture, i);
        fContext->getLayerCache()->unlock(layer);
    }

    return true;
}