DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
/*
 * Copyright 2011 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#ifndef GrGpu_DEFINED
#define GrGpu_DEFINED

#include "GrDrawTarget.h"
#include "GrClipMaskManager.h"
#include "SkPath.h"

class GrContext;
class GrIndexBufferAllocPool;
class GrPath;
class GrPathRange;
class GrPathRenderer;
class GrPathRendererChain;
class GrStencilBuffer;
class GrVertexBufferAllocPool;

class GrGpu : public GrDrawTarget {
public:

    /**
     * Additional blend coefficients for dual source blending, not exposed
     * through GrPaint/GrContext.
     */
    enum ExtendedBlendCoeffs {
        // source 2 refers to second output color when
        // using dual source blending.
        kS2C_GrBlendCoeff = kPublicGrBlendCoeffCount,
        kIS2C_GrBlendCoeff,
        kS2A_GrBlendCoeff,
        kIS2A_GrBlendCoeff,

        kTotalGrBlendCoeffCount
    };

    /**
     * Create an instance of GrGpu that matches the specified backend. If the requested backend is
     * not supported (at compile-time or run-time) this returns NULL. The context will not be
     * fully constructed and should not be used by GrGpu until after this function returns.
     */
    static GrGpu* Create(GrBackend, GrBackendContext, GrContext* context);

    ////////////////////////////////////////////////////////////////////////////

    GrGpu(GrContext* context);
    virtual ~GrGpu();

    GrContext* getContext() { return this->INHERITED::getContext(); }
    const GrContext* getContext() const { return this->INHERITED::getContext(); }

    /**
     * The GrGpu object normally assumes that no outsider is setting state
     * within the underlying 3D API's context/device/whatever. This call informs
     * the GrGpu that the state was modified and it shouldn't make assumptions
     * about the state.
     */
    void markContextDirty(uint32_t state = kAll_GrBackendState) {
        fResetBits |= state;
    }

    void unimpl(const char[]);

    /**
     * Creates a texture object. If desc width or height is not a power of
     * two but underlying API requires a power of two texture then srcData
     * will be embedded in a power of two texture. The extra width and height
     * is filled as though srcData were rendered clamped into the texture.
     * The exception is when using compressed data formats. In this case, the
     * desc width and height must be a multiple of the compressed format block
     * size otherwise this function returns NULL. Similarly, if the underlying
     * API requires a power of two texture and the source width and height are not
     * a power of two, then this function returns NULL.
     *
     * If kRenderTarget_TextureFlag is specified the GrRenderTarget is
     * accessible via GrTexture::asRenderTarget(). The texture will hold a ref
     * on the render target until the texture is destroyed. Compressed textures
     * cannot have the kRenderTarget_TextureFlag set.
     *
     * @param desc        describes the texture to be created.
     * @param srcData     texel data to load texture. Begins with full-size
     *                    palette data for paletted textures. For compressed
     *                    formats it contains the compressed pixel data. Otherwise,
     *                    it contains width*height texels. If NULL texture data
     *                    is uninitialized.
     * @param rowBytes    the number of bytes between consecutive rows. Zero
     *                    means rows are tightly packed. This field is ignored
     *                    for compressed formats.
     *
     * @return    The texture object if successful, otherwise NULL.
     */
    GrTexture* createTexture(const GrTextureDesc& desc,
                             const void* srcData, size_t rowBytes);

    /**
     * Implements GrContext::wrapBackendTexture
     */
    GrTexture* wrapBackendTexture(const GrBackendTextureDesc&);

    /**
     * Implements GrContext::wrapBackendTexture
     */
    GrRenderTarget* wrapBackendRenderTarget(const GrBackendRenderTargetDesc&);

    /**
     * Creates a vertex buffer.
     *
     * @param size    size in bytes of the vertex buffer
     * @param dynamic hints whether the data will be frequently changed
     *                by either GrVertexBuffer::map() or
     *                GrVertexBuffer::updateData().
     *
     * @return    The vertex buffer if successful, otherwise NULL.
     */
    GrVertexBuffer* createVertexBuffer(size_t size, bool dynamic);

    /**
     * Creates an index buffer.
     *
     * @param size    size in bytes of the index buffer
     * @param dynamic hints whether the data will be frequently changed
     *                by either GrIndexBuffer::map() or
     *                GrIndexBuffer::updateData().
     *
     * @return The index buffer if successful, otherwise NULL.
     */
    GrIndexBuffer* createIndexBuffer(size_t size, bool dynamic);

    /**
     * Creates a path object that can be stenciled using stencilPath(). It is
     * only legal to call this if the caps report support for path stenciling.
     */
    GrPath* createPath(const SkPath& path, const SkStrokeRec& stroke);

    /**
     * Creates a path range object that can be used to draw multiple paths via
     * drawPaths(). It is only legal to call this if the caps report support for
     * path rendering.
     */
    GrPathRange* createPathRange(size_t size, const SkStrokeRec&);

    /**
     * Returns an index buffer that can be used to render quads.
     * Six indices per quad: 0, 1, 2, 0, 2, 3, etc.
     * The max number of quads can be queried using GrIndexBuffer::maxQuads().
     * Draw with kTriangles_GrPrimitiveType
     * @ return the quad index buffer
     */
    const GrIndexBuffer* getQuadIndexBuffer() const;

    /**
     * Resolves MSAA.
     */
    void resolveRenderTarget(GrRenderTarget* target);

    /**
     * Gets a preferred 8888 config to use for writing/reading pixel data to/from a surface with
     * config surfaceConfig. The returned config must have at least as many bits per channel as the
     * readConfig or writeConfig param.
     */
    virtual GrPixelConfig preferredReadPixelsConfig(GrPixelConfig readConfig,
                                                    GrPixelConfig surfaceConfig) const {
        return readConfig;
    }
    virtual GrPixelConfig preferredWritePixelsConfig(GrPixelConfig writeConfig,
                                                     GrPixelConfig surfaceConfig) const {
        return writeConfig;
    }

    /**
     * Called before uploading writing pixels to a GrTexture when the src pixel config doesn't
     * match the texture's config.
     */
    virtual bool canWriteTexturePixels(const GrTexture*, GrPixelConfig srcConfig) const = 0;

    /**
     * OpenGL's readPixels returns the result bottom-to-top while the skia
     * API is top-to-bottom. Thus we have to do a y-axis flip. The obvious
     * solution is to have the subclass do the flip using either the CPU or GPU.
     * However, the caller (GrContext) may have transformations to apply and can
     * simply fold in the y-flip for free. On the other hand, the subclass may
     * be able to do it for free itself. For example, the subclass may have to
     * do memcpys to handle rowBytes that aren't tight. It could do the y-flip
     * concurrently.
     *
     * This function returns true if a y-flip is required to put the pixels in
     * top-to-bottom order and the subclass cannot do it for free.
     *
     * See read pixels for the params
     * @return true if calling readPixels with the same set of params will
     *              produce bottom-to-top data
     */
     virtual bool readPixelsWillPayForYFlip(GrRenderTarget* renderTarget,
                                            int left, int top,
                                            int width, int height,
                                            GrPixelConfig config,
                                            size_t rowBytes) const = 0;
     /**
      * This should return true if reading a NxM rectangle of pixels from a
      * render target is faster if the target has dimensons N and M and the read
      * rectangle has its top-left at 0,0.
      */
     virtual bool fullReadPixelsIsFasterThanPartial() const { return false; };

    /**
     * Reads a rectangle of pixels from a render target.
     *
     * @param renderTarget  the render target to read from. NULL means the
     *                      current render target.
     * @param left          left edge of the rectangle to read (inclusive)
     * @param top           top edge of the rectangle to read (inclusive)
     * @param width         width of rectangle to read in pixels.
     * @param height        height of rectangle to read in pixels.
     * @param config        the pixel config of the destination buffer
     * @param buffer        memory to read the rectangle into.
     * @param rowBytes      the number of bytes between consecutive rows. Zero
     *                      means rows are tightly packed.
     * @param invertY       buffer should be populated bottom-to-top as opposed
     *                      to top-to-bottom (skia's usual order)
     *
     * @return true if the read succeeded, false if not. The read can fail
     *              because of a unsupported pixel config or because no render
     *              target is currently set.
     */
    bool readPixels(GrRenderTarget* renderTarget,
                    int left, int top, int width, int height,
                    GrPixelConfig config, void* buffer, size_t rowBytes);

    /**
     * Updates the pixels in a rectangle of a texture.
     *
     * @param left          left edge of the rectangle to write (inclusive)
     * @param top           top edge of the rectangle to write (inclusive)
     * @param width         width of rectangle to write in pixels.
     * @param height        height of rectangle to write in pixels.
     * @param config        the pixel config of the source buffer
     * @param buffer        memory to read pixels from
     * @param rowBytes      number of bytes between consecutive rows. Zero
     *                      means rows are tightly packed.
     */
    bool writeTexturePixels(GrTexture* texture,
                            int left, int top, int width, int height,
                            GrPixelConfig config, const void* buffer,
                            size_t rowBytes);

    /**
     * Called to tell GrGpu that all GrGpuResources have been lost and should
     * be abandoned. Overrides must call INHERITED::abandonResources().
     */
    virtual void abandonResources();

    /**
     * Called to tell GrGpu to release all GrGpuResources. Overrides must call
     * INHERITED::releaseResources().
     */
    void releaseResources();

    /**
     * Add object to list of objects. Should only be called by GrGpuResource.
     * @param resource  the resource to add.
     */
    void insertObject(GrGpuResource* object);

    /**
     * Remove object from list of objects. Should only be called by GrGpuResource.
     * @param resource  the resource to remove.
     */
    void removeObject(GrGpuResource* object);

    // GrDrawTarget overrides
    virtual void clear(const SkIRect* rect,
                       GrColor color,
                       bool canIgnoreRect,
                       GrRenderTarget* renderTarget = NULL) SK_OVERRIDE;

    virtual void purgeResources() SK_OVERRIDE {
        // The clip mask manager can rebuild all its clip masks so just
        // get rid of them all.
        fClipMaskManager.releaseResources();
    }

    // After the client interacts directly with the 3D context state the GrGpu
    // must resync its internal state and assumptions about 3D context state.
    // Each time this occurs the GrGpu bumps a timestamp.
    // state of the 3D context
    // At 10 resets / frame and 60fps a 64bit timestamp will overflow in about
    // a billion years.
    typedef uint64_t ResetTimestamp;

    // This timestamp is always older than the current timestamp
    static const ResetTimestamp kExpiredTimestamp = 0;
    // Returns a timestamp based on the number of times the context was reset.
    // This timestamp can be used to lazily detect when cached 3D context state
    // is dirty.
    ResetTimestamp getResetTimestamp() const {
        return fResetTimestamp;
    }

    /**
     * These methods are called by the clip manager's setupClipping function
     * which (called as part of GrGpu's implementation of onDraw and
     * onStencilPath member functions.) The GrGpu subclass should flush the
     * stencil state to the 3D API in its implementation of flushGraphicsState.
     */
    void enableScissor(const SkIRect& rect) {
        fScissorState.fEnabled = true;
        fScissorState.fRect = rect;
    }
    void disableScissor() { fScissorState.fEnabled = false; }

    /**
     * Like the scissor methods above this is called by setupClipping and
     * should be flushed by the GrGpu subclass in flushGraphicsState. These
     * stencil settings should be used in place of those on the GrDrawState.
     * They have been adjusted to account for any interactions between the
     * GrDrawState's stencil settings and stencil clipping.
     */
    void setStencilSettings(const GrStencilSettings& settings) {
        fStencilSettings = settings;
    }
    void disableStencil() { fStencilSettings.setDisabled(); }

    // GrGpu subclass sets clip bit in the stencil buffer. The subclass is
    // free to clear the remaining bits to zero if masked clears are more
    // expensive than clearing all bits.
    virtual void clearStencilClip(const SkIRect& rect, bool insideClip) = 0;

    enum PrivateDrawStateStateBits {
        kFirstBit = (GrDrawState::kLastPublicStateBit << 1),

        kModifyStencilClip_StateBit = kFirstBit, // allows draws to modify
                                                 // stencil bits used for
                                                 // clipping.
    };

    void getPathStencilSettingsForFillType(SkPath::FillType fill, GrStencilSettings* outStencilSettings);

    enum DrawType {
        kDrawPoints_DrawType,
        kDrawLines_DrawType,
        kDrawTriangles_DrawType,
        kStencilPath_DrawType,
        kDrawPath_DrawType,
        kDrawPaths_DrawType,
    };

protected:
    DrawType PrimTypeToDrawType(GrPrimitiveType type) {
        switch (type) {
            case kTriangles_GrPrimitiveType:
            case kTriangleStrip_GrPrimitiveType:
            case kTriangleFan_GrPrimitiveType:
                return kDrawTriangles_DrawType;
            case kPoints_GrPrimitiveType:
                return kDrawPoints_DrawType;
            case kLines_GrPrimitiveType:
            case kLineStrip_GrPrimitiveType:
                return kDrawLines_DrawType;
            default:
                SkFAIL("Unexpected primitive type");
                return kDrawTriangles_DrawType;
        }
    }

    // prepares clip flushes gpu state before a draw
    bool setupClipAndFlushState(DrawType,
                                const GrDeviceCoordTexture* dstCopy,
                                GrDrawState::AutoRestoreEffects* are,
                                const SkRect* devBounds);

    // Functions used to map clip-respecting stencil tests into normal
    // stencil funcs supported by GPUs.
    static GrStencilFunc ConvertStencilFunc(bool stencilInClip,
                                            GrStencilFunc func);
    static void ConvertStencilFuncAndMask(GrStencilFunc func,
                                          bool clipInStencil,
                                          unsigned int clipBit,
                                          unsigned int userBits,
                                          unsigned int* ref,
                                          unsigned int* mask);

    GrClipMaskManager           fClipMaskManager;

    struct GeometryPoolState {
        const GrVertexBuffer* fPoolVertexBuffer;
        int                   fPoolStartVertex;

        const GrIndexBuffer*  fPoolIndexBuffer;
        int                   fPoolStartIndex;
    };
    const GeometryPoolState& getGeomPoolState() {
        return fGeomPoolStateStack.back();
    }

    // The state of the scissor is controlled by the clip manager
    struct ScissorState {
        bool    fEnabled;
        SkIRect fRect;
    } fScissorState;

    // The final stencil settings to use as determined by the clip manager.
    GrStencilSettings fStencilSettings;

    // Helpers for setting up geometry state
    void finalizeReservedVertices();
    void finalizeReservedIndices();

private:
    // GrDrawTarget overrides
    virtual bool onReserveVertexSpace(size_t vertexSize, int vertexCount, void** vertices) SK_OVERRIDE;
    virtual bool onReserveIndexSpace(int indexCount, void** indices) SK_OVERRIDE;
    virtual void releaseReservedVertexSpace() SK_OVERRIDE;
    virtual void releaseReservedIndexSpace() SK_OVERRIDE;
    virtual void onSetVertexSourceToArray(const void* vertexArray, int vertexCount) SK_OVERRIDE;
    virtual void onSetIndexSourceToArray(const void* indexArray, int indexCount) SK_OVERRIDE;
    virtual void releaseVertexArray() SK_OVERRIDE;
    virtual void releaseIndexArray() SK_OVERRIDE;
    virtual void geometrySourceWillPush() SK_OVERRIDE;
    virtual void geometrySourceWillPop(const GeometrySrcState& restoredState) SK_OVERRIDE;


    // called when the 3D context state is unknown. Subclass should emit any
    // assumed 3D context state and dirty any state cache.
    virtual void onResetContext(uint32_t resetBits) = 0;

    // overridden by backend-specific derived class to create objects.
    virtual GrTexture* onCreateTexture(const GrTextureDesc& desc,
                                       const void* srcData,
                                       size_t rowBytes) = 0;
    virtual GrTexture* onCreateCompressedTexture(const GrTextureDesc& desc,
                                                 const void* srcData) = 0;
    virtual GrTexture* onWrapBackendTexture(const GrBackendTextureDesc&) = 0;
    virtual GrRenderTarget* onWrapBackendRenderTarget(const GrBackendRenderTargetDesc&) = 0;
    virtual GrVertexBuffer* onCreateVertexBuffer(size_t size, bool dynamic) = 0;
    virtual GrIndexBuffer* onCreateIndexBuffer(size_t size, bool dynamic) = 0;
    virtual GrPath* onCreatePath(const SkPath& path, const SkStrokeRec&) = 0;
    virtual GrPathRange* onCreatePathRange(size_t size, const SkStrokeRec&) = 0;

    // overridden by backend-specific derived class to perform the clear and
    // clearRect. NULL rect means clear whole target. If canIgnoreRect is
    // true, it is okay to perform a full clear instead of a partial clear
    virtual void onClear(const SkIRect* rect, GrColor color, bool canIgnoreRect) = 0;

    // overridden by backend-specific derived class to perform the draw call.
    virtual void onGpuDraw(const DrawInfo&) = 0;

    // overridden by backend-specific derived class to perform the path stenciling.
    virtual void onGpuStencilPath(const GrPath*, SkPath::FillType) = 0;
    virtual void onGpuDrawPath(const GrPath*, SkPath::FillType) = 0;
    virtual void onGpuDrawPaths(const GrPathRange*,
                                const uint32_t indices[], int count,
                                const float transforms[], PathTransformType,
                                SkPath::FillType) = 0;

    // overridden by backend-specific derived class to perform the read pixels.
    virtual bool onReadPixels(GrRenderTarget* target,
                              int left, int top, int width, int height,
                              GrPixelConfig,
                              void* buffer,
                              size_t rowBytes) = 0;

    // overridden by backend-specific derived class to perform the texture update
    virtual bool onWriteTexturePixels(GrTexture* texture,
                                      int left, int top, int width, int height,
                                      GrPixelConfig config, const void* buffer,
                                      size_t rowBytes) = 0;

    // overridden by backend-specific derived class to perform the resolve
    virtual void onResolveRenderTarget(GrRenderTarget* target) = 0;

    // width and height may be larger than rt (if underlying API allows it).
    // Should attach the SB to the RT. Returns false if compatible sb could
    // not be created.
    virtual bool createStencilBufferForRenderTarget(GrRenderTarget*, int width, int height) = 0;

    // attaches an existing SB to an existing RT.
    virtual bool attachStencilBufferToRenderTarget(GrStencilBuffer*, GrRenderTarget*) = 0;

    // The GrGpu typically records the clients requested state and then flushes
    // deltas from previous state at draw time. This function does the
    // backend-specific flush of the state.
    // returns false if current state is unsupported.
    virtual bool flushGraphicsState(DrawType, const GrDeviceCoordTexture* dstCopy) = 0;

    // clears the entire stencil buffer to 0
    virtual void clearStencil() = 0;

    // Given a rt, find or create a stencil buffer and attach it
    bool attachStencilBufferToRenderTarget(GrRenderTarget* target);

    // GrDrawTarget overrides
    virtual void onDraw(const DrawInfo&) SK_OVERRIDE;
    virtual void onStencilPath(const GrPath*, SkPath::FillType) SK_OVERRIDE;
    virtual void onDrawPath(const GrPath*, SkPath::FillType,
                            const GrDeviceCoordTexture* dstCopy) SK_OVERRIDE;
    virtual void onDrawPaths(const GrPathRange*,
                             const uint32_t indices[], int count,
                             const float transforms[], PathTransformType,
                             SkPath::FillType, const GrDeviceCoordTexture*) SK_OVERRIDE;

    // readies the pools to provide vertex/index data.
    void prepareVertexPool();
    void prepareIndexPool();

    void resetContext() {
        // We call this because the client may have messed with the
        // stencil buffer. Perhaps we should detect whether it is a
        // internally created stencil buffer and if so skip the invalidate.
        fClipMaskManager.invalidateStencilMask();
        this->onResetContext(fResetBits);
        fResetBits = 0;
        ++fResetTimestamp;
    }

    void handleDirtyContext() {
        if (fResetBits) {
            this->resetContext();
        }
    }

    enum {
        kPreallocGeomPoolStateStackCnt = 4,
    };
    typedef SkTInternalLList<GrGpuResource> ObjectList;
    SkSTArray<kPreallocGeomPoolStateStackCnt, GeometryPoolState, true>  fGeomPoolStateStack;
    ResetTimestamp                                                      fResetTimestamp;
    uint32_t                                                            fResetBits;
    GrVertexBufferAllocPool*                                            fVertexPool;
    GrIndexBufferAllocPool*                                             fIndexPool;
    // counts number of uses of vertex/index pool in the geometry stack
    int                                                                 fVertexPoolUseCnt;
    int                                                                 fIndexPoolUseCnt;
    // these are mutable so they can be created on-demand
    mutable GrIndexBuffer*                                              fQuadIndexBuffer;
    // Used to abandon/release all resources created by this GrGpu. TODO: Move this
    // functionality to GrResourceCache.
    ObjectList                                                          fObjectList;

    typedef GrDrawTarget INHERITED;
};

#endif