DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502

/*
 * Copyright 2011 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "SkColorMatrixFilter.h"
#include "SkColorMatrix.h"
#include "SkColorPriv.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"
#include "SkUnPreMultiply.h"
#include "SkString.h"

static int32_t rowmul4(const int32_t array[], unsigned r, unsigned g,
                          unsigned b, unsigned a) {
    return array[0] * r + array[1] * g  + array[2] * b + array[3] * a + array[4];
}

static int32_t rowmul3(const int32_t array[], unsigned r, unsigned g,
                       unsigned b) {
    return array[0] * r + array[1] * g  + array[2] * b + array[4];
}

static void General(const SkColorMatrixFilter::State& state,
                    unsigned r, unsigned g, unsigned b, unsigned a,
                    int32_t* SK_RESTRICT result) {
    const int32_t* SK_RESTRICT array = state.fArray;
    const int shift = state.fShift;

    result[0] = rowmul4(&array[0], r, g, b, a) >> shift;
    result[1] = rowmul4(&array[5], r, g, b, a) >> shift;
    result[2] = rowmul4(&array[10], r, g, b, a) >> shift;
    result[3] = rowmul4(&array[15], r, g, b, a) >> shift;
}

static void General16(const SkColorMatrixFilter::State& state,
                      unsigned r, unsigned g, unsigned b, unsigned a,
                      int32_t* SK_RESTRICT result) {
    const int32_t* SK_RESTRICT array = state.fArray;

    result[0] = rowmul4(&array[0], r, g, b, a) >> 16;
    result[1] = rowmul4(&array[5], r, g, b, a) >> 16;
    result[2] = rowmul4(&array[10], r, g, b, a) >> 16;
    result[3] = rowmul4(&array[15], r, g, b, a) >> 16;
}

static void AffineAdd(const SkColorMatrixFilter::State& state,
                      unsigned r, unsigned g, unsigned b, unsigned a,
                      int32_t* SK_RESTRICT result) {
    const int32_t* SK_RESTRICT array = state.fArray;
    const int shift = state.fShift;

    result[0] = rowmul3(&array[0], r, g, b) >> shift;
    result[1] = rowmul3(&array[5], r, g, b) >> shift;
    result[2] = rowmul3(&array[10], r, g, b) >> shift;
    result[3] = a;
}

static void AffineAdd16(const SkColorMatrixFilter::State& state,
                        unsigned r, unsigned g, unsigned b, unsigned a,
                        int32_t* SK_RESTRICT result) {
    const int32_t* SK_RESTRICT array = state.fArray;

    result[0] = rowmul3(&array[0], r, g, b) >> 16;
    result[1] = rowmul3(&array[5], r, g, b) >> 16;
    result[2] = rowmul3(&array[10], r, g, b) >> 16;
    result[3] = a;
}

static void ScaleAdd(const SkColorMatrixFilter::State& state,
                     unsigned r, unsigned g, unsigned b, unsigned a,
                     int32_t* SK_RESTRICT result) {
    const int32_t* SK_RESTRICT array = state.fArray;
    const int shift = state.fShift;

    // cast to (int) to keep the expression signed for the shift
    result[0] = (array[SkColorMatrix::kR_Scale] * (int)r + array[4]) >> shift;
    result[1] = (array[SkColorMatrix::kG_Scale] * (int)g + array[9]) >> shift;
    result[2] = (array[SkColorMatrix::kB_Scale] * (int)b + array[14]) >> shift;
    result[3] = a;
}

static void ScaleAdd16(const SkColorMatrixFilter::State& state,
                       unsigned r, unsigned g, unsigned b, unsigned a,
                       int32_t* SK_RESTRICT result) {
    const int32_t* SK_RESTRICT array = state.fArray;

    // cast to (int) to keep the expression signed for the shift
    result[0] = (array[SkColorMatrix::kR_Scale] * (int)r + array[4]) >> 16;
    result[1] = (array[SkColorMatrix::kG_Scale] * (int)g + array[9]) >> 16;
    result[2] = (array[SkColorMatrix::kB_Scale] * (int)b + array[14]) >> 16;
    result[3] = a;
}

static void Add(const SkColorMatrixFilter::State& state,
                unsigned r, unsigned g, unsigned b, unsigned a,
                int32_t* SK_RESTRICT result) {
    const int32_t* SK_RESTRICT array = state.fArray;
    const int shift = state.fShift;

    result[0] = r + (array[SkColorMatrix::kR_Trans] >> shift);
    result[1] = g + (array[SkColorMatrix::kG_Trans] >> shift);
    result[2] = b + (array[SkColorMatrix::kB_Trans] >> shift);
    result[3] = a;
}

static void Add16(const SkColorMatrixFilter::State& state,
                  unsigned r, unsigned g, unsigned b, unsigned a,
                  int32_t* SK_RESTRICT result) {
    const int32_t* SK_RESTRICT array = state.fArray;

    result[0] = r + (array[SkColorMatrix::kR_Trans] >> 16);
    result[1] = g + (array[SkColorMatrix::kG_Trans] >> 16);
    result[2] = b + (array[SkColorMatrix::kB_Trans] >> 16);
    result[3] = a;
}

#define kNO_ALPHA_FLAGS (SkColorFilter::kAlphaUnchanged_Flag |  \
                         SkColorFilter::kHasFilter16_Flag)

// src is [20] but some compilers won't accept __restrict__ on anything
// but an raw pointer or reference
void SkColorMatrixFilter::initState(const SkScalar* SK_RESTRICT src) {
    int32_t* array = fState.fArray;
    SkFixed max = 0;
    for (int i = 0; i < 20; i++) {
        SkFixed value = SkScalarToFixed(src[i]);
        array[i] = value;
        value = SkAbs32(value);
        max = SkMax32(max, value);
    }

    /*  All of fArray[] values must fit in 23 bits, to safely allow me to
        multiply them by 8bit unsigned values, and get a signed answer without
        overflow. This means clz needs to be 9 or bigger
    */
    int bits = SkCLZ(max);
    int32_t one = SK_Fixed1;

    fState.fShift = 16; // we are starting out as fixed 16.16
    if (bits < 9) {
        bits = 9 - bits;
        fState.fShift -= bits;
        for (int i = 0; i < 20; i++) {
            array[i] >>= bits;
        }
        one >>= bits;
    }

    // check if we have to munge Alpha
    int32_t changesAlpha = (array[15] | array[16] | array[17] |
                            (array[18] - one) | array[19]);
    int32_t usesAlpha = (array[3] | array[8] | array[13]);
    bool shiftIs16 = (16 == fState.fShift);

    if (changesAlpha | usesAlpha) {
        fProc = shiftIs16 ? General16 : General;
        fFlags = changesAlpha ? 0 : SkColorFilter::kAlphaUnchanged_Flag;
    } else {
        fFlags = kNO_ALPHA_FLAGS;

        int32_t needsScale = (array[SkColorMatrix::kR_Scale] - one) |
                             (array[SkColorMatrix::kG_Scale] - one) |
                             (array[SkColorMatrix::kB_Scale] - one);

        int32_t needs3x3 =  array[1] | array[2] |     // red off-axis
                            array[5] | array[7] |     // green off-axis
                            array[10] | array[11];    // blue off-axis

        if (needs3x3) {
            fProc = shiftIs16 ? AffineAdd16 : AffineAdd;
        } else if (needsScale) {
            fProc = shiftIs16 ? ScaleAdd16 : ScaleAdd;
        } else if (array[SkColorMatrix::kR_Trans] |
                   array[SkColorMatrix::kG_Trans] |
                   array[SkColorMatrix::kB_Trans]) {
            fProc = shiftIs16 ? Add16 : Add;
        } else {
            fProc = NULL;   // identity
        }
    }

    /*  preround our add values so we get a rounded shift. We do this after we
        analyze the array, so we don't miss the case where the caller has zeros
        which could make us accidentally take the General or Add case.
    */
    if (NULL != fProc) {
        int32_t add = 1 << (fState.fShift - 1);
        array[4] += add;
        array[9] += add;
        array[14] += add;
        array[19] += add;
    }
}

///////////////////////////////////////////////////////////////////////////////

static int32_t pin(int32_t value, int32_t max) {
    if (value < 0) {
        value = 0;
    }
    if (value > max) {
        value = max;
    }
    return value;
}

SkColorMatrixFilter::SkColorMatrixFilter(const SkColorMatrix& cm) : fMatrix(cm) {
    this->initState(cm.fMat);
}

SkColorMatrixFilter::SkColorMatrixFilter(const SkScalar array[20]) {
    memcpy(fMatrix.fMat, array, 20 * sizeof(SkScalar));
    this->initState(array);
}

uint32_t SkColorMatrixFilter::getFlags() const {
    return this->INHERITED::getFlags() | fFlags;
}

void SkColorMatrixFilter::filterSpan(const SkPMColor src[], int count,
                                     SkPMColor dst[]) const {
    Proc proc = fProc;
    const State& state = fState;
    int32_t result[4];

    if (NULL == proc) {
        if (src != dst) {
            memcpy(dst, src, count * sizeof(SkPMColor));
        }
        return;
    }

    const SkUnPreMultiply::Scale* table = SkUnPreMultiply::GetScaleTable();

    for (int i = 0; i < count; i++) {
        SkPMColor c = src[i];

        unsigned r = SkGetPackedR32(c);
        unsigned g = SkGetPackedG32(c);
        unsigned b = SkGetPackedB32(c);
        unsigned a = SkGetPackedA32(c);

        // need our components to be un-premultiplied
        if (255 != a) {
            SkUnPreMultiply::Scale scale = table[a];
            r = SkUnPreMultiply::ApplyScale(scale, r);
            g = SkUnPreMultiply::ApplyScale(scale, g);
            b = SkUnPreMultiply::ApplyScale(scale, b);

            SkASSERT(r <= 255);
            SkASSERT(g <= 255);
            SkASSERT(b <= 255);
        }

        proc(state, r, g, b, a, result);

        r = pin(result[0], SK_R32_MASK);
        g = pin(result[1], SK_G32_MASK);
        b = pin(result[2], SK_B32_MASK);
        a = pin(result[3], SK_A32_MASK);
        // re-prepremultiply if needed
        dst[i] = SkPremultiplyARGBInline(a, r, g, b);
    }
}

void SkColorMatrixFilter::filterSpan16(const uint16_t src[], int count,
                                       uint16_t dst[]) const {
    SkASSERT(fFlags & SkColorFilter::kHasFilter16_Flag);

    Proc   proc = fProc;
    const State& state = fState;
    int32_t result[4];

    if (NULL == proc) {
        if (src != dst) {
            memcpy(dst, src, count * sizeof(uint16_t));
        }
        return;
    }

    for (int i = 0; i < count; i++) {
        uint16_t c = src[i];

        // expand to 8bit components (since our matrix translate is 8bit biased
        unsigned r = SkPacked16ToR32(c);
        unsigned g = SkPacked16ToG32(c);
        unsigned b = SkPacked16ToB32(c);

        proc(state, r, g, b, 0, result);

        r = pin(result[0], SK_R32_MASK);
        g = pin(result[1], SK_G32_MASK);
        b = pin(result[2], SK_B32_MASK);

        // now packed it back down to 16bits (hmmm, could dither...)
        dst[i] = SkPack888ToRGB16(r, g, b);
    }
}

///////////////////////////////////////////////////////////////////////////////

void SkColorMatrixFilter::flatten(SkWriteBuffer& buffer) const {
    this->INHERITED::flatten(buffer);
    SkASSERT(sizeof(fMatrix.fMat)/sizeof(SkScalar) == 20);
    buffer.writeScalarArray(fMatrix.fMat, 20);
}

SkColorMatrixFilter::SkColorMatrixFilter(SkReadBuffer& buffer)
        : INHERITED(buffer) {
    SkASSERT(buffer.getArrayCount() == 20);
    if (buffer.readScalarArray(fMatrix.fMat, 20)) {
        this->initState(fMatrix.fMat);
    }
}

bool SkColorMatrixFilter::asColorMatrix(SkScalar matrix[20]) const {
    if (matrix) {
        memcpy(matrix, fMatrix.fMat, 20 * sizeof(SkScalar));
    }
    return true;
}

#if SK_SUPPORT_GPU
#include "GrEffect.h"
#include "GrTBackendEffectFactory.h"
#include "gl/GrGLEffect.h"
#include "gl/GrGLShaderBuilder.h"

class ColorMatrixEffect : public GrEffect {
public:
    static GrEffect* Create(const SkColorMatrix& matrix) {
        return SkNEW_ARGS(ColorMatrixEffect, (matrix));
    }

    static const char* Name() { return "Color Matrix"; }

    virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE {
        return GrTBackendEffectFactory<ColorMatrixEffect>::getInstance();
    }

    virtual void getConstantColorComponents(GrColor* color,
                                            uint32_t* validFlags) const SK_OVERRIDE {
        // We only bother to check whether the alpha channel will be constant. If SkColorMatrix had
        // type flags it might be worth checking the other components.

        // The matrix is defined such the 4th row determines the output alpha. The first four
        // columns of that row multiply the input r, g, b, and a, respectively, and the last column
        // is the "translation".
        static const uint32_t kRGBAFlags[] = {
            kR_GrColorComponentFlag,
            kG_GrColorComponentFlag,
            kB_GrColorComponentFlag,
            kA_GrColorComponentFlag
        };
        static const int kShifts[] = {
            GrColor_SHIFT_R, GrColor_SHIFT_G, GrColor_SHIFT_B, GrColor_SHIFT_A,
        };
        enum {
            kAlphaRowStartIdx = 15,
            kAlphaRowTranslateIdx = 19,
        };

        SkScalar outputA = 0;
        for (int i = 0; i < 4; ++i) {
            // If any relevant component of the color to be passed through the matrix is non-const
            // then we can't know the final result.
            if (0 != fMatrix.fMat[kAlphaRowStartIdx + i]) {
                if (!(*validFlags & kRGBAFlags[i])) {
                    *validFlags = 0;
                    return;
                } else {
                    uint32_t component = (*color >> kShifts[i]) & 0xFF;
                    outputA += fMatrix.fMat[kAlphaRowStartIdx + i] * component;
                }
            }
        }
        outputA += fMatrix.fMat[kAlphaRowTranslateIdx];
        *validFlags = kA_GrColorComponentFlag;
        // We pin the color to [0,1]. This would happen to the *final* color output from the frag
        // shader but currently the effect does not pin its own output. So in the case of over/
        // underflow this may deviate from the actual result. Maybe the effect should pin its
        // result if the matrix could over/underflow for any component?
        *color = static_cast<uint8_t>(SkScalarPin(outputA, 0, 255)) << GrColor_SHIFT_A;
    }

    GR_DECLARE_EFFECT_TEST;

    class GLEffect : public GrGLEffect {
    public:
        // this class always generates the same code.
        static void GenKey(const GrDrawEffect&, const GrGLCaps&, GrEffectKeyBuilder* b) {}

        GLEffect(const GrBackendEffectFactory& factory,
                 const GrDrawEffect&)
        : INHERITED(factory) {
        }

        virtual void emitCode(GrGLShaderBuilder* builder,
                              const GrDrawEffect&,
                              const GrEffectKey&,
                              const char* outputColor,
                              const char* inputColor,
                              const TransformedCoordsArray&,
                              const TextureSamplerArray&) SK_OVERRIDE {
            fMatrixHandle = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
                                                kMat44f_GrSLType,
                                                "ColorMatrix");
            fVectorHandle = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
                                                kVec4f_GrSLType,
                                                "ColorMatrixVector");

            if (NULL == inputColor) {
                // could optimize this case, but we aren't for now.
                inputColor = "vec4(1)";
            }
            // The max() is to guard against 0 / 0 during unpremul when the incoming color is
            // transparent black.
            builder->fsCodeAppendf("\tfloat nonZeroAlpha = max(%s.a, 0.00001);\n", inputColor);
            builder->fsCodeAppendf("\t%s = %s * vec4(%s.rgb / nonZeroAlpha, nonZeroAlpha) + %s;\n",
                                   outputColor,
                                   builder->getUniformCStr(fMatrixHandle),
                                   inputColor,
                                   builder->getUniformCStr(fVectorHandle));
            builder->fsCodeAppendf("\t%s = clamp(%s, 0.0, 1.0);\n", outputColor, outputColor);
            builder->fsCodeAppendf("\t%s.rgb *= %s.a;\n", outputColor, outputColor);
        }

        virtual void setData(const GrGLUniformManager& uniManager,
                             const GrDrawEffect& drawEffect) SK_OVERRIDE {
            const ColorMatrixEffect& cme = drawEffect.castEffect<ColorMatrixEffect>();
            const float* m = cme.fMatrix.fMat;
            // The GL matrix is transposed from SkColorMatrix.
            GrGLfloat mt[]  = {
                m[0], m[5], m[10], m[15],
                m[1], m[6], m[11], m[16],
                m[2], m[7], m[12], m[17],
                m[3], m[8], m[13], m[18],
            };
            static const float kScale = 1.0f / 255.0f;
            GrGLfloat vec[] = {
                m[4] * kScale, m[9] * kScale, m[14] * kScale, m[19] * kScale,
            };
            uniManager.setMatrix4fv(fMatrixHandle, 1, mt);
            uniManager.set4fv(fVectorHandle, 1, vec);
        }

    private:
        GrGLUniformManager::UniformHandle fMatrixHandle;
        GrGLUniformManager::UniformHandle fVectorHandle;

        typedef GrGLEffect INHERITED;
    };

private:
    ColorMatrixEffect(const SkColorMatrix& matrix) : fMatrix(matrix) {}

    virtual bool onIsEqual(const GrEffect& s) const {
        const ColorMatrixEffect& cme = CastEffect<ColorMatrixEffect>(s);
        return cme.fMatrix == fMatrix;
    }

    SkColorMatrix fMatrix;

    typedef GrEffect INHERITED;
};

GR_DEFINE_EFFECT_TEST(ColorMatrixEffect);

GrEffect* ColorMatrixEffect::TestCreate(SkRandom* random,
                                        GrContext*,
                                        const GrDrawTargetCaps&,
                                        GrTexture* dummyTextures[2]) {
    SkColorMatrix colorMatrix;
    for (size_t i = 0; i < SK_ARRAY_COUNT(colorMatrix.fMat); ++i) {
        colorMatrix.fMat[i] = random->nextSScalar1();
    }
    return ColorMatrixEffect::Create(colorMatrix);
}

GrEffect* SkColorMatrixFilter::asNewEffect(GrContext*) const {
    return ColorMatrixEffect::Create(fMatrix);
}

#endif

#ifndef SK_IGNORE_TO_STRING
void SkColorMatrixFilter::toString(SkString* str) const {
    str->append("SkColorMatrixFilter: ");

    str->append("matrix: (");
    for (int i = 0; i < 20; ++i) {
        str->appendScalar(fMatrix.fMat[i]);
        if (i < 19) {
            str->append(", ");
        }
    }
    str->append(")");
}
#endif